CN105649878B - Wind energy capture method, device and wind power generating set for wind power generating set - Google Patents
Wind energy capture method, device and wind power generating set for wind power generating set Download PDFInfo
- Publication number
- CN105649878B CN105649878B CN201511032731.5A CN201511032731A CN105649878B CN 105649878 B CN105649878 B CN 105649878B CN 201511032731 A CN201511032731 A CN 201511032731A CN 105649878 B CN105649878 B CN 105649878B
- Authority
- CN
- China
- Prior art keywords
- wind
- center point
- geometric center
- condition data
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 29
- 238000011217 control strategy Methods 0.000 claims abstract description 20
- 238000007781 pre-processing Methods 0.000 claims description 7
- 230000002452 interceptive effect Effects 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 12
- 238000012423 maintenance Methods 0.000 abstract description 10
- 238000010248 power generation Methods 0.000 abstract description 9
- 238000010586 diagram Methods 0.000 description 9
- 238000004364 calculation method Methods 0.000 description 3
- 230000008676 import Effects 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/04—Automatic control; Regulation
- F03D7/042—Automatic control; Regulation by means of an electrical or electronic controller
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/0204—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor for orientation in relation to wind direction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Wind Motors (AREA)
Abstract
本发明实施例提供一种风力发电机组的风能捕获方法、装置和风力发电机组。所述方法包括:根据预定周期实时获取风况数据;对该预定周期内获取的风况数据进行散点拟合,得到该风况数据的几何中心点,该几何中心点用于表示最大风能值所在位置;将该几何中心点与目标几何中心点进行比对,并根据比对结果执行相应的风力发电机控制策略。采用本发明实施例,可以有效的提升风力发电机组对风能的捕获能力,以及风力发电机组的可靠性,同时可以降低叶轮未正对迎风面而产生的风机载荷增加和尾流效应,减少风力发电机组故障及维护成本。
Embodiments of the present invention provide a wind energy capture method and device for a wind turbine and a wind turbine. The method includes: obtaining wind condition data in real time according to a predetermined period; performing scatter point fitting on the wind condition data acquired within the predetermined period to obtain a geometric center point of the wind condition data, and the geometric center point is used to represent the maximum wind energy value. location; compare the geometric center point with the target geometric center point, and execute the corresponding wind turbine control strategy based on the comparison results. By adopting the embodiments of the present invention, the wind energy capture capability of the wind turbine can be effectively improved, as well as the reliability of the wind turbine. At the same time, the increase in wind turbine load and wake effect caused by the impeller not facing the windward side can be reduced, and wind power generation can be reduced. Unit failure and maintenance costs.
Description
技术领域technical field
本发明涉及风电技术,尤其涉及一种风力发电机组的风能捕获方法、装置和风力发电机组。The invention relates to wind power technology, in particular to a method and device for capturing wind energy of a wind power generating set and a wind generating set.
背景技术Background technique
风力发电机组是通过将捕获的风能转化为机械能,再将机械能转化为电能的设备。A wind turbine is a device that converts the captured wind energy into mechanical energy, and then converts the mechanical energy into electrical energy.
风力发电机组在实际的运行中,为了提高最大化的利用风资源,提升发电量,一般通过偏航系统调整风力发电机组的机头朝向,使得叶轮正对迎风向,风力发电机组中的偏航控制策略主要通过风向标,采集当前风速和风向。In the actual operation of wind turbines, in order to maximize the use of wind resources and increase power generation, the nose of the wind turbines is generally adjusted through the yaw system so that the impellers are facing the windward direction, and the yaw in the wind turbines The control strategy mainly collects the current wind speed and direction through the wind vane.
然而,通过风向标不能准确的采集到当前风速和风向,无法捕获到最大风能,而如果叶轮未正对迎风面导致风机载荷增加和尾流效应严重,严重影响风机正常运行和损失发电量。However, the current wind speed and direction cannot be accurately collected through the wind vane, and the maximum wind energy cannot be captured. If the impeller is not facing the windward side, the load of the fan will increase and the wake effect will be serious, which will seriously affect the normal operation of the fan and lose power generation.
发明内容Contents of the invention
本发明的目的在于,提供一种风力发电机组捕获最大风能方法,以及实现该方法的装置,从而有效的提升风力发电机组对风能的捕获能力,以及风力发电机组的可靠性,同时可以降低叶轮未正对迎风面而产生的风机载荷增加和尾流效应,减少风力发电机组故障及维护成本。The purpose of the present invention is to provide a method for a wind power generating set to capture the maximum wind energy, and a device for realizing the method, so as to effectively improve the wind power generating set's ability to capture wind energy and the reliability of the wind power generating set, and at the same time reduce the failure rate of the impeller. The wind turbine load increase and wake effect caused by facing the windward side reduce the failure and maintenance costs of wind turbines.
根据本发明的一方面,提供一种风力发电机组的风能捕获方法。所述方法包括:According to an aspect of the present invention, a method for capturing wind energy of a wind power generating set is provided. The methods include:
根据预定周期实时获取风况数据;Obtain wind data in real time according to a predetermined period;
对所述预定周期内获取的风况数据进行散点拟合,得到所述风况数据的几何中心点,所述几何中心点用于表示最大风能值所在位置;performing scatter-fitting on the wind condition data acquired within the predetermined period to obtain a geometric center point of the wind condition data, and the geometric center point is used to indicate the position of the maximum wind energy value;
将所述几何中心点与目标几何中心点进行比对,并根据比对结果执行相应的风力发电机控制策略。The geometric center point is compared with the target geometric center point, and a corresponding wind generator control strategy is executed according to the comparison result.
根据本发明的另一方面,提供一种控制风力发电机组的风能捕获的装置。所述装置包括:According to another aspect of the invention, an arrangement for controlling wind energy capture of a wind park is provided. The devices include:
风况数据获取模块,用于根据预定周期实时获取风况数据;A wind condition data acquisition module is used to acquire wind condition data in real time according to a predetermined period;
几何中心点确定模块,用于对所述预定周期内获取的风况数据进行散点拟合,得到所述风况数据的几何中心点,所述几何中心点用于表示最大风能值所在位置;A geometric center point determination module, configured to perform scatter fitting on the wind condition data acquired within the predetermined period to obtain a geometric center point of the wind condition data, and the geometric center point is used to indicate the position of the maximum wind energy value;
控制模块,用于将所述几何中心点与目标几何中心点进行比对,并根据比对结果执行相应的风力发电机控制策略。The control module is used to compare the geometric center point with the target geometric center point, and execute a corresponding wind power generator control strategy according to the comparison result.
根据本发明的又一方面,提供一种风力发电机组。所述风力发电机组包括上述实施例提供的风力发电机组的风能捕获装置。According to yet another aspect of the present invention, a wind turbine is provided. The wind power generating set includes the wind energy capture device of the wind generating set provided in the above embodiments.
根据本发明实施例提供的风力发电机组的风能捕获方法、装置和风力发电机组,通过在预定周期内实时获取的风况数据,并对该风况数据进行散点拟合,获取该风况数据的几何中心点,进而通过与目标几何中心点的比对,以对风力发电机组的风能捕获进行控制,从而有效的提升风力发电机组对风能的捕获能力,以及风力发电机组的可靠性,同时可以降低叶轮未正对迎风面而产生的风机载荷增加和尾流效应,减少风力发电机组故障及维护成本。According to the wind energy capture method and device of the wind power generator set and the wind power generator set provided in the embodiments of the present invention, the wind condition data is obtained by using the wind condition data acquired in real time within a predetermined period and performing scatter fitting on the wind condition data The geometric center point, and then by comparing with the target geometric center point, to control the wind energy capture of the wind turbine, so as to effectively improve the wind energy capture ability of the wind turbine and the reliability of the wind turbine, and at the same time Reduce the fan load increase and wake effect caused by the impeller not facing the windward side, and reduce the failure and maintenance costs of wind turbines.
