CN105649896B - Wind turbines intelligent monitoring operation control system and its control method - Google Patents
Wind turbines intelligent monitoring operation control system and its control method Download PDFInfo
- Publication number
- CN105649896B CN105649896B CN201610027629.4A CN201610027629A CN105649896B CN 105649896 B CN105649896 B CN 105649896B CN 201610027629 A CN201610027629 A CN 201610027629A CN 105649896 B CN105649896 B CN 105649896B
- Authority
- CN
- China
- Prior art keywords
- wind
- module
- information
- data
- difference
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 56
- 238000000034 method Methods 0.000 title claims abstract description 31
- 238000004458 analytical method Methods 0.000 claims description 31
- 230000008569 process Effects 0.000 claims description 23
- 239000013307 optical fiber Substances 0.000 claims description 21
- 238000011084 recovery Methods 0.000 claims description 14
- 230000000694 effects Effects 0.000 claims description 9
- 230000007246 mechanism Effects 0.000 claims description 9
- 230000005540 biological transmission Effects 0.000 claims description 8
- 238000012545 processing Methods 0.000 claims description 7
- 238000010248 power generation Methods 0.000 claims description 6
- 230000009471 action Effects 0.000 claims description 4
- 238000004891 communication Methods 0.000 claims description 4
- 238000001228 spectrum Methods 0.000 claims description 4
- 238000007405 data analysis Methods 0.000 claims 4
- 238000006243 chemical reaction Methods 0.000 claims 3
- 230000000153 supplemental effect Effects 0.000 claims 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims 1
- 230000007613 environmental effect Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 6
- 230000001932 seasonal effect Effects 0.000 description 6
- 238000013475 authorization Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Landscapes
- Wind Motors (AREA)
Abstract
本发明公开了一种风电机组智能监控运行控制系统及其控制方法,还包括智能监控运行控制器、运行环境差异模块、风资源差异模块和机组性能差异模块。本发明采用智能控制算法,具有自学习、自适应运行环境差异、风资源差异和机组个体性能差异的功能,控制系统具有很强的鲁棒性和容错能力,大大减弱了对电网产生安全隐患;实时监测运行环境差异、风资源差异和机组个体性能差异的变化,操作员可以更精确地判断风电机组的工作状态,大大提高了风电机组及电网的安全性;增加了运行环境差异、风资源差异和机组个体性能差异三个模块,大大提高了风电机组的功率稳定输出和安全稳定运行性能。
The invention discloses an intelligent monitoring operation control system and a control method for a wind power unit, which also includes an intelligent monitoring operation controller, an operating environment difference module, a wind resource difference module and a unit performance difference module. The invention adopts an intelligent control algorithm, which has the functions of self-learning, self-adaptive operation environment difference, wind resource difference and unit individual performance difference, and the control system has strong robustness and fault tolerance capability, which greatly reduces potential safety hazards to the power grid; Real-time monitoring of changes in operating environment differences, wind resource differences, and unit individual performance differences allows operators to more accurately judge the working status of wind turbines, greatly improving the safety of wind turbines and power grids; increasing operating environment differences, wind resource differences The three modules that differ from the individual performance of the wind turbine greatly improve the stable power output and safe and stable operation performance of the wind turbine.
Description
技术领域technical field
本发明涉及风力发电领域,具体涉及一种风电机组智能监控运行控制系统及其控制方法。The invention relates to the field of wind power generation, in particular to an intelligent monitoring operation control system and a control method for a wind turbine.
背景技术Background technique
风能是一种取之不尽、用之不竭的绿色能源,风力发电已经成为当今世界最主要的可再生能源技术之一。然而,风力发电目前还不能完全取代煤电的最主要制约因素是其发电的不稳定性,当其总量过大后会对电网产生安全隐患。运行环境、风资源对风电机组的工况影响很大,即使安装于同一风电场的不同的风电机组,运行环境差异、风资源差异也是或多或少存在的。另外风电机组即使容量相同,机组个体性能也是存在差异的。运行环境差异、风资源差异、机组个体性能差异之间还存在耦合关系,例如,风速大小(运行环境)决定了风力机输出功率,而风速大小还和塔架高度、轮毂半径、风轮半径、桨叶弦长、悬垂距离、桨叶升力系数、阻力系数等风力机参数(机组个体性能)和风湍流、风剪切、塔影效应(风资源)有关。这些差异的存在及耦合关系导致风电机组难以控制,这是风力发电不稳定性的根源所在。因此,研究一种具有自学习能力、可自动适应运行环境差异、风资源差异和机组个体性能差异的风电机组智能监控运行控制系统和方法是十分必要的。Wind energy is an inexhaustible green energy, and wind power generation has become one of the most important renewable energy technologies in the world today. However, the main constraint factor that wind power cannot completely replace coal power is the instability of its power generation. When the total amount is too large, it will cause safety hazards to the power grid. The operating environment and wind resources have a great influence on the working conditions of the wind turbines. Even if different wind turbines are installed in the same wind farm, there are more or less differences in the operating environment and wind resources. In addition, even if the wind turbines have the same capacity, the individual performance of the wind turbines is different. There is also a coupling relationship between differences in operating environments, differences in wind resources, and differences in individual unit performance. For example, the wind speed (operating environment) determines the output power of the wind turbine, and the wind speed is also related to the height of the tower, the radius of the hub, the radius of the wind wheel, Wind turbine parameters (unit individual performance) such as blade chord length, overhang distance, blade lift coefficient, and drag coefficient are related to wind turbulence, wind shear, and tower shadow effect (wind resource). The existence of these differences and the coupling relationship make it difficult to control the wind turbines, which is the root cause of the instability of wind power generation. Therefore, it is very necessary to study an intelligent monitoring operation control system and method for wind turbines with self-learning ability, which can automatically adapt to differences in operating environments, wind resources, and individual performance of units.
