CN105645428B - The preparation method of the molecular sieves of SSZ 32 with mesoporous micropore graded structure - Google Patents
The preparation method of the molecular sieves of SSZ 32 with mesoporous micropore graded structure Download PDFInfo
- Publication number
- CN105645428B CN105645428B CN201610113195.XA CN201610113195A CN105645428B CN 105645428 B CN105645428 B CN 105645428B CN 201610113195 A CN201610113195 A CN 201610113195A CN 105645428 B CN105645428 B CN 105645428B
- Authority
- CN
- China
- Prior art keywords
- ssz
- mesoporous
- molecular sieves
- preparation
- graded structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 title claims abstract description 56
- 239000002808 molecular sieve Substances 0.000 title claims abstract description 55
- 238000002360 preparation method Methods 0.000 title claims abstract description 16
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 33
- 239000000203 mixture Substances 0.000 claims abstract description 31
- 229920002472 Starch Polymers 0.000 claims abstract description 15
- 235000019698 starch Nutrition 0.000 claims abstract description 15
- 239000008107 starch Substances 0.000 claims abstract description 15
- 239000000843 powder Substances 0.000 claims abstract description 12
- 239000008367 deionised water Substances 0.000 claims abstract description 11
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000010703 silicon Substances 0.000 claims abstract description 10
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 10
- 239000012265 solid product Substances 0.000 claims abstract description 3
- UAOMVDZJSHZZME-UHFFFAOYSA-N diisopropylamine Chemical compound CC(C)NC(C)C UAOMVDZJSHZZME-UHFFFAOYSA-N 0.000 claims description 18
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 17
- 239000011148 porous material Substances 0.000 claims description 14
- KDSNLYIMUZNERS-UHFFFAOYSA-N 2-methylpropanamine Chemical group CC(C)CN KDSNLYIMUZNERS-UHFFFAOYSA-N 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 11
- 230000032683 aging Effects 0.000 claims description 8
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 8
- 238000002425 crystallisation Methods 0.000 claims description 8
- 230000008025 crystallization Effects 0.000 claims description 8
- -1 isobutanol aluminum Chemical compound 0.000 claims description 8
- 229940043279 diisopropylamine Drugs 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 6
- 239000000377 silicon dioxide Substances 0.000 claims description 5
- HXGZXUVDQQOSAR-UHFFFAOYSA-M 1,3-di(propan-2-yl)imidazol-1-ium;hydroxide Chemical compound [OH-].CC(C)N1C=C[N+](C(C)C)=C1 HXGZXUVDQQOSAR-UHFFFAOYSA-M 0.000 claims description 4
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 4
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 claims description 4
- 229910001388 sodium aluminate Inorganic materials 0.000 claims description 4
- SMZOGRDCAXLAAR-UHFFFAOYSA-N aluminium isopropoxide Chemical compound [Al+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] SMZOGRDCAXLAAR-UHFFFAOYSA-N 0.000 claims description 3
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 claims description 3
- 229910052681 coesite Inorganic materials 0.000 claims description 3
- 229910052593 corundum Inorganic materials 0.000 claims description 3
- 229910052906 cristobalite Inorganic materials 0.000 claims description 3
- 229920001592 potato starch Polymers 0.000 claims description 3
- 229910052682 stishovite Inorganic materials 0.000 claims description 3
- 229910052905 tridymite Inorganic materials 0.000 claims description 3
- 229910001845 yogo sapphire Inorganic materials 0.000 claims description 3
- ORXJMBXYSGGCHG-UHFFFAOYSA-N dimethyl 2-methoxypropanedioate Chemical compound COC(=O)C(OC)C(=O)OC ORXJMBXYSGGCHG-UHFFFAOYSA-N 0.000 claims description 2
- 235000013339 cereals Nutrition 0.000 claims 1
- 239000000463 material Substances 0.000 claims 1
- 238000000926 separation method Methods 0.000 claims 1
- 238000005245 sintering Methods 0.000 claims 1