附图说明Description of drawings
图1是示出根据本发明实施例一的风力发电机组的风能捕获方法的流程图;Fig. 1 is a flow chart showing a method for capturing wind energy of a wind power generating set according to Embodiment 1 of the present invention;
图2是示出根据本发明实施例二的风力发电机组的风能捕获方法的流程图;Fig. 2 is a flow chart showing a method for capturing wind energy of a wind power generating set according to Embodiment 2 of the present invention;
图3是示出极坐标系下风况数据的数据点构成的几何图形的示例性示意图;Fig. 3 is an exemplary schematic diagram showing a geometric figure formed by data points of wind condition data in a polar coordinate system;
图4是示出极坐标系下风况数据对应的最大风能值所在的方向的示例性示意图;Fig. 4 is an exemplary schematic diagram showing the direction of the maximum wind energy value corresponding to the wind condition data in the polar coordinate system;
图5是示出风速单位向量投影到最大风能值所在的方向的示例性示意图;Fig. 5 is an exemplary schematic diagram showing the direction in which the wind speed unit vector is projected to the maximum wind energy value;
图6是示出根据本发明实施例三的风力发电机组的风能捕获装置的逻辑框图;Fig. 6 is a logic block diagram showing a wind energy capture device of a wind power generating set according to Embodiment 3 of the present invention;
图7是示出根据本发明实施例三的风力发电机组的风能捕获装置的逻辑框图。Fig. 7 is a logic block diagram showing a wind energy capture device for a wind power generating set according to Embodiment 3 of the present invention.
具体实施方式Detailed ways
本方案的发明构思是,考虑到一个几何图形的几何中心点可以反映出该几何图形中的点聚集较集中的位置,因此,可通过将目标几何中心点与在预定周期内采集的风况数据对应的几何中心点进行比对,以使风力发电机组执行相应的控制策略,从而有效的提升风力发电机组对风能的捕获能力,以及风力发电机组的可靠性,同时可以降低叶轮未正对迎风面而产生的风机载荷增加和尾流效应,减少风力发电机组故障及维护成本。The inventive idea of this scheme is that, considering that the geometric center point of a geometric figure can reflect the concentrated position of the points in the geometric figure, therefore, the target geometric center point can be combined with the wind condition data collected in a predetermined period The corresponding geometric center points are compared to enable the wind turbine to execute the corresponding control strategy, thereby effectively improving the wind energy capture ability of the wind turbine and the reliability of the wind turbine, and at the same time reducing the impeller not facing the windward side The resulting wind turbine load increase and wake effect reduce the failure and maintenance costs of wind turbines.
下面结合附图详细描述本发明的示例性实施例。Exemplary embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
实施例一Embodiment one
图1是示出根据本发明实施例一的风力发电机组的风能捕获方法的流程图。通过包括如图6所示的装置执行该方法。Fig. 1 is a flow chart showing a method for capturing wind energy of a wind power generating set according to Embodiment 1 of the present invention. The method is performed by including the apparatus shown in FIG. 6 .
参照图1,在步骤S110,根据预定周期实时获取风况数据。Referring to FIG. 1, in step S110, wind condition data is acquired in real time according to a predetermined period.
其中,预定周期可根据实际情况进行设定,例如20秒、1分钟、5分钟或10分钟等。风况数据可包括风速的数据和/或风向的数据等,风向可以通过预定的基准方向而确定,例如,若基准方向为正北方向,则风向的数值可以是相对于正北方向的夹角的数值。Wherein, the predetermined period can be set according to actual conditions, such as 20 seconds, 1 minute, 5 minutes or 10 minutes. The wind condition data may include wind speed data and/or wind direction data, etc., and the wind direction may be determined by a predetermined reference direction, for example, if the reference direction is true north, then the value of the wind direction may be an angle relative to the true north direction value.
具体地,可以预先设置用于采集当前时刻的风速和/或风向等风况数据的风况数据采集部件,该风况数据采集模块具体可为雷达、风速仪或风向标等。当风力发电机组工作时,可通过如雷达等风况数据采集部件采集某时间点的瞬时风速的数值和相应的风向。为了便于对某时间段的风况数据的分析,可以预先设定一定的时长(即预定周期),风力发电机组可通过雷达等风况数据采集部件实时采集该预定周期内的瞬时风速的数值和相应的风向。Specifically, a wind condition data acquisition component for collecting wind condition data such as wind speed and/or wind direction at the current moment may be preset, and the wind condition data acquisition module may specifically be a radar, an anemometer, or a wind vane. When the wind power generating set is working, the value of the instantaneous wind speed and the corresponding wind direction at a certain time point can be collected through wind condition data acquisition components such as radar. In order to facilitate the analysis of wind condition data in a certain period of time, a certain duration (that is, a predetermined period) can be preset, and the wind turbine can collect the instantaneous wind speed value and corresponding wind direction.
此外,由于风力发电机组周围的环境、风速和风向的数据时时变化,为了降低风力发电机组的处理压力,也可以设置数据采集的时间间隔,如5秒或10秒等。这样,每当到达该时间间隔时,风况数据采集部件采集当前时刻的瞬时风速的数值和相应的风向,以此类推,直到达到预定周期对应的时长后,得到该预定周期内采集到的多个时间点的风况数据。In addition, because the environment around the wind turbine, the data of wind speed and wind direction change from time to time, in order to reduce the processing pressure of the wind turbine, the time interval of data collection can also be set, such as 5 seconds or 10 seconds. In this way, whenever the time interval is reached, the wind condition data acquisition component collects the value of the instantaneous wind speed and the corresponding wind direction at the current moment, and so on, until the time corresponding to the predetermined period is reached, and the number of data collected in the predetermined period is obtained. Wind data at a point in time.
在步骤S120,对该预定周期内获取的风况数据进行散点拟合,得到该风况数据的几何中心点,该几何中心点用于表示最大风能值所在位置。In step S120, scatter fitting is performed on the wind condition data acquired within the predetermined period to obtain a geometric center point of the wind condition data, and the geometric center point is used to indicate the position of the maximum wind energy value.
其中,散点拟合可为对离散的数据点进行拟合,以使多个离散的数据点组合成一个几何图形。Among them, the scatter point fitting can be used to fit discrete data points, so that multiple discrete data points can be combined into a geometric figure.
具体地,可以将雷达等风况数据采集部件采集的瞬时风速的数值和相应的风向等数据根据预定的规则设置在坐标系(如平面直角坐标系或极坐标系等)中,设置完成后,可以将多个时间点的风况数据的数据点依次连接,连接后的数据点可以形成一个几何图形,考虑到一个几何图形的几何中心点可以反映出该几何图形中的点聚集较集中的位置,因此,可以通过风况数据的几何中心点的方式确定当前风力发电机组最大风能值所在的方向,基于此,可以根据规则图形或不规则图形的几何中心点的算法,计算该几何图形的几何中心点,并得到该几何中心点的风速的数值和风向,从而得到该风况数据的几何中心点。Specifically, the instantaneous wind speed value collected by radar and other wind condition data acquisition components and the corresponding wind direction and other data can be set in a coordinate system (such as a plane Cartesian coordinate system or a polar coordinate system, etc.) according to predetermined rules. After the setting is completed, The data points of the wind data at multiple time points can be connected in turn, and the connected data points can form a geometric figure, considering that the geometric center point of a geometric figure can reflect the concentrated position of the points in the geometric figure , therefore, the direction in which the maximum wind energy value of the current wind power generating unit is located can be determined by means of the geometric center point of the wind condition data. Based on this, the geometry Center point, and get the wind speed value and wind direction of the geometric center point, so as to get the geometric center point of the wind condition data.
在步骤S130,将该几何中心点与目标几何中心点进行比对,并根据比对结果执行相应的风力发电机控制策略。In step S130, the geometric center point is compared with the target geometric center point, and a corresponding wind power generator control strategy is executed according to the comparison result.