图1显示了风电机组传统监控运行控制系统的结构,它包括:风力机A~N 1,主控制器2、电网3、光纤环网4、光纤环网交换机5、交换机6、数据库服务器7、操作员站8、Internet9、远程监控中心10。图1中本发明风力机A~N 1为常规的双馈电机风力机,它可以为任何形式的风力机。风电机组传统监控运行控制系统特点是针对运行环境差异、风资源差异和机组个体性能差异,不具备自学习、自适应的能力。Figure 1 shows the structure of the traditional monitoring and operation control system of wind turbines, which includes: wind turbines A to N 1, main controller 2, power grid 3, optical fiber ring network 4, optical fiber ring network switch 5, switch 6, database server 7, Operator station 8, Internet9, remote monitoring center 10. The wind turbines A to N 1 of the present invention in Fig. 1 are conventional doubly-fed motor wind turbines, which can be any form of wind turbines. The traditional monitoring and operation control system of wind turbines is characterized by the differences in operating environment, wind resources and individual performance of units, and does not have the ability of self-learning and self-adaptation.
1)传统监控运行控制系统不考虑运行环境差异、风资源差异和机组个体性能差异对风电机组的实时影响,风机主控只是根据实时风速采用传统控制算法输出控制命令来控制风力机动作,控制精度和稳定性不高;1) The traditional monitoring and operation control system does not consider the real-time impact of differences in the operating environment, wind resources, and individual performance of the unit on the wind turbine. The main control of the wind turbine only uses traditional control algorithms to output control commands based on the real-time wind speed to control the movement of the wind turbine. and low stability;
本发明中智能监控运行控制器采用智能控制算法,具有自学习、自适应运行环境差异、风资源差异和机组个体性能差异的功能,控制系统具有很强的鲁棒性和容错能力,大大减弱了对电网产生安全隐患。The intelligent monitoring operation controller in the present invention adopts an intelligent control algorithm, which has the functions of self-learning, self-adaptive operation environment difference, wind resource difference and unit individual performance difference, and the control system has strong robustness and fault tolerance, greatly weakening the pose a security risk to the power grid.
2)智能监控运行控制系统深入细化了运行环境差异、风资源差异和机组个体性能差异的参数指标,应用于不同地域的风场、不同类型的风力机都有很高的通用性,传统监控运行控制系统通用性不高。2) The intelligent monitoring operation control system further refines the parameter indicators of differences in operating environment, wind resources and individual unit performance. It is highly versatile when applied to wind farms in different regions and different types of wind turbines. Traditional monitoring The generality of the operation control system is not high.
3)传统监控运行控制系统不考虑运行环境差异、风资源差异和机组个体性能差异的实时影响,对应的操作员站和远程监控中心可监控的数据有限。3) The traditional monitoring operation control system does not consider the real-time impact of operating environment differences, wind resource differences, and unit individual performance differences, and the corresponding operator station and remote monitoring center can monitor limited data.
发明内容Contents of the invention
为解决上述问题,本发明提供了一种风电机组智能监控运行控制系统及其控制方法,通过该方法可以有效地对风电机组进行智能监控运行控制,大大提高了风电机组的稳定性、可靠性和安全性。In order to solve the above problems, the present invention provides a wind turbine intelligent monitoring operation control system and its control method, through which the intelligent monitoring operation control of the wind turbine can be effectively carried out, and the stability, reliability and reliability of the wind turbine are greatly improved. safety.
为实现上述目的,本发明采取的技术方案为:In order to achieve the above object, the technical scheme that the present invention takes is:
风电机组智能监控运行控制系统,包括风力机A~N、电网、光纤环网、光纤环网交换机、交换机、数据库服务器、操作员站、Internet、远程监控中心,操作员站与数据库服务器相连,数据库服务器与交换机相连,交换机与光纤环网交换机、操作员站分别相连,操作员站通过Internet与远程监控中心相连,其特征在于,还包括智能监控运行控制器、运行环境差异模块、风资源差异模块和机组性能差异模块。Wind turbine intelligent monitoring operation control system, including wind turbines A~N, power grid, optical fiber ring network, optical fiber ring network switch, switch, database server, operator station, Internet, remote monitoring center, the operator station is connected to the database server, the database The server is connected to the switch, the switch is connected to the optical fiber ring network switch, and the operator station respectively, and the operator station is connected to the remote monitoring center through the Internet. It is characterized in that it also includes an intelligent monitoring operation controller, an operation environment difference module, and a wind resource difference module. and unit performance difference modules.
所述的智能监控运行控制器包括:Described intelligent monitoring operation controller comprises:
运行环境参数分析模块,采用智能控制算法对输入的数据分析处理,输出量分别乘以一个加权因子后输入至智能控制器;The operating environment parameter analysis module adopts an intelligent control algorithm to analyze and process the input data, and the output is multiplied by a weighting factor and then input to the intelligent controller;
风资源参数分析模块,采用智能控制算法对输入的数据分析处理,输出量分别乘以一个加权因子后输入至智能控制器;The wind resource parameter analysis module uses an intelligent control algorithm to analyze and process the input data, and the output is multiplied by a weighting factor and then input to the intelligent controller;
机组性能参数分析模块,采用智能控制算法对输入的数据分析处理,输出量分别乘以一个加权因子后输入至智能控制器;The unit performance parameter analysis module uses an intelligent control algorithm to analyze and process the input data, and the output is multiplied by a weighting factor and then input to the intelligent controller;
智能控制器,采用智能控制算法,综合运行环境差异、风资源差异和机组个体性能差异对风电机组的影响,输出给定控制信号控制风力机A~N的动作,并同时与光纤环网相连实现数据通讯。The intelligent controller adopts the intelligent control algorithm to integrate the influence of the difference in operating environment, the difference in wind resources and the individual performance of the unit on the wind turbine unit, and outputs a given control signal to control the action of the wind turbine A~N, and at the same time connects to the optical fiber ring network to realize data communication.