- 229910052782 aluminium Inorganic materials 0.000 abstract description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 abstract description 5
- 239000003795 chemical substances by application Substances 0.000 abstract description 5
- 230000003197 catalytic effect Effects 0.000 abstract description 3
- 238000006243 chemical reaction Methods 0.000 description 13
- 238000003756 stirring Methods 0.000 description 11
- 238000006317 isomerization reaction Methods 0.000 description 10
- 239000000047 product Substances 0.000 description 9
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 7
- 239000004810 polytetrafluoroethylene Substances 0.000 description 7
- 229910001220 stainless steel Inorganic materials 0.000 description 7
- 239000010935 stainless steel Substances 0.000 description 7
- 229920002261 Corn starch Polymers 0.000 description 6
- 239000008120 corn starch Substances 0.000 description 6
- 150000001335 aliphatic alkanes Chemical class 0.000 description 5
- 239000002199 base oil Substances 0.000 description 4
- 239000006229 carbon black Substances 0.000 description 4
- 238000000265 homogenisation Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000001354 calcination Methods 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- DAOVYDBYKGXFOB-UHFFFAOYSA-N tris(2-methylpropoxy)alumane Chemical compound [Al+3].CC(C)C[O-].CC(C)C[O-].CC(C)C[O-] DAOVYDBYKGXFOB-UHFFFAOYSA-N 0.000 description 3
- NJBCRXCAPCODGX-UHFFFAOYSA-N 2-methyl-n-(2-methylpropyl)propan-1-amine Chemical compound CC(C)CNCC(C)C NJBCRXCAPCODGX-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 230000001050 lubricating effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910001854 alkali hydroxide Inorganic materials 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/04—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof using at least one organic template directing agent, e.g. an ionic quaternary ammonium compound or an aminated compound
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/16—Pore diameter
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
Abstract
一种具有介孔‑微孔分等级结构的SSZ‑32分子筛的制备方法是将铝源、氢氧化钠、去离子水均质化混合后加入模板剂及硅源,再次均质化混合;再加入淀粉,得到初始凝胶混合物,进行老化,晶化,将晶化固体产物分离、洗涤、干燥,得到SSZ‑32分子筛原粉;将SSZ‑32分子筛原粉焙烧,得到介孔‑微孔分等级结构的SSZ‑32分子筛。本发明具有制备简单,催化性能好,廉价的优点。A preparation method of SSZ-32 molecular sieve with mesoporous-microporous hierarchical structure is to homogenize and mix aluminum source, sodium hydroxide and deionized water, add template agent and silicon source, homogenize and mix again; Starch is added to obtain the initial gel mixture, aged and crystallized, the crystallized solid product is separated, washed and dried to obtain the original powder of SSZ-32 molecular sieve; the original powder of SSZ-32 molecular sieve is roasted to obtain the mesoporous-microporous Graded structure SSZ‑32 molecular sieve. The invention has the advantages of simple preparation, good catalytic performance and low cost.
Description
所属领域Field
本发明涉及一种具有介孔-微孔分等级结构的SSZ-32硅铝分子筛的制备方法。The invention relates to a preparation method of SSZ-32 silicon-aluminum molecular sieve with mesopore-micropore hierarchical structure.
技术背景technical background
SSZ-32分子筛是同ZSM-23硅铝分子筛相类似,拓扑结构为MTT的中等孔径分子筛。美国专利5252527和5053373公开了一种用N-低级烷基-N′-异丙基-咪唑鎓氢氧化物作为模板剂制备SSZ-32分子筛的方法。SSZ-32分子筛因具有适宜的酸性和独特的孔道结构,在正构烷烃骨架异构化反应中表现了优越的性能,因而在石油化工领域,尤其是润滑油基础油异构脱蜡等方面得到了广泛关注。SSZ-32 molecular sieve is similar to ZSM-23 silicon-aluminum molecular sieve, and its topology is MTT medium-pore molecular sieve. US Patents 5,252,527 and 5,053,373 disclose a method for preparing SSZ-32 molecular sieves using N-lower alkyl-N'-isopropyl-imidazolium hydroxide as a template. Due to its suitable acidity and unique pore structure, SSZ-32 molecular sieve has excellent performance in the skeletal isomerization reaction of normal alkanes, so it has been widely used in the field of petrochemical industry, especially in the isomerization dewaxing of lubricating oil base oil. received widespread attention.