其中,目标几何中心点可以是预先存储的几何中心点,目标几何中心点可以是前一预定周期获取的风况数据对应的几何中心点,也可以是当前时刻以前的时间段内的风况数据对应的几何中心点。Wherein, the target geometric center point can be a pre-stored geometric center point, and the target geometric center point can be the geometric center point corresponding to the wind condition data obtained in the previous predetermined period, or the wind condition data in the time period before the current moment The corresponding geometric center point.
具体地,本发明实施例中,以目标几何中心点为前一预定周期获取的风况数据对应的几何中心点为例进行详细说明,具体如下:为了对风力发电机组的风能捕获进行控制,可以通过上述步骤S110和S120的处理确定前一预定周期的目标几何中心点,并将其存储在风力放电机组中,其中,目标几何中心点的数据可以包括风速的数值和相应的风向。可将预定周期内实时获取的风况数据的几何中心点与前一预定周期的目标几何中心点进行比较,如果该几何中心点与目标几何中心点的风况数据不同,则可将风力发电机组的机头从目标几何中心点向该几何中心点调整,以此对风力发电机组的风能捕获进行控制,使得风力发电机组可以捕获最大的风能,提高风力发电机组的发电效率。Specifically, in the embodiment of the present invention, the target geometric center point is taken as an example to describe in detail the geometric center point corresponding to the wind condition data obtained in the previous predetermined period, specifically as follows: In order to control the wind energy capture of the wind power generating set, the The target geometric center point of the previous predetermined period is determined through the above steps S110 and S120, and stored in the wind power generator set, wherein the data of the target geometric center point may include the value of the wind speed and the corresponding wind direction. The geometric center point of the wind condition data acquired in real time within a predetermined period can be compared with the target geometric center point of the previous predetermined period, and if the geometric center point is different from the wind condition data of the target geometric center point, the wind power generating set can be The nose of the wind turbine is adjusted from the target geometric center point to the geometric center point, so as to control the wind energy capture of the wind turbine, so that the wind turbine can capture the maximum wind energy and improve the power generation efficiency of the wind turbine.
本发明实施例提供的风力发电机组的风能捕获方法,通过在预定周期内实时获取的风况数据,并对该风况数据进行散点拟合,获取该风况数据的几何中心点,进而通过与目标几何中心点的比对,以对风力发电机组的风能捕获进行控制,从而有效的提升风力发电机组对风能的捕获能力,以及风力发电机组的可靠性,同时可以降低叶轮未正对迎风面而产生的风机载荷增加和尾流效应,减少风力发电机组故障及维护成本。The wind energy capture method of the wind power generating set provided by the embodiment of the present invention obtains the geometric center point of the wind condition data through the wind condition data acquired in real time within a predetermined period, and performs scatter fitting on the wind condition data, and then obtains the geometric center point of the wind condition data by Compared with the target geometric center point to control the wind energy capture of the wind turbine, so as to effectively improve the wind energy capture ability of the wind turbine and the reliability of the wind turbine, and at the same time reduce the impeller not facing the windward side The resulting wind turbine load increase and wake effect reduce the failure and maintenance costs of wind turbines.
实施例二Embodiment two
图2是示出根据本发明实施例二的风力发电机组的风能捕获方法的流程图,所述实施例可视为图1的又一种具体的实现方案。FIG. 2 is a flow chart showing a method for capturing wind energy of a wind power generating set according to Embodiment 2 of the present invention, and the embodiment can be regarded as another specific implementation solution of FIG. 1 .
参照图2,在步骤S210,获取预先存储的历史风况数据。Referring to Fig. 2, in step S210, the pre-stored historical wind condition data is acquired.
其中,本发明实施例中的风况数据可以包括风速的数值和风向,风向可以通过地理方向来描述,也可以通过与预先设定的正方向确定的角度来描述,例如,可以设定正北方向为正方向,从正方向开始顺时针旋转过的角度作为风向。Wherein, the wind condition data in the embodiment of the present invention can include the numerical value of wind speed and wind direction, and wind direction can be described by geographical direction, also can be described by the angle determined with preset positive direction, for example, can set true north The direction is the positive direction, and the angle rotated clockwise from the positive direction is taken as the wind direction.
具体地,为了提高测得的风况数据的准确性,可以选用雷达作为风况数据采集部件,雷达根据预先设定的时间间隔采集当前时间点的风速的数值和相应的风向,并将采集的风速的数值和相应的风向与当前时间点对应存储,从而得到历史风况数据。Specifically, in order to improve the accuracy of the measured wind data, radar can be selected as the wind data acquisition component. The radar collects the value of the wind speed and the corresponding wind direction at the current time point according to the preset time interval, and the collected The value of the wind speed and the corresponding wind direction are stored corresponding to the current time point, so as to obtain the historical wind condition data.
需要说明的是,由于雷达长期处于工作状态,因此,其获取的风况数据的数据量较多,可以根据季节的不同,或者不同时间段的风况不同,对历史风况数据进行分类,得到多个类别的历史风况数据,例如春季的历史风况数据等。It should be noted that since the radar has been in the working state for a long time, the amount of wind data acquired by it is relatively large, and the historical wind data can be classified according to different seasons or different wind conditions in different time periods to obtain Multiple categories of historical wind data, such as historical wind data in spring, etc.
另外,考虑到风速和风向总在不停的变化,而且预先存储的所有历史风况数据的数据量较多,可以对所有历史风况数据根据预定周期进行分仓处理,将所有历史风况数据划分成多段。In addition, considering that the wind speed and wind direction are always changing, and the data volume of all historical wind data stored in advance is relatively large, all historical wind data can be divided into bins according to a predetermined cycle, and all historical wind data Divide into sections.
例如,预定周期为10分钟,历史风况数据可以包括风速的数值和相应的风向,风速的数值可以V1、V2……V11表示,风向可以A1、A2……A11表示,可如表1所示,For example, the predetermined period is 10 minutes, and the historical wind condition data can include the value of wind speed and the corresponding wind direction, the value of wind speed can be represented by V 1 , V 2 ... V 11 , and the wind direction can be represented by A 1 , A 2 ... A 11 , As shown in Table 1,
表1Table 1
由于预定周期为10分钟,则如表1所示的历史风况数据可将时间点14:20:00、14:22:00、14:24:00、14:26:00、14:28:00和14:30:00对应的历史风况数据确定为一个预定周期对应的历史风况数据,通过表1的历史风况数据可以得到两个相邻预定周期对应的历史风况数据,第一个历史风况数据对应的时间段为14:20:00~14:30:00,风况数据可包括:(V1,A1)、(V2,A2)、(V3,A3)、(V4,A4)、(V5,A5)和(V6,A6);第二个分仓风况数据对应的时间段为14:30:00~14:40:00,风况数据可包括:(V6,A6)、(V7,A7)、(V8,A8)、(V9,A9)、(V10,A10)和(V11,A11)。Since the predetermined period is 10 minutes, the historical wind data as shown in Table 1 can be time points 14:20:00, 14:22:00, 14:24:00, 14:26:00, 14:28: The historical wind data corresponding to 00 and 14:30:00 is determined as the historical wind data corresponding to a predetermined period, and the historical wind data corresponding to two adjacent predetermined periods can be obtained through the historical wind data in Table 1, the first The time period corresponding to each historical wind condition data is 14:20:00~14:30:00, and the wind condition data may include: (V 1 , A 1 ), (V 2 , A 2 ), (V 3 , A 3 ), (V 4 , A 4 ), (V 5 , A 5 ) and (V 6 , A 6 ); the time period corresponding to the second sub-bin wind condition data is 14:30:00~14:40:00 , wind data may include: (V 6 , A 6 ), (V 7 , A 7 ), (V 8 , A 8 ), (V 9 , A 9 ), (V 10 , A 10 ) and (V 11 , A 11 ).
在步骤S220,对该历史风况数据进行预处理,去除干扰风况数据,得到有效历史风况数据。In step S220, the historical wind condition data is preprocessed to remove the disturbing wind condition data to obtain effective historical wind condition data.