所述的运行环境差异模块包括:The operating environment difference modules include:
第一操作员PLC,用于负责运行环境参数的监控及根据程序发出相应控制信号给I/O端口,同时负责各种数据和参数的实时获取;The first operator PLC is responsible for monitoring the operating environment parameters and sending corresponding control signals to I/O ports according to the program, and is responsible for real-time acquisition of various data and parameters;
运行环境参数应用程序模块,采用IEC 61400-25标准与操作员PLC互连,经过用户权限识别以后,系统按照进程为相应的用户分配对应的可使用模块;The operating environment parameter application program module is interconnected with the operator PLC using the IEC 61400-25 standard. After the user authority is identified, the system assigns the corresponding usable modules to the corresponding users according to the process;
数据信息备份与恢复模块,用于储存管理运行环境参数数据,生成运行报告,以及历史数据报表;The data information backup and recovery module is used to store and manage operating environment parameter data, generate operating reports, and historical data reports;
传感器组,包括风速传感器、风向传感器、海拔传感器、噪声传感器、湿度传感器、波浪仪、海流计、验潮仪,分别用于实时监测风速大小、方向、海拔高度、风轮和发电机噪声、大气湿度、海浪高度和波谱、海流速度和方向、潮汐涨落高度值;其中波浪仪、海流计、验潮仪只是风力机A~N为海上风力机时才工作,为陆上风力机时这三个传感器无需工作;Sensor group, including wind speed sensor, wind direction sensor, altitude sensor, noise sensor, humidity sensor, wave meter, sea current meter, tide gauge, respectively used for real-time monitoring of wind speed, direction, altitude, wind wheel and generator noise, atmosphere Humidity, wave height and wave spectrum, ocean current speed and direction, and tidal fluctuation height values; Among them, the wave meter, current meter, and tide gauge only work when the wind turbines A~N are offshore wind turbines, and these three are used when they are onshore wind turbines. sensors do not need to work;
运行环境信息组模块,包括风速信息模块、风向信息模块、海拔信息模块、噪声信息模块、湿度信息模块、海浪信息模块、海流信息模块、潮汐信息模块,分别用于分析处理传感器组传送来的数据;同样海浪信息模块、海流信息模块、潮汐信息模块只是风力机A~N为海上风力机时才工作。Operating environment information module, including wind speed information module, wind direction information module, altitude information module, noise information module, humidity information module, wave information module, ocean current information module, tide information module, are used to analyze and process the data transmitted by the sensor group ; The same wave information module, ocean current information module, and tide information module only work when the wind turbines A to N are offshore wind turbines.
所述的风资源差异模块包括:The wind resource difference module includes:
第二操作员PLC,用于负责风资源参数的监控及根据程序发出相应控制信号给I/O端口,同时负责各种数据和参数的实时获取;The second operator PLC is responsible for monitoring wind resource parameters and sending corresponding control signals to I/O ports according to the program, and is also responsible for real-time acquisition of various data and parameters;
风资源参数应用程序模块,采用IEC 61400-25标准与操作员PLC互连,经过用户权限识别以后,系统按照进程为相应的用户分配对应的可使用模块;The wind resource parameter application program module is interconnected with the operator PLC using the IEC 61400-25 standard. After user authorization identification, the system assigns corresponding usable modules to the corresponding users according to the process;
数据信息备份与恢复模块,用于储存管理风资源参数数据,生成运行报告,以及历史数据报表;The data information backup and recovery module is used to store and manage wind resource parameter data, generate operation reports, and historical data reports;
风资源信息组模块,包括年平均风速信息模块、季平均风速信息模块、月平均风速信息模块、日平均风速信息模块、时平均风速信息模块、风湍流信息模块、风剪切信息模块、塔影效应信息模块,分别用于分析处理风速的年、季、月、日、时平均风速,及风湍流、风剪切、塔影效应的数据。Wind resource information module, including annual average wind speed information module, seasonal average wind speed information module, monthly average wind speed information module, daily average wind speed information module, hourly average wind speed information module, wind turbulence information module, wind shear information module, tower shadow The effect information module is used to analyze and process the annual, seasonal, monthly, daily and hourly average wind speed, as well as the data of wind turbulence, wind shear and tower shadow effect.
所述的机组性能差异模块包括:The unit performance difference module includes:
第三操作员PLC,用于负责机组性能参数的监控及根据程序发出相应控制信号给I/O端口,同时负责各种数据和参数的实时获取;The third operator PLC is responsible for monitoring the performance parameters of the unit and sending corresponding control signals to the I/O port according to the program, and is responsible for real-time acquisition of various data and parameters;
机组性能参数应用程序模块,采用IEC 61400-25标准与操作员PLC互连,经过用户权限识别以后,系统按照进程为相应的用户分配对应的可使用模块;The unit performance parameter application program module is interconnected with the operator PLC using the IEC 61400-25 standard. After user authorization identification, the system assigns corresponding usable modules to the corresponding users according to the process;
数据信息备份与恢复模块,用于储存管理机组性能参数数据,生成运行报告,以及历史数据报表;The data information backup and recovery module is used to store and manage unit performance parameter data, generate operation reports, and historical data reports;
机组性能信息组模块,包括风机基本信息模块、风机塔筒信息模块、风机机舱信息模块、风机叶片信息模块、风机传动链信息模块、风机变桨机构信息模块、风机发电机信息模块、风机变流器信息模块,分别用于分析处理风机基本数据及塔筒、机舱、叶片、传动链、变桨机构、发电机、变流器的数据。Unit performance information group module, including fan basic information module, fan tower information module, fan cabin information module, fan blade information module, fan drive chain information module, fan pitch mechanism information module, fan generator information module, fan variable flow The inverter information module is used to analyze and process the basic data of the wind turbine and the data of the tower, nacelle, blade, transmission chain, pitch mechanism, generator, and converter.