润滑油基础油中蜡的主要成分是高熔点长链正构烷烃,其倾点高,低温流动性能差。通过临氢异构化反应将正构烷烃转化为支链烷烃,可以改善这些性能。由于蜡的分子尺寸相对较大,其在催化剂上的异构化反应主要发生在催化剂的孔口处,只有位于分子筛孔口附近的活性中心才能被真正利用。因此高活性的长链正构烷烃异构化催化剂要求所用分子筛具有较多暴露孔口数。The main component of wax in lubricating base oil is long-chain normal alkanes with high melting point, which has high pour point and poor low temperature fluidity. These properties can be improved by converting n-paraffins to branched-chain alkanes through hydroisomerization. Due to the relatively large molecular size of the wax, its isomerization reaction on the catalyst mainly occurs at the pores of the catalyst, and only the active centers located near the pores of the molecular sieve can be truly utilized. Therefore, a highly active long-chain n-paraffin isomerization catalyst requires that the molecular sieve used have a large number of exposed pores.
中国专利申请CN1942560A公开了一种小晶粒SSZ-32分子筛的方法。以碱金属氧化物或氢氧化物、烷基胺、N-低级烷基-N′-异丙基-咪唑鎓、铝氧化物(铝氧化物以共价形式分散在氧化硅中,使用一种涂铝氧化硅溶胶)、硅氧化物为原料,能生成小晶粒的SSZ-32。中国专利申请CN103153860A公开了一种在不存在胺组分的情况下制备小晶粒的SSZ-32的方法,该方法的反应原料包括:至少一种硅氧化物活性源、至少一种铝氧化物活性源(氧化铝源提供能以共价形式分散于二氧化硅上的氧化铝)、至少一种碱金属活性源、氢氧根离子和有机模板剂,合成出的SSZ-32的分子筛平均长度约为10~40nm。Chinese patent application CN1942560A discloses a method for small-grain SSZ-32 molecular sieves. Alkali metal oxides or hydroxides, alkylamines, N-lower alkyl-N'-isopropyl-imidazolium, aluminum oxides (aluminum oxides are covalently dispersed in silica, using a Aluminum-coated silica sol) and silicon oxide are used as raw materials to produce SSZ-32 with small grains. Chinese patent application CN103153860A discloses a method for preparing small-grained SSZ-32 in the absence of amine components. The reaction raw materials of the method include: at least one silicon oxide active source, at least one aluminum oxide Active source (alumina source provides alumina that can be covalently dispersed on silica), at least one alkali metal active source, hydroxide ion and organic template agent, the average molecular sieve length of the synthesized SSZ-32 About 10-40nm.
除了缩小分子筛的晶粒尺寸,在分子筛晶粒中制造尺寸较大的介孔孔道(2~50nm),形成分等级结构,也可以提高暴露孔口数。虽然小晶粒SSZ-32分子筛提高了暴露孔口数,随之产生的大的非限域外比表面积会使得非选择性异构化反应加剧,进而导致裂化产品增多,降低润滑油基础油的收率,劣化基础油的粘度指数及可挥发性能。In addition to reducing the grain size of molecular sieves, manufacturing larger mesoporous channels (2-50nm) in molecular sieve grains to form a hierarchical structure can also increase the number of exposed pores. Although the small-grain SSZ-32 molecular sieve increases the number of exposed pores, the resulting large non-confined external specific surface area will intensify the non-selective isomerization reaction, which will lead to an increase in cracked products and reduce the yield of lubricating base oil , Deterioration of the viscosity index and volatile performance of the base oil.
发明内容Contents of the invention
为解决上述技术问题,本发明的目的在于提供一种制备简单,催化性能好,廉价的介孔-微孔分等级结构SSZ-32分子筛的制备方法。In order to solve the above-mentioned technical problems, the object of the present invention is to provide a method for preparing SSZ-32 molecular sieve with simple preparation, good catalytic performance, and low-cost mesoporous-microporous hierarchical structure.
本发明通过加入淀粉调控SSZ-32分子筛的合成路径,合成了一类分等级结构分子筛。淀粉富含羟基,在老化温度下自身形成海绵状结构,而同时羟基与分子筛硅铝结构作用,最终形成介孔-微孔分等级复合结构。焙烧除去淀粉后产生介孔孔道结构。该方法合成所得的SSZ-32分子筛具有以MTT微孔结构为基础并在晶粒内及晶粒间含有丰富介孔,具有较大的介孔限域比表面积与介孔孔