具体地,由于风力发电机组会受到某一瞬间的阵风或其它外界环境的影响使得此时获取到的风速的数值和风向往往大大偏离历史风况数据的聚集位置,从而使得该历史风况数据的准确性降低,为了提高该历史风况数据的准确性,以及对风力发电机组的风能捕获的精准控制,可以将上述偏离大部分数据点的数据点从该历史风况数据中删除,得到有效历史风况数据,这样就减少了阵风或者其他外界因素带来的不稳定的干扰数据。Specifically, because the wind power generation unit will be affected by a gust of wind or other external environments at a certain moment, the value and direction of the wind speed obtained at this time often deviate greatly from the gathering position of the historical wind data, so that the historical wind data The accuracy is reduced. In order to improve the accuracy of the historical wind data and the precise control of the wind energy capture of the wind turbines, the above data points that deviate from most of the data points can be deleted from the historical wind data to obtain an effective historical data. Wind data, which reduces the unstable interference data caused by gusts or other external factors.
在步骤S230,对该历史风况数据进行散点拟合,得到该历史风况数据对应的目标几何中心点。In step S230, scatter fitting is performed on the historical wind condition data to obtain the target geometric center point corresponding to the historical wind condition data.
其中,该历史风况数据可以为经过所述步骤S220的预处理之后得到的有效历史数据,也可以是未经过预处理的历史风况数据。Wherein, the historical wind condition data may be effective historical data obtained after the preprocessing in step S220, or historical wind condition data without preprocessing.
具体地,可以对该历史风况数据进行散点拟合,即可以将该历史风况数据中的数据点连接起来形成一个几何图形,计算该几何图形的几何中心点的位置可作为该历史风况数据对应的目标几何中心点,具体处理过程可参见上述实施例一中步骤S120的相关内容,在此不再赘述。Specifically, the historical wind data can be scatter-fitted, that is, the data points in the historical wind data can be connected to form a geometric figure, and the position of the geometric center point of the geometric figure can be calculated as the historical wind data. The target geometric center point corresponding to the state data, the specific processing process can refer to the relevant content of step S120 in the first embodiment above, and will not be repeated here.
其中,上述步骤S230的处理的具体实现方式可以多种多样,以下提供一种具体处理方式,具体可包括以下内容:Wherein, the specific implementation manners of the processing of the above-mentioned step S230 can be various, and a specific processing manner is provided below, which may specifically include the following contents:
步骤一,将该历史风况数据导入至在极坐标系中。Step 1, import the historical wind data into the polar coordinate system.
具体地,为了简化数据处理过程,并考虑到风况数据中的数据形式(即包括风速的数值和风向),可以使用极坐标的方式设置风况数据。具体地,为了简化风况数据的表示形式,可将风况数据采集部件(即雷达)所在位置作为极点,与正北方向垂直的正东方向作为极轴方向,建立极坐标系。可以根据历史风况数据中的任一数据点的风速的数值和风向(如表1中的风况数据(V1,A1)和(V2,A2)等),将上述数据对应的坐标点描绘到该极坐标系中,从而得到历史风况数据在该极坐标系中的位置。其中,风向可以是与极轴之间的夹角,极点到数据点之间的距离为风速的数值。Specifically, in order to simplify the data processing process and take into account the data form in the wind condition data (ie, including the value of wind speed and wind direction), the wind condition data can be set in the form of polar coordinates. Specifically, in order to simplify the representation of wind condition data, the position of the wind condition data acquisition component (ie, radar) can be used as the pole, and the due east direction perpendicular to the due north direction can be used as the polar axis direction to establish a polar coordinate system. According to the wind speed value and wind direction of any data point in the historical wind data (such as the wind data (V 1 , A 1 ) and (V 2 , A 2 ) in Table 1, etc.), the above data corresponding to The coordinate points are plotted into the polar coordinate system, so as to obtain the position of the historical wind condition data in the polar coordinate system. Among them, the wind direction can be the angle between the polar axis and the distance between the pole and the data point is the value of the wind speed.
步骤二,连接该历史风况数据的最外围的数据点,得到封闭的几何图形,将几何图形的几何中心点作为目标几何中心点。Step 2, connect the outermost data points of the historical wind condition data to obtain a closed geometric figure, and use the geometric center point of the geometric figure as the target geometric center point.
具体地,考虑到几何图形的形状主要依靠最外围数据点(或坐标点)所确定的形状,因此,在确定几何图形的几何中心点时可以通过连接最外围数据点得到的几何图形。具体地,将历史风况数据描绘到该极坐标系上后,可以将该极坐标系中处于最外围的数据点(或坐标点)使用折线连接,连接完成后,可以得到一个封闭的规则或者不规则的几何图形,此时,在该封闭的几何图形中还可包括历史风况数据中除最外围的数据点外的其它数据点。之后,可以计算该几何图形的几何中心点的坐标值,并将该几何中心点作为该历史风况数据对应的目标几何中心点。Specifically, considering that the shape of the geometric figure mainly depends on the shape determined by the outermost data points (or coordinate points), when determining the geometric center point of the geometric figure, the geometric figure can be obtained by connecting the outermost data points. Specifically, after the historical wind condition data is depicted on the polar coordinate system, the outermost data points (or coordinate points) in the polar coordinate system can be connected by polylines. After the connection is completed, a closed rule or For an irregular geometric figure, at this time, other data points in the historical wind condition data except the outermost data point may also be included in the closed geometric figure. Afterwards, the coordinate value of the geometric center point of the geometric figure may be calculated, and the geometric center point may be used as the target geometric center point corresponding to the historical wind condition data.
例如,如图3所示,在极坐标系中包括两个风况数据,即黑色圆点(包括B1、B2……B12)对应的数据组成的第一个风况数据,以及空心圆点(包括C1、C2……C11)对应的数据组成的第二个风况数据,其中,第一个风况数据对应的黑色圆点B1、B2和B3偏离其它数据点,可以不考虑这些数据点,对于剩余的黑色圆点,可以将最外围的B4、B5、B6、B7、B8、B9、B10和B11连接,从而形成一个封闭的几何图形,可以计算该几何图形的几何中心点的坐标值,通过计算可得到几何中心点B0,其中,B12处于该几何图形的内部。同理,对于第二个风况数据,可以剔除C1和C2,并将C3、C4、C5、C6、C7、C8、C9、C10和C11连接形成一个封闭的几何图形,可以计算该几何图形的几何中心点的坐标值,通过计算可得到几何中心点C0。For example, as shown in Figure 3, two wind condition data are included in the polar coordinate system, that is, the first wind condition data composed of the data corresponding to the black dots (including B 1 , B 2 ... B 12 ), and the hollow The second wind condition data composed of the data corresponding to the dots (including C 1 , C 2 ... C 11 ), where the black dots B 1 , B 2 and B 3 corresponding to the first wind condition data deviate from other data Points, these data points can be ignored, for the remaining black dots, the outermost B 4 , B 5 , B 6 , B 7 , B 8 , B 9 , B 10 and B 11 can be connected to form a closed The geometric figure, the coordinate value of the geometric center point of the geometric figure can be calculated, and the geometric center point B 0 can be obtained through calculation, wherein, B 12 is inside the geometric figure. Similarly, for the second wind condition data, C 1 and C 2 can be eliminated, and C 3 , C 4 , C 5 , C 6 , C 7 , C 8 , C 9 , C 10 and C 11 can be connected to form a For a closed geometric figure, the coordinate value of the geometric center point of the geometric figure can be calculated, and the geometric center point C 0 can be obtained through calculation.
需要说明的是,上述实施例一中的步骤S120的处理也可以通过上述步骤一和步骤二的方式处理,具体可参见上述步骤一和步骤二的相关内容,在此不再赘述。It should be noted that the processing of step S120 in the first embodiment above can also be processed through the above steps 1 and 2. For details, please refer to the relevant content of the above steps 1 and 2, which will not be repeated here.