上述风电机组智能监控运行控制系统的控制方法,包括如下步骤:The above-mentioned control method of the wind turbine intelligent monitoring operation control system includes the following steps:
S1、启动风电机组、并网,同时启动运行环境差异模块、风资源差异模块、机组性能差异模块;S1. Start the wind turbine, connect to the grid, and start the operating environment difference module, wind resource difference module, and unit performance difference module at the same time;
S2、运行环境差异模块、风资源差异模块、机组性能差异模块实时监测参数变化情况,并输出数据到智能监控运行控制器中的运行环境参数分析模块、风资源参数分析模块、机组性能参数分析模块;S2. The operating environment difference module, wind resource difference module, and unit performance difference module monitor parameter changes in real time, and output data to the operating environment parameter analysis module, wind resource parameter analysis module, and unit performance parameter analysis module in the intelligent monitoring operation controller ;
S3、运行环境参数分析模块、风资源参数分析模块、机组性能参数分析模块采用智能控制算法对输入的数据分析处理,对应的每个输出量经乘以一个加权因子后输入到智能控制器;S3. The operating environment parameter analysis module, the wind resource parameter analysis module, and the unit performance parameter analysis module use intelligent control algorithms to analyze and process the input data, and each corresponding output is multiplied by a weighting factor and then input to the intelligent controller;
S4、智能控制器采用智能控制算法分析运算后,输出转矩给定控制信号和变桨角度给定控制信号到风力机中变速变桨控制器;S4. After the intelligent controller adopts the intelligent control algorithm to analyze and calculate, it outputs the given torque control signal and the given pitch angle control signal to the variable speed and pitch controller in the wind turbine;
S5、智能监控运行控制器输出的风机实时运行数据依次经光纤环网、光纤环网交换机、交换机传输交换后,输入到数据库服务器、操作员站,并通过Internet输入到远程监控中心S5. The real-time operation data of the fan output by the intelligent monitoring operation controller is transmitted and exchanged through the optical fiber ring network, the optical fiber ring network switch, and the switch, and then input to the database server and operator station, and then input to the remote monitoring center through the Internet
本发明具有以下有益效果:The present invention has the following beneficial effects:
本发明采用智能控制算法,具有自学习、自适应运行环境差异、风资源差异和机组个体性能差异的功能,控制系统具有很强的鲁棒性和容错能力,大大减弱了对电网产生安全隐患;实时监测运行环境差异、风资源差异和机组个体性能差异的变化,操作员可以更精确地判断风电机组的工作状态,大大提高了风电机组及电网的安全性;增加了运行环境差异、风资源差异和机组个体性能差异三个模块,其中运行环境差异模块增加了八个传感器,大大提高了风电机组的功率稳定输出和安全稳定运行性能,性价比实则要更高,对于提高风电机组整个系统的性能具有积极意义,且通用性高。The invention adopts an intelligent control algorithm, which has the functions of self-learning, self-adaptive operation environment difference, wind resource difference and unit individual performance difference, and the control system has strong robustness and fault tolerance, which greatly reduces potential safety hazards to the power grid; Real-time monitoring of changes in operating environment differences, wind resource differences, and unit individual performance differences allows operators to more accurately judge the working status of wind turbines, greatly improving the safety of wind turbines and power grids; increasing operating environment differences, wind resource differences There are three modules for the individual performance difference of the wind turbine, among which eight sensors are added to the operating environment difference module, which greatly improves the stable power output and safe and stable operation performance of the wind turbine, and the cost performance is actually higher. Positive significance and high versatility.
附图说明Description of drawings
图1为风电机组传统监控运行控制系统的结构框图;Fig. 1 is a structural block diagram of a traditional monitoring operation control system of a wind turbine;
图2为本发明实施例风电机组智能监控运行控制系统的结构框图;Fig. 2 is a structural block diagram of a wind turbine intelligent monitoring operation control system according to an embodiment of the present invention;
图3为本发明实施例风电机组智能监控运行控制系统中智能监控运行控制器图;Fig. 3 is a diagram of the intelligent monitoring operation controller in the wind turbine intelligent monitoring operation control system according to the embodiment of the present invention;
图4为本发明实施例风电机组智能监控运行控制系统中运行环境差异模块图;Fig. 4 is a block diagram of operating environment differences in the wind turbine intelligent monitoring operation control system according to the embodiment of the present invention;
图5为本发明实施例风电机组智能监控运行控制系统中风资源差异模块图;Fig. 5 is a diagram of wind resource difference modules in the wind turbine intelligent monitoring operation control system according to the embodiment of the present invention;
图6为本发明实施例风电机组智能监控运行控制系统中机组性能差异模块图。Fig. 6 is a block diagram of unit performance difference in the wind turbine intelligent monitoring operation control system according to the embodiment of the present invention.
具体实施方式Detailed ways
为了使本发明的目的及优点更加清楚明白,以下结合实施例对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the objects and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the examples. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
本发明三个差异模块中的各PLC及运行环境差异模块中的传感器均采用的是市售成熟产品,对其具体的结构、工作原理及安装不再另行说明。The PLCs in the three different modules of the present invention and the sensors in the operating environment difference modules are all commercially available mature products, and their specific structures, working principles and installation will not be further explained.
如图2-6所示,本发明实施例提供了风电机组智能监控运行控制系统,包括风力机A~N1、电网3、光纤环网4、光纤环网交换机5、交换机6、数据库服务器7、操作员站8、Internet9、远程监控中心10,还包括智能监控运行控制器11、运行环境差异模块12、风资源差异模块13、机组性能差异模块14,风机实时运行数据经光纤环网4传送到光纤环网交换机5,再经交换机6连接数据库服务器7、操作员站8,并通过Internet9连接到远程监控中心10,As shown in Figures 2-6, the embodiment of the present invention provides an intelligent monitoring and operation control system for wind turbines, including wind turbines A to N1, power grid 3, optical fiber ring network 4, optical fiber ring network switch 5, switch 6, database server 7, The operator station 8, the Internet 9, and the remote monitoring center 10 also include an intelligent monitoring operation controller 11, an operating environment difference module 12, a wind resource difference module 13, and a unit performance difference module 14. The real-time operation data of the fan is transmitted to the The optical fiber ring switch 5 is connected to the database server 7 and the operator station 8 through the switch 6, and is connected to the remote monitoring center 10 through the Internet 9,
智能监控运行控制器11包括:Intelligent monitoring operation controller 11 comprises:
运行环境参数分析模块110,采用智能控制算法对输入的数据分析处理,输出量分别乘以一个加权因子后输入至智能控制器113;The operating environment parameter analysis module 110 uses an intelligent control algorithm to analyze and process the input data, and the output is multiplied by a weighting factor and then input to the intelligent controller 113;
风资源参数分析模块111,采用智能控制算法对输入的数据分析处理,输出量分别乘以一个加权因子后输入至智能控制器113;The wind resource parameter analysis module 111 uses an intelligent control algorithm to analyze and process the input data, and the output is multiplied by a weighting factor and then input to the intelligent controller 113;
机组性能参数分析模块112,采用智能控制算法对输入的数据分析处理,输出量分别乘以一个加权因子后输入至智能控制器113;The unit performance parameter analysis module 112 uses an intelligent control algorithm to analyze and process the input data, and the output is multiplied by a weighting factor and then input to the intelligent controller 113;
智能控制器113,采用智能控制算法,综合运行环境差异、风资源差异和机组个体性能差异对风电机组的影响,输出给定控制信号控制风力机A~N1的动作,并同时与光纤环网4相连实现数据通讯。The intelligent controller 113 adopts an intelligent control algorithm to comprehensively influence the influence of differences in the operating environment, wind resources and individual performance of the units on the wind turbines, output a given control signal to control the actions of the wind turbines A to N1, and communicate with the optical fiber ring network 4 at the same time. connected to realize data communication.
运行环境差异模块12包括:The operating environment difference module 12 includes:
第一操作员PLC120,用于负责运行环境参数的监控及根据程序发出相应控制信号给I/O端口,同时负责各种数据和参数的实时获取;The first operator PLC120 is responsible for monitoring the operating environment parameters and sending corresponding control signals to I/O ports according to the program, and is responsible for real-time acquisition of various data and parameters;
运行环境参数应用程序模块121,采用IEC 61400-25标准与操作员PLC120互连,经过用户权限识别以后,系统按照进程为相应的用户分配对应的可使用模块;The operating environment parameter application program module 121 is interconnected with the operator PLC 120 using the IEC 61400-25 standard. After user authority identification, the system assigns corresponding usable modules to corresponding users according to the process;
数据信息备份与恢复模块122,用于储存管理运行环境参数数据,生成运行报告,以及历史数据报表;Data information backup and recovery module 122, used to store and manage operating environment parameter data, generate operating reports, and historical data reports;
传感器组123,包括风速传感器1230、风向传感器1231、海拔传感器1232、噪声传感器1233、湿度传感器1234、波浪仪1235、海流计1236、验潮仪1237,分别用于实时监测风速大小、方向、海拔高度、风轮和发电机噪声、大气湿度、海浪高度和波谱、海流速度和方向、潮汐涨落高度值,其中波浪仪、海流计、验潮仪只是风力机A~N1为海上风力机时才工作,为陆上风力机时这三个传感器无需工作;Sensor group 123, including wind speed sensor 1230, wind direction sensor 1231, altitude sensor 1232, noise sensor 1233, humidity sensor 1234, wave meter 1235, sea current meter 1236, tide gauge 1237, respectively used for real-time monitoring of wind speed, direction, and altitude , wind wheel and generator noise, atmospheric humidity, wave height and wave spectrum, ocean current speed and direction, and tidal fluctuation height values. Among them, wave gauges, current gauges, and tide gauges only work when wind turbines A to N1 are offshore wind turbines , these three sensors do not need to work when it is an onshore wind turbine;
运行环境信息组模块124,包括风速信息模块1240、风向信息模块1241、海拔信息模块1242、噪声信息模块1243、湿度信息模块1244、海浪信息模块1245、海流信息模块1246、潮汐信息模块1247,分别用于分析处理传感器组123传送来的数据,同样海浪信息模块、海流信息模块、潮汐信息模块只是风力机A~N1为海上风力机时才工作。The operating environment information group module 124 includes a wind speed information module 1240, a wind direction information module 1241, an altitude information module 1242, a noise information module 1243, a humidity information module 1244, an ocean wave information module 1245, an ocean current information module 1246, and a tide information module 1247. In order to analyze and process the data sent by the sensor group 123, the same wave information module, ocean current information module, and tide information module only work when the wind turbines A˜N1 are offshore wind turbines.