在步骤S240,根据预定周期实时获取风况数据。In step S240, wind condition data is acquired in real time according to a predetermined period.
在步骤S250,对预定周期内获取的风况数据进行散点拟合,得到该风况数据的几何中心点,该几何中心点用于表示最大风能值所在位置。In step S250, scatter fitting is performed on the wind condition data obtained within a predetermined period to obtain a geometric center point of the wind condition data, and the geometric center point is used to indicate the position of the maximum wind energy value.
其中,上述步骤S240和S250的处理可参见上述实施例一中步骤S110和步骤S120的相关内容,在此不再赘述。Wherein, for the processing of the above steps S240 and S250, reference may be made to the relevant content of the steps S110 and S120 in the first embodiment above, and details are not repeated here.
在步骤S260,计算从该极坐标系的极点到几何中心点的连线与到目标几何中心点的连线的夹角数值。In step S260, calculate the value of the included angle between the line from the pole of the polar coordinate system to the geometric center point and the line to the target geometric center point.
最大风能值所在的方向可以包括两部分,即:将从该极坐标系的极点到该目标几何中心点的方向作为该历史风况数据对应的最大风能值所在的方向;将从该极坐标系的极点到该几何中心点的方向作为该风况数据对应的最大风能值所在的方向。The direction of the maximum wind energy value can include two parts, namely: the direction from the pole of the polar coordinate system to the target geometric center point is used as the direction of the maximum wind energy value corresponding to the historical wind data; The direction from the pole to the geometric center point is taken as the direction of the maximum wind energy value corresponding to the wind condition data.
基于此,上述步骤S260的具体处理可以为:基于图3的示例,可以将图3中黑色圆点的坐标数据设定为历史风况数据,将图3中空心圆点的坐标数据设定为获取的风况数据,则如图4所示,可以从该极坐标系的极点O向该目标几何中心点B0画一条射线,即如图4中的射线K1;从该极点O向该几何中心点C0画一条射线,即如图4中的射线K2,从而射线K1和射线K2的方向分别作为前一预定周期内最大风能值所在的方向和当前预定周期内最大风能值所在的方向。Based on this, the concrete processing of above-mentioned step S260 can be: based on the example of Fig. 3, the coordinate data of black dot among Fig. 3 can be set as historical wind condition data, the coordinate data of hollow dot among Fig. 3 is set as The obtained wind condition data, as shown in Figure 4, can draw a ray from the pole O of the polar coordinate system to the target geometric center point B0 , that is, the ray K1 in Figure 4 ; from the pole O to the Draw a ray at the geometric center point C 0 , that is, ray K 2 in Figure 4, so that the directions of ray K 1 and ray K 2 are respectively the direction of the maximum wind energy value in the previous predetermined period and the maximum wind energy value in the current predetermined period in the direction.
进一步地,如图5所示,利用单位向量投影计算公式Further, as shown in Figure 5, using the unit vector projection calculation formula
可将历史风况数据内的每个数据点投影到风力发电机组捕获最大风能的方向,其中,ei为第i个风速单位向量,(x1,y1)为其直角坐标;emax为最大风能方向的单位向量,(x2,y2)为其直角坐标;为其投影距离。Each data point in the historical wind data can be projected to the direction where the wind turbine captures the maximum wind energy, where e i is the ith wind speed unit vector, (x 1 , y 1 ) is its rectangular coordinate; e max is The unit vector of the maximum wind energy direction, (x 2 , y 2 ) is its rectangular coordinate; is its projection distance.
由于风能公式due to the wind energy formula
中,空气密度ρ和扫风面积s对同一风力发电机组都基本相等,因此本发明主要考虑对最大风能的影响。其中,ρ为空气密度,s为叶轮扫风面积,vi为第i个风速,t为时间,W为风能。Among them, the air density ρ and the swept area s are basically equal to the same wind turbine, so the present invention mainly considers Effect on maximum wind power. Among them, ρ is the air density, s is the swept area of the impeller, v i is the i-th wind speed, t is the time, and W is the wind energy.
根据风能公式According to the wind energy formula
求取第i个风速单位向量在风力发电机组捕获最大风能的方向上的风能值Emax,其中,vi为第i个风速大小,Emax为在最大风能值的方向上能捕获的最大风能值。Calculate the wind energy value E max of the i-th wind speed unit vector in the direction where the wind turbine captures the maximum wind energy, where v i is the i-th wind speed, and E max is the maximum wind energy that can be captured in the direction of the maximum wind energy value value.
通过上式可以得到历史风况数据对应的在最大风能方向上能捕获的最大风能值。进一步地,通过上述方法可以得到实时获取的风况数据对应的在最大风能方向上能捕获的最大风能值。The maximum wind energy value that can be captured in the direction of the maximum wind energy corresponding to the historical wind condition data can be obtained through the above formula. Further, the maximum wind energy value that can be captured in the maximum wind energy direction corresponding to the wind condition data acquired in real time can be obtained through the above method.
根据公式According to the formula
θΔt=θt+1-θt………….…………….………...…….(4)θ Δt = θ t+1 - θ t …………………………………………….(4)
计算目标几何中心点和该几何中心点之间最大风能值所在的方向之间的夹角数值θΔt,其中,θt为历史风况数据对应的最大风能值所在的方向,θt+1为实时获取的风况数据对应的最大风能值所在的方向,θΔt为二者的最大风能值所在的方向的夹角数值。Calculate the angle value θ Δt between the target geometric center point and the direction of the maximum wind energy value between the geometric center point, where θ t is the direction of the maximum wind energy value corresponding to the historical wind condition data, θ t+1 is The direction of the maximum wind energy value corresponding to the wind condition data acquired in real time, θ Δt is the angle value between the directions of the maximum wind energy value of the two.
在步骤S270,基于该几何中心点与目标几何中心点的坐标计算相关系数。In step S270, a correlation coefficient is calculated based on the coordinates of the geometric center point and the target geometric center point.
具体地,根据公式Specifically, according to the formula
计算目标几何中心点和该几何中心点之间的相关系数ρΔt,其中,x为历史风况数据中的风速,xi为历史风况数据中的风速的数值,为历史风况数据中的风速的数值的均值;y为实时获取的风况数据中的风速,yi为实时获取的风况数据的风速的数值,为实时获取的风况数据的风速的数值的均值;Cov(x,y)为x和y的协方差,为x的方差,为y的方差。Calculate the correlation coefficient ρ Δt between the target geometric center point and the geometric center point, where x is the wind speed in the historical wind data, xi is the value of the wind speed in the historical wind data, is the mean value of the numerical value of the wind speed in the historical wind data; y is the wind speed in the wind data obtained in real time, and yi is the numerical value of the wind speed of the wind data obtained in real time, is the mean value of the wind speed value of the wind condition data acquired in real time; Cov(x,y) is the covariance of x and y, is the variance of x, is the variance of y.
需要说明的是,本实施例中步骤S260和S270是按照先后顺序执行的,在实际应用中步骤S260和S270可以任意顺序执行,即先执行S270,之后再执行S260,或者S260和S270可同时执行,本实施例对此不做限定。It should be noted that, in this embodiment, steps S260 and S270 are executed sequentially. In practical applications, steps S260 and S270 can be executed in any order, that is, S270 is executed first, and then S260 is executed, or S260 and S270 can be executed simultaneously. , which is not limited in this embodiment.
在步骤S280,基于该夹角数值和该相关系数执行相应的风力发电机控制策略。In step S280, a corresponding wind generator control strategy is executed based on the included angle value and the correlation coefficient.
具体地,可以将夹角数值θΔt和相关系数ρΔt输入到风力发电机组的主控系统或者偏航控制系统中,通过相关系数的不同,权重的不同,可以将夹角数值θΔt和相关系数ρΔt合理的加入到偏航控制系统。Specifically, the angle value θ Δt and the correlation coefficient ρ Δt can be input into the main control system of the wind turbine or the yaw control system, and the value of the angle θ Δt and the correlation The coefficient ρΔt is reasonably added to the yaw control system.