风资源差异模块13包括:The Wind Resource Differentiation Module 13 includes:
第二操作员PLC130,用于负责风资源参数的监控及根据程序发出相应控制信号给I/O端口,同时负责各种数据和参数的实时获取;The second operator PLC130 is responsible for monitoring wind resource parameters and sending corresponding control signals to I/O ports according to the program, and is also responsible for real-time acquisition of various data and parameters;
风资源参数应用程序模块131,采用IEC 61400-25标准与操作员PLC130互连,经过用户权限识别以后,系统按照进程为相应的用户分配对应的可使用模块;The wind resource parameter application program module 131 is interconnected with the operator PLC 130 using the IEC 61400-25 standard. After user authorization identification, the system assigns corresponding usable modules to corresponding users according to the process;
数据信息备份与恢复模块132,具有对风资源参数数据的储存管理功能,生成运行报告,以及历史数据报表;The data information backup and recovery module 132 has the function of storing and managing wind resource parameter data, generating operation reports and historical data reports;
风资源信息组模块133,包括年平均风速信息模块1330、季平均风速信息模块1331、月平均风速信息模块1332、日平均风速信息模块1333、时平均风速信息模块1334、风湍流信息模块1335、风剪切信息模块1336、塔影效应信息模块1337,分别用于分析处理风速的年、季、月、日、时平均风速,及风湍流、风剪切、塔影效应的数据。The wind resource information group module 133 includes an annual average wind speed information module 1330, a seasonal average wind speed information module 1331, a monthly average wind speed information module 1332, a daily average wind speed information module 1333, an hourly average wind speed information module 1334, a wind turbulence information module 1335, a wind The shear information module 1336 and the tower shadow effect information module 1337 are respectively used to analyze and process the annual, seasonal, monthly, daily and hourly average wind speed of wind speed, and the data of wind turbulence, wind shear and tower shadow effect.
机组性能差异模块14包括:Crew performance difference module 14 includes:
第三操作员PLC140负责机组性能参数的监控及根据程序发出相应控制信号给I/O端口,同时负责各种数据和参数的实时获取;The third operator PLC140 is responsible for monitoring the performance parameters of the unit and sending corresponding control signals to the I/O port according to the program, and is also responsible for real-time acquisition of various data and parameters;
机组性能参数应用程序模块141,采用IEC 61400-25标准与操作员PLC140互连,经过用户权限识别以后,系统按照进程为相应的用户分配对应的可使用模块;The unit performance parameter application program module 141 is interconnected with the operator PLC 140 using the IEC 61400-25 standard. After user authorization identification, the system assigns corresponding usable modules to corresponding users according to the process;
数据信息备份与恢复模块142,用于储存管理机组性能参数数据,生成运行报告,以及历史数据报表;Data information backup and recovery module 142, used to store and manage unit performance parameter data, generate operation reports, and historical data reports;
机组性能信息组模块143,包括风机基本信息模块1430、风机塔筒信息模块1431、风机机舱信息模块1432、风机叶片信息模块1433、风机传动链信息模块1434、风机变桨机构信息模块1435、风机发电机信息模块1436、风机变流器信息模块1437,分别用于分析处理风机基本数据及塔筒、机舱、叶片、传动链、变桨机构、发电机、变流器的数据。Unit performance information group module 143, including fan basic information module 1430, fan tower information module 1431, fan nacelle information module 1432, fan blade information module 1433, fan drive chain information module 1434, fan pitch mechanism information module 1435, fan power generation The machine information module 1436 and the wind turbine converter information module 1437 are used to analyze and process the basic data of the wind turbine and the data of the tower, nacelle, blades, transmission chain, pitch mechanism, generator, and converter, respectively.
实施例具体步骤是:The concrete steps of embodiment are:
步骤一、风电机组启动、并网,同时运行环境差异模块12、风资源差异模块13、机组性能差异模块14开始工作。Step 1: The wind turbines are started and connected to the grid, and the operating environment difference module 12, the wind resource difference module 13, and the unit performance difference module 14 start working at the same time.
步骤二、运行环境差异模块12、风资源差异模块13、机组性能差异模块14实时监测参数变化情况,具体处理步骤是:Step 2, the operating environment difference module 12, the wind resource difference module 13, and the unit performance difference module 14 monitor the changes in parameters in real time, and the specific processing steps are:
2a)运行环境差异模块:传感器组123中风速传感器1230、风向传感器1231、海拔传感器1232、噪声传感器1233、湿度传感器1234、波浪仪1235、海流计1236、验潮仪1237,分别实时监测风速大小、方向、海拔高度、风轮和发电机噪声、大气湿度、海浪高度和波谱、海流速度和方向、潮汐涨落高度值,并将所采集到的信号传送到运行环境信息组模块124,经过分析处理后的数据通过运行环境参数应用程序模块121,分别传送到操作员PLC120和智能监控运行控制器11,并同时传送到数据信息备份与恢复模块122进行储存管理。2a) Operating environment difference module: wind speed sensor 1230, wind direction sensor 1231, altitude sensor 1232, noise sensor 1233, humidity sensor 1234, wave meter 1235, sea current meter 1236, tide gauge 1237 in the sensor group 123, respectively monitor the wind speed, Direction, altitude, wind wheel and generator noise, atmospheric humidity, wave height and wave spectrum, ocean current speed and direction, and tidal fluctuation height values, and the collected signals are sent to the operating environment information group module 124 for analysis and processing The final data are transmitted to the operator PLC 120 and the intelligent monitoring operation controller 11 respectively through the operating environment parameter application program module 121, and are simultaneously transmitted to the data information backup and recovery module 122 for storage and management.
2b)风资源差异模块:风资源信息组模块133中年平均风速信息模块1330、季平均风速信息模块1331、月平均风速信息模块1332、日平均风速信息模块1333、时平均风速信息模块1334、风湍流信息模块1335、风剪切信息模块1336、塔影效应信息模块1337,分别读取数据信息备份与恢复模块132数据,经过分析处理后的数据通过风资源参数应用程序模块131,分别传送到操作员PLC130和智能监控运行控制器11,并同时将处理后的数据再次传送到数据信息备份与恢复模块132进行储存管理。2b) wind resource difference module: annual average wind speed information module 1330, seasonal average wind speed information module 1331, monthly average wind speed information module 1332, daily average wind speed information module 1333, hourly average wind speed information module 1334, wind resource information module 133 in wind resource information group module 133. The turbulence information module 1335, the wind shear information module 1336, and the tower shadow effect information module 1337 respectively read the data of the data information backup and recovery module 132, and the analyzed and processed data are transmitted to the operating system through the wind resource parameter application module 131. PLC 130 and intelligent monitoring operation controller 11, and at the same time, the processed data is sent to the data information backup and recovery module 132 for storage and management.
2c)机组性能差异模块:机组性能信息组模块143中风机基本信息模块1430、风机塔筒信息模块1431、风机机舱信息模块1432、风机叶片信息模块1433、风机传动链信息模块1434、风机变桨机构信息模块1435、风机发电机信息模块1437、风机变流器信息模块1437,分别读取数据信息备份与恢复模块142数据,经过分析处理后的数据通过机组性能参数应用程序模块141,分别传送到操作员PLC140和智能监控运行控制器11,并同时将处理后的数据再次传送到数据信息备份与恢复模块142进行储存管理。2c) Unit performance difference module: in the unit performance information group module 143, the fan basic information module 1430, the fan tower information module 1431, the fan cabin information module 1432, the fan blade information module 1433, the fan transmission chain information module 1434, and the fan pitch mechanism The information module 1435, the wind turbine generator information module 1437, and the wind turbine converter information module 1437 respectively read the data of the data information backup and recovery module 142, and the analyzed and processed data are transmitted to the operating unit through the unit performance parameter application program module 141, respectively. PLC 140 and intelligent monitoring operation controller 11, and at the same time, the processed data is sent to the data information backup and recovery module 142 for storage and management.
步骤三、运行环境差异模块12、风资源差异模块13、机组性能差异模块14输出数据到智能监控运行控制器中的运行环境参数分析模块110、风资源参数分析模块111、机组性能参数分析模块112。Step 3, the operating environment difference module 12, the wind resource difference module 13, and the unit performance difference module 14 output data to the operating environment parameter analysis module 110, the wind resource parameter analysis module 111, and the unit performance parameter analysis module 112 in the intelligent monitoring operation controller .
步骤四、运行环境参数分析模块110、风资源参数分析模块111、机组性能参数分析模块112采用模糊算法对输入的数据分析处理,对应的每个输出量经乘以一个加权因子后输入到智能控制器113,具体处理步骤是:Step 4: The operating environment parameter analysis module 110, the wind resource parameter analysis module 111, and the unit performance parameter analysis module 112 use a fuzzy algorithm to analyze and process the input data, and each corresponding output is multiplied by a weighting factor and then input to the intelligent control Device 113, the specific processing steps are:
4a)运行环境参数分析模块输出量为风速信息、风向信息、海拔信息、噪声信息、湿度信息、海浪信息、海流信息、潮汐信息,分别对应加权因子a0、a1、a2、a3、a4、a5、a6、a7。4a) The output of the operating environment parameter analysis module is wind speed information, wind direction information, altitude information, noise information, humidity information, ocean wave information, ocean current information, and tide information, corresponding to weighting factors a0, a1, a2, a3, a4, a5, a6, a7.
4b)风资源参数分析模块输出量为年平均风速信息、季平均风速信息、月平均风速信息、日平均风速信息、时平均风速信息、风湍流信息、风剪切信息、塔影效应,分别对应加权因子b0、b1、b2、b3、b4、b5、b6、b7。4b) The output of the wind resource parameter analysis module is annual average wind speed information, seasonal average wind speed information, monthly average wind speed information, daily average wind speed information, hourly average wind speed information, wind turbulence information, wind shear information, tower shadow effect, corresponding to Weighting factors b0, b1, b2, b3, b4, b5, b6, b7.
4c)机组性能参数分析模块输出量为风机基本信息、风机塔筒信息、风机机舱信息、风机叶片信息、风机传动链信息、风机变桨机构信息、风机发电机信息、风机变流器信息,分别对应加权因子c0、c1、c2、c3、c4、c5、c6、c7。4c) The output of the unit performance parameter analysis module is the basic information of the wind turbine, the information of the wind turbine tower, the information of the wind turbine cabin, the information of the wind turbine blade, the information of the wind turbine transmission chain, the information of the wind turbine pitch mechanism, the information of the wind turbine generator, and the information of the wind turbine converter. Corresponding weighting factors c0, c1, c2, c3, c4, c5, c6, c7.
步骤五、智能控制器113采用神经网络自适应算法分析运算后,输出转矩给定控制信号T*、变桨角度给定控制信号β*到风力机1中变速变桨控制器20,具体处理步骤是:Step 5: After the intelligent controller 113 uses the neural network adaptive algorithm to analyze and calculate, it outputs the given torque control signal T* and the given pitch angle control signal β* to the variable speed and pitch controller 20 in the wind turbine 1 for specific processing The steps are:
5a)转矩给定控制信号T*与双馈电机17的转矩输出信号T比较后生成转矩偏差信号输入到变速变桨控制器20,变速变桨控制器20控制变流器19工作完成风力机变速控制。5a) The torque given control signal T* is compared with the torque output signal T of the doubly-fed motor 17 to generate a torque deviation signal and input it to the variable speed and pitch controller 20, and the variable speed and pitch controller 20 controls the converter 19 to complete the work Wind turbine variable speed control.
5b)变桨角度给定控制信号β*与风轮15的变桨角度输出信号β比较后生成变桨角度偏差信号输入到变速变桨控制器20,变速变桨控制器控制变桨机构18工作完成风力机变桨控制。5b) The pitch angle given control signal β* is compared with the pitch angle output signal β of the wind wheel 15 to generate a pitch angle deviation signal, which is input to the variable speed and pitch controller 20, and the variable speed and pitch controller controls the pitch mechanism 18 to work Complete wind turbine pitch control.
5c)智能控制器113控制风力机动作并同时与光纤环网4相连实现数据通讯。5c) The intelligent controller 113 controls the action of the wind turbine and simultaneously connects with the optical fiber ring network 4 to realize data communication.
步骤六、智能监控运行控制器11输出的风机实时运行数据依次经光纤环网4、光纤环网交换机5、交换机6传输交换后,输入到数据库服务器7、操作员站8,并通过Internet9输入到远程监控中心10。Step 6: The real-time operation data of the blower fan output by the intelligent monitoring operation controller 11 is transmitted and exchanged through the optical fiber ring network 4, the optical fiber ring network switch 5, and the switch 6 in turn, and then input to the database server 7, the operator station 8, and input to the Remote monitoring center 10.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention, it should be pointed out that for those of ordinary skill in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications should also be It is regarded as the protection scope of the present invention.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610027629.4A CN105649896B (en) | 2016-01-07 | 2016-01-07 | Wind turbines intelligent monitoring operation control system and its control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610027629.4A CN105649896B (en) | 2016-01-07 | 2016-01-07 | Wind turbines intelligent monitoring operation control system and its control method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105649896A CN105649896A (en) | 2016-06-08 |
CN105649896B true CN105649896B (en) | 2018-07-10 |
Family
ID=56487493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610027629.4A Expired - Fee Related CN105649896B (en) | 2016-01-07 | 2016-01-07 | Wind turbines intelligent monitoring operation control system and its control method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105649896B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109763944B (en) * | 2019-01-28 | 2021-03-12 | 中国海洋大学 | Non-contact monitoring system and monitoring method for blade faults of offshore wind turbine |
CN114458549A (en) * | 2022-03-11 | 2022-05-10 | 浙江工业大学 | Full life cycle state monitoring system for double-fed asynchronous fan tower |
CN114352478B (en) * | 2022-03-16 | 2022-05-31 | 中国华能集团清洁能源技术研究院有限公司 | Control system and control method for offshore wind turbine generator |
CN116125956A (en) * | 2023-03-01 | 2023-05-16 | 淄博博睿机电科技有限公司 | Permanent magnet synchronous fan controller test system based on data analysis |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2405492B (en) * | 2003-08-30 | 2008-01-02 | Distant Control Ltd | Method and apparatus for remote control of power plants |
KR20130026107A (en) * | 2011-09-05 | 2013-03-13 | 삼성중공업 주식회사 | Wind generation system and method of controlling the same |
CN103306893B (en) * | 2012-03-09 | 2015-11-18 | 北京光耀能源技术股份有限公司 | A kind of wind-driven generator fault pre-alarming and alarm method |
CN103742358B (en) * | 2013-12-24 | 2016-06-15 | 青海能高新能源有限公司 | A kind of Combined type wind driven generator group condition monitoring system |
CN104863798A (en) * | 2014-02-25 | 2015-08-26 | 常州铠甲智能科技有限公司 | Distributed storage based condition monitoring system and monitoring method for wind turbines |
-
2016
- 2016-01-07 CN CN201610027629.4A patent/CN105649896B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN105649896A (en) | 2016-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pao et al. | A tutorial on the dynamics and control of wind turbines and wind farms | |
US9018787B2 (en) | System and method of wind turbine control using a torque setpoint | |
US8860237B2 (en) | System and method of selecting wind turbine generators in a wind park for curtailment of output power to provide a wind reserve | |
US8912674B2 (en) | System and method of selecting wind turbine generators in a wind park for change of output power | |
CN106774276B (en) | Test platform for automatic power generation control system of wind power plant | |
CN105649896B (en) | Wind turbines intelligent monitoring operation control system and its control method | |
CN103742357A (en) | Method for controlling asymmetric loads of wind wheel of wind generator set | |
CN102705158A (en) | Feedback control method of wind energy converting system based on fuzzy performance estimator | |
CN102854463B (en) | Megawatt wind power simulation test system and test method | |
Sayed et al. | Wind power plants control systems based on SCADA system | |
CN109209770A (en) | Wind turbines Contrast tuned imaging system | |
Luo et al. | Intelligent monitoring and maintenance of wind turbine blades driven by digital twin technology | |
Berg | Wind energy conversion | |
CN108988381A (en) | Low voltage traversing control method of wind generator set, apparatus and system | |
CN217384748U (en) | Fault trend diagnosis system for wind power plant group | |
EP4060430B1 (en) | Systems and methods for operating power generating assets | |
Govindan | IoT-based smart monitoring panel for floating horizontal axis wind turbine | |
Oudah et al. | Wind turbines control: Features and trends | |
Muhando et al. | Regulation of WTG dynamic response to parameter variations of analytic wind stochasticity | |
CN113153659A (en) | Health monitoring method and system for blades of wind driven generator | |
EP4474925A1 (en) | System and method for adaptively operating a power generating plant using optimal setpoints | |
Najd et al. | Pitch angle control using neural network in wind turbines | |
Li et al. | NNPID-based stator voltage oriented vector control for DFIG based wind turbine systems | |
CN113946608B (en) | Wind generating set running state monitoring method based on online RBF neural network | |
Wu | Advanced data-driven modelling approaches to alarm-related fault detection and condition monitoring of wind turbines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Kong Yigang Inventor after: Qu Xiaogang Inventor after: Zhang Guochen Inventor after: Chang Zhengyan Inventor after: Yang Mingliang Inventor after: Xu Gening Inventor after: Fan Xiaoning Inventor after: Sun Chaoli Inventor before: Kong Yigang Inventor before: Zhang Guochen Inventor before: Qu Xiaogang Inventor before: Chang Zhengyan Inventor before: Yang Mingliang Inventor before: Xu Gening Inventor before: Fan Xiaoning Inventor before: Sun Chaoli |
|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180710 Termination date: 20190107 |