在实际应用中,对风力发电机组的风能捕获进行控制的方式可以多种多样,以下提供一种可行的处理方式,具体可包括:针对夹角数值θΔt和相关系数ρΔt,可以预先设定条件|θΔt|≤3°和|ρΔt|≥0.8。在对风力发电机组的风能捕获进行控制时,可根据接收到的夹角数值θΔt和相关系数ρΔt,分别判断两者是否满足上述条件,如果不满足,则可触发风力发电机组中的主控系统或者偏航控制系统,从而实现风力发电机组能够捕获到最大风能,如果满足,则不触发风力发电机组进行任何处理。In practical applications, there are many ways to control the wind energy capture of wind turbines. The following provides a feasible processing method, which may specifically include: for the value of the included angle θ Δt and the correlation coefficient ρ Δt , it can be preset Conditions |θ Δt |≤3° and |ρ Δt |≥0.8. When controlling the wind energy capture of the wind turbine, according to the received angle value θ Δt and the correlation coefficient ρ Δt , it can be judged whether the two meet the above conditions. control system or yaw control system, so that the wind turbine can capture the maximum wind energy, and if it is satisfied, the wind turbine will not be triggered to perform any processing.
需要说明的是,风力发电机组工作时,风力发电机组上的雷达可将其实时获取的数据作为变化量,根据欧几里距离公式It should be noted that when the wind turbine is working, the radar on the wind turbine can use the data it acquires in real time as the variable, according to the Euclidean distance formula
分别计算每秒采集到的风速与多个预定周期的历史风况数据对应的几何中心点之间的空间距离l,其中,vix和viy为在时间节点内n个实时获取的风况数据的第i个风速的数值换算到直角坐标系中的坐标值,kjx和kjy为历史风况数据对应的几何中心点中的第j个几何中心点换算到直角坐标系中的坐标值,l为每个采集到的风速实时数据vi与k个预定周期的历史风况数据对应的几何中心点kj之间的距离。Calculate the wind speed collected per second separately The spatial distance l between the geometric center points corresponding to the historical wind condition data of multiple predetermined periods, where v ix and v iy are the numerical conversion of the i-th wind speed of the n real-time acquired wind condition data within the time node to the coordinate value in the rectangular coordinate system, k jx and k jy are the coordinate values converted from the jth geometric center point in the geometric center point corresponding to the historical wind data to the rectangular coordinate system, and l is the wind speed collected for each The distance between the real-time data v i and the geometric center point k j corresponding to the historical wind condition data of k predetermined periods.
通过空间距离l,可以认为两个对象的距离越近,两者的相似程度就越大,因此,l可以取最小值。因此,可以通过采集的数据点与历史风况数据对应的几何中心点的相似程度,实时的体现当前风速和风向的变化特征。Through the spatial distance l, it can be considered that the closer the distance between two objects, the greater the similarity between them, therefore, l can take the minimum value. Therefore, the change characteristics of the current wind speed and wind direction can be reflected in real time through the similarity between the collected data points and the geometric center point corresponding to the historical wind condition data.
本发明实施例提供的风力发电机组的风能捕获方法,一方面,对前一预定周期通过风况数据采集部件采集到的风速和风向等风况数据进行分析,将获取到的数据通过极坐标的方式绘制散点图,在对风况数据进行预处理后剔除离群点,拟合出目标几何中心点,进而通过实时获取的风况数据对应的几何中心点和目标几何中心点的比对,执行相应的风力发电机组控制策略,从而可以降低叶轮未正对迎风面而产生的风机载荷增加和尾流效应,减少风力发电机组故障及维护成本;另一方面,通过比较目标几何中心点和实时输入的采集数据或者实时获取的风况数据对应的几何中心点二者之间的最大风能值所在的方向上的角度偏差和相关系数,并将相应的数据输入到风力发电机组的主控系统和偏航控制系统中,以优化偏航控制策略,从而有效的提升风力发电机组对风能的捕获能力,以及风力发电机组的可靠性。The wind energy capture method of the wind power generating set provided by the embodiment of the present invention, on the one hand, analyzes the wind condition data such as wind speed and wind direction collected by the wind condition data acquisition unit in the previous predetermined period, and passes the obtained data through polar coordinates Draw a scatter diagram by means of wind condition data, remove outliers after preprocessing the wind condition data, and fit the target geometric center point, and then compare the geometric center point corresponding to the wind condition data obtained in real time with the target geometric center point, Execute the corresponding wind turbine control strategy, so as to reduce the fan load increase and wake effect caused by the impeller not facing the windward side, and reduce the failure and maintenance costs of the wind turbine; on the other hand, by comparing the target geometric center point with the real-time The angle deviation and correlation coefficient in the direction of the maximum wind energy value between the geometric center point corresponding to the input collected data or the wind condition data obtained in real time, and the corresponding data are input to the main control system and the wind power generating set. In the yaw control system, to optimize the yaw control strategy, so as to effectively improve the wind power generation unit's ability to capture wind energy and the reliability of the wind power generation unit.
实施例三Embodiment three
基于相同的技术构思,图6是示出根据本发明实施例三的风力发电机组的风能捕获装置的逻辑框图。参照图6,该装置包括风况数据获取模块610、几何中心点确定模块620和控制模块630。Based on the same technical idea, Fig. 6 is a logical block diagram showing a wind energy capture device for a wind power generating set according to Embodiment 3 of the present invention. Referring to FIG. 6 , the device includes a wind condition data acquisition module 610 , a geometric center point determination module 620 and a control module 630 .
风况数据获取模块610用于根据预定周期实时获取风况数据。The wind condition data acquisition module 610 is used for acquiring wind condition data in real time according to a predetermined period.
几何中心点确定模块620用于对该预定周期内获取的风况数据进行散点拟合,得到该风况数据的几何中心点,该几何中心点用于表示最大风能值所在位置。The geometric center point determining module 620 is used for performing scatter fitting on the wind condition data obtained within the predetermined period to obtain the geometric center point of the wind condition data, and the geometric center point is used to indicate the location of the maximum wind energy value.
控制模块630用于将该几何中心点与目标几何中心点进行比对,并根据比对结果执行相应的风力发电机控制策略。The control module 630 is used to compare the geometric center point with the target geometric center point, and execute a corresponding wind turbine control strategy according to the comparison result.
进一步地,基于图6的实施例,如图7所示的装置还包括:Further, based on the embodiment of FIG. 6, the device shown in FIG. 7 also includes:
历史风况获取模块640,用于获取预先存储的历史风况数据;A historical wind condition acquisition module 640, configured to acquire pre-stored historical wind condition data;
目标几何中心点确定模块650,用于对该历史风况数据进行散点拟合,得到目标几何中心点。The target geometric center point determination module 650 is configured to perform scatter fitting on the historical wind condition data to obtain the target geometric center point.
进一步地,如图7所示的装置还包括:Further, the device shown in Figure 7 also includes:
预处理模块660,用于对该历史风况数据进行预处理,去除干扰风况数据,得到有效历史风况数据。The preprocessing module 660 is configured to preprocess the historical wind condition data, remove disturbing wind condition data, and obtain valid historical wind condition data.
另外,目标几何中心点确定模块650用于将该历史风况数据导入在极坐标系中;连接该历史风况数据的最外围的数据点,得到封闭的几何图形,将该几何图形的几何中心点作为目标几何中心点。In addition, the target geometric center point determination module 650 is used to import the historical wind data into the polar coordinate system; connect the outermost data points of the historical wind data to obtain a closed geometric figure, and the geometric center of the geometric figure point as the geometric center of the target.
此外,控制模块630用于:计算从该极坐标系的极点到几何中心点的连线与到目标几何中心点的连线的夹角数值;基于该几何中心点与目标几何中心点的坐标计算相关系数;基于该夹角数值和相关系数执行相应的风力发电机控制策略。In addition, the control module 630 is used to: calculate the value of the included angle between the line from the pole of the polar coordinate system to the geometric center point and the line to the target geometric center point; Correlation coefficient; execute the corresponding wind generator control strategy based on the included angle value and the correlation coefficient.
本发明实施例提供的风力发电机组的风能捕获装置,通过在预定周期内实时获取的风况数据,并对该风况数据进行散点拟合,获取该风况数据的几何中心点,进而通过与目标几何中心点的比对,以对风力发电机组的风能捕获进行控制,从而有效的提升风力发电机组对风能的捕获能力,以及风力发电机组的可靠性,同时可以降低叶轮未正对迎风面而产生的风机载荷增加和尾流效应,减少风力发电机组故障及维护成本。The wind energy capture device of the wind power generating set provided by the embodiment of the present invention obtains the geometric center point of the wind condition data through the wind condition data acquired in real time within a predetermined period, and performs scatter fitting on the wind condition data, and then obtains the geometric center point of the wind condition data by Compared with the target geometric center point to control the wind energy capture of the wind turbine, so as to effectively improve the wind energy capture ability of the wind turbine and the reliability of the wind turbine, and at the same time reduce the impeller not facing the windward side The resulting wind turbine load increase and wake effect reduce the failure and maintenance costs of wind turbines.
进一步地,本发明实施例中,一方面,对前一预定周期通过风况数据采集部件采集到的风速和风向等风况数据进行分析,将获取到的数据通过极坐标的方式绘制散点图,在对风况数据进行预处理后剔除离群点,拟合出目标几何中心点,进而通过实时获取的风况数据对应的几何中心点和目标几何中心点的比对,执行相应的风力发电机组控制策略,从而可以降低叶轮未正对迎风面而产生的风机载荷增加和尾流效应,减少风力发电机组故障及维护成本;另一方面,通过比较目标几何中心点和实时输入的采集数据或者实时获取的风况数据对应的几何中心点二者之间的最大风能值所在的方向上的夹角数值和相关系数,并将相应的数据输入到风力发电机组的主控系统和偏航控制系统中,以优化偏航控制策略,从而有效的提升风力发电机组对风能的捕获能力,以及风力发电机组的可靠性。Further, in the embodiment of the present invention, on the one hand, the wind condition data such as wind speed and wind direction collected by the wind condition data acquisition component in the previous predetermined period are analyzed, and the obtained data is drawn in a scatter diagram in the form of polar coordinates , after preprocessing the wind condition data, outliers are eliminated, and the target geometric center point is fitted, and then the corresponding wind power generation is carried out by comparing the geometric center point corresponding to the wind condition data obtained in real time with the target geometric center point. The unit control strategy can reduce the wind turbine load increase and wake effect caused by the impeller not facing the windward side, and reduce the failure and maintenance costs of wind turbines; on the other hand, by comparing the target geometric center point with the real-time input data or The angle value and correlation coefficient in the direction of the maximum wind energy value between the geometric center points corresponding to the wind condition data obtained in real time, and the corresponding data are input to the main control system and yaw control system of the wind turbine In order to optimize the yaw control strategy, so as to effectively improve the ability of the wind turbine to capture wind energy and the reliability of the wind turbine.
实施例四Embodiment Four
基于相同的技术构思,本发明实施例四提供一种风力发电机组。该风力发电机组可以包括上述实施例三提供的风力发电机组的风能捕获装置。Based on the same technical concept, Embodiment 4 of the present invention provides a wind power generating set. The wind power generating set may include the wind energy capture device of the wind generating set provided in Embodiment 3 above.
本发明实施例提供的风力发电机组,通过在预定周期内实时获取的风况数据,并对该风况数据进行散点拟合,获取该风况数据的几何中心点,进而通过与目标几何中心点的比对,以对风力发电机组的风能捕获进行控制,从而有效的提升风力发电机组对风能的捕获能力,以及风力发电机组的可靠性,同时可以降低叶轮未正对迎风面而产生的风机载荷增加和尾流效应,减少风力发电机组故障及维护成本。The wind power generating set provided by the embodiment of the present invention obtains the geometric center point of the wind condition data through the wind condition data acquired in real time within a predetermined period, and performs scatter fitting on the wind condition data, and then obtains the geometric center point of the wind condition data, and then combines the target geometric center The point comparison is used to control the wind energy capture of the wind turbine, so as to effectively improve the wind energy capture ability of the wind turbine and the reliability of the wind turbine, and at the same time reduce the wind turbine caused by the impeller not facing the windward side. Load increase and wake effect, reduce wind turbine failure and maintenance costs.
进一步地,本发明实施例中,一方面,对前一预定周期通过风况数据采集部件采集到的风速和风向等风况数据进行分析,将获取到的数据通过极坐标的方式绘制散点图,在对风况数据进行预处理后剔除离群点,拟合出目标几何中心点,进而通过实时获取的风况数据对应的几何中心点和目标几何中心点的比对,执行相应的风力发电机组控制策略,从而可以降低叶轮未正对迎风面而产生的风机载荷增加和尾流效应,减少风力发电机组故障及维护成本;另一方面,通过比较目标几何中心点和实时输入的采集数据或者实时获取的风况数据对应的几何中心点二者之间的最大风能值所在的方向上的夹角数值和相关系数,并将相应的数据输入到风力发电机组的主控系统和偏航控制系统中,以优化偏航控制策略,从而有效的提升风力发电机组对风能的捕获能力,以及风力发电机组的可靠性。Further, in the embodiment of the present invention, on the one hand, the wind condition data such as wind speed and wind direction collected by the wind condition data acquisition component in the previous predetermined period are analyzed, and the obtained data is drawn in a scatter diagram in the form of polar coordinates , after preprocessing the wind condition data, outliers are eliminated, and the target geometric center point is fitted, and then the corresponding wind power generation is carried out by comparing the geometric center point corresponding to the wind condition data obtained in real time with the target geometric center point. The unit control strategy can reduce the wind turbine load increase and wake effect caused by the impeller not facing the windward side, and reduce the failure and maintenance costs of wind turbines; on the other hand, by comparing the target geometric center point with the real-time input data or The angle value and correlation coefficient in the direction of the maximum wind energy value between the geometric center points corresponding to the wind condition data obtained in real time, and the corresponding data are input to the main control system and yaw control system of the wind turbine In order to optimize the yaw control strategy, so as to effectively improve the ability of the wind turbine to capture wind energy and the reliability of the wind turbine.
需要指出,根据实施的需要,可将本申请中描述的各个步骤/部件拆分为更多步骤/部件,也可将两个或多个步骤/部件或者步骤/部件的部分操作组合成新的步骤/部件,以实现本发明的目的。It should be pointed out that according to the needs of implementation, each step/component described in this application can be split into more steps/components, and two or more steps/components or part of the operations of steps/components can also be combined into a new Step/component, to realize the object of the present invention.
上述根据本发明的方法可在硬件、固件中实现,或者被实现为可存储在记录介质(诸如CD ROM、RAM、软盘、硬盘或磁光盘)中的软件或计算机代码,或者被实现通过网络下载的原始存储在远程记录介质或非暂时机器可读介质中并将被存储在本地记录介质中的计算机代码,从而在此描述的方法可被存储在使用通用计算机、专用处理器或者可编程或专用硬件(诸如ASIC或FPGA)的记录介质上的这样的软件处理。可以理解,计算机、处理器、微处理器控制器或可编程硬件包括可存储或接收软件或计算机代码的存储组件(例如,RAM、ROM、闪存等),当所述软件或计算机代码被计算机、处理器或硬件访问且执行时,实现在此描述的处理方法。此外,当通用计算机访问用于实现在此示出的处理的代码时,代码的执行将通用计算机转换为用于执行在此示出的处理的专用计算机。The above-mentioned method according to the present invention can be implemented in hardware, firmware, or as software or computer code that can be stored in a recording medium (such as CD ROM, RAM, floppy disk, hard disk or magneto-optical disk), or can be downloaded through the network computer code originally stored on a remote recording medium or a non-transitory machine-readable medium and will be stored on a local recording medium, so that the methods described herein can be stored on a computer code using a general-purpose computer, a special-purpose processor, or a programmable or dedicated Such software processing on a recording medium of hardware such as ASIC or FPGA. It will be appreciated that a computer, processor, microprocessor controller, or programmable hardware includes memory components (e.g., RAM, ROM, flash memory, etc.) that can store or receive software or computer code that, when When accessed and executed by a processor or hardware, the processing methods described herein are implemented. Furthermore, when a general-purpose computer accesses the code for implementing the processing shown here, the execution of the code converts the general-purpose computer into a special-purpose computer for executing the processing shown here.
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。The above is only a specific embodiment of the present invention, but the scope of protection of the present invention is not limited thereto. Anyone skilled in the art can easily think of changes or substitutions within the technical scope disclosed in the present invention. Should be covered within the protection scope of the present invention. Therefore, the protection scope of the present invention should be determined by the protection scope of the claims.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201511032731.5A CN105649878B (en) | 2015-12-31 | 2015-12-31 | Wind energy capture method, device and wind power generating set for wind power generating set |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201511032731.5A CN105649878B (en) | 2015-12-31 | 2015-12-31 | Wind energy capture method, device and wind power generating set for wind power generating set |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105649878A CN105649878A (en) | 2016-06-08 |
CN105649878B true CN105649878B (en) | 2018-11-13 |
Family
ID=56490251
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201511032731.5A Active CN105649878B (en) | 2015-12-31 | 2015-12-31 | Wind energy capture method, device and wind power generating set for wind power generating set |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105649878B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109209765B (en) * | 2017-06-29 | 2019-09-10 | 北京金风科创风电设备有限公司 | The pitch control method and system of wind power generating set |
CN109946475B (en) * | 2017-12-21 | 2020-04-17 | 新疆金风科技股份有限公司 | Method and device for determining wind speed |
CN111237136A (en) * | 2020-03-25 | 2020-06-05 | 湖南科技大学 | A method and system for extracting state information of wind turbine sensors |
CN113094997B (en) * | 2021-04-19 | 2022-04-01 | 华北电力大学 | Wind turbine generator operation simulation method, device, equipment and storage medium |
CN115825894B (en) * | 2022-11-17 | 2023-08-18 | 中国能源建设集团广东省电力设计研究院有限公司 | Method, device, terminal equipment and medium for determining wind energy capturing position |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101349240A (en) * | 2007-07-20 | 2009-01-21 | 西门子公司 | Method for wind turbine yaw control |
CN101568722A (en) * | 2007-04-10 | 2009-10-28 | 三菱重工业株式会社 | Wind turbine generator and its control method |
CN103649528A (en) * | 2011-05-19 | 2014-03-19 | 米塔科技有限公司 | Method of wind turbine yaw angle control and wind turbine |
CN103899497A (en) * | 2012-12-27 | 2014-07-02 | 西门子公司 | Method of detecting a degree of yaw error of a wind turbine |
CN103994022A (en) * | 2013-02-19 | 2014-08-20 | 西门子公司 | Method and system for improving wind farm power production efficiency |
CN104373293A (en) * | 2014-11-18 | 2015-02-25 | 新疆金风科技股份有限公司 | Method and device for controlling wind generating set to yaw |
CN104481804A (en) * | 2014-12-05 | 2015-04-01 | 北京金风科创风电设备有限公司 | Wind power generator group wind correction control method, device and system |
EP2860392A1 (en) * | 2013-10-09 | 2015-04-15 | Siemens Aktiengesellschaft | Method for adjusting the yaw angle of a wind turbine relative to a given wind direction |
CN104763585A (en) * | 2015-02-06 | 2015-07-08 | 湘潭大学 | Distributed data collection based wind turbine generator unit dynamic reconfiguring method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8949097B2 (en) * | 2011-08-12 | 2015-02-03 | California Institute Of Technology | Methods and systems for comparing vertical axis turbine arrays and providing configurations thereof |
-
2015
- 2015-12-31 CN CN201511032731.5A patent/CN105649878B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101568722A (en) * | 2007-04-10 | 2009-10-28 | 三菱重工业株式会社 | Wind turbine generator and its control method |
CN101349240A (en) * | 2007-07-20 | 2009-01-21 | 西门子公司 | Method for wind turbine yaw control |
CN103649528A (en) * | 2011-05-19 | 2014-03-19 | 米塔科技有限公司 | Method of wind turbine yaw angle control and wind turbine |
CN103899497A (en) * | 2012-12-27 | 2014-07-02 | 西门子公司 | Method of detecting a degree of yaw error of a wind turbine |
CN103994022A (en) * | 2013-02-19 | 2014-08-20 | 西门子公司 | Method and system for improving wind farm power production efficiency |
EP2860392A1 (en) * | 2013-10-09 | 2015-04-15 | Siemens Aktiengesellschaft | Method for adjusting the yaw angle of a wind turbine relative to a given wind direction |
CN104373293A (en) * | 2014-11-18 | 2015-02-25 | 新疆金风科技股份有限公司 | Method and device for controlling wind generating set to yaw |
CN104481804A (en) * | 2014-12-05 | 2015-04-01 | 北京金风科创风电设备有限公司 | Wind power generator group wind correction control method, device and system |
CN104763585A (en) * | 2015-02-06 | 2015-07-08 | 湘潭大学 | Distributed data collection based wind turbine generator unit dynamic reconfiguring method |
Also Published As
Publication number | Publication date |
---|---|
CN105649878A (en) | 2016-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105649878B (en) | Wind energy capture method, device and wind power generating set for wind power generating set | |
WO2017092297A1 (en) | Method for evaluating power characteristics of wind turbines, apparatus and storage medium | |
CN105137390B (en) | A kind of indoor orientation method based on adjustable transmission power AP | |
CN106842165B (en) | A Centralized Asynchronous Fusion Method of Radar Based on Different Range and Angle Resolutions | |
WO2022100021A1 (en) | Virtual laser radar system and method based on mutual early-warning of fans | |
CN107304746B (en) | Wind generating set and operation control method and device thereof | |
CN107152374B (en) | A kind of wind generating set yaw control method | |
CN106150904A (en) | A kind of wind driven generator unit yaw system control performance optimization method and system | |
CN111832462B (en) | Frequency hopping signal detection and parameter estimation method based on deep neural network | |
CN110688906B (en) | Intelligent detection method of wind power equipment and related products | |
WO2019165752A1 (en) | Method and apparatus for dynamically determining yaw control precision | |
CN106451567A (en) | Distributed power supply cluster dynamic partitioning method and system | |
CN104763585B (en) | Wind turbines dynamic reconfiguration method based on distributed data collection | |
CN106529741A (en) | Space relevant characteristic-based ultra-short-period wind power prediction method | |
CN117688497B (en) | Data processing method for marine wind power wake interference based on backward trajectory model | |
CN109640255B (en) | Location fingerprint indoor positioning system and method | |
CN110826644A (en) | Distributed power supply time sequence joint output typical scene generation method based on Copula function | |
CN114707437A (en) | A method for establishing a three-dimensional full wake model of a horizontal-axis wind turbine | |
CN104112167A (en) | Method for obtaining distribution of wind resources capable of power generation | |
CN115081346B (en) | Health degree judgment method and device under wake effect of wind turbine generator and medium | |
CN108269197A (en) | Wind turbines power characteristic appraisal procedure and device | |
CN107657116B (en) | Method for affine modeling of power curve of wind power plant | |
CN103648080A (en) | Method and system for constructing WiFi indoor positioning fingerprint database | |
CN106651163A (en) | Capacity confidence level evaluation method for multiple wind power plants on the basis of Copula function | |
CN111783641A (en) | A face clustering method and device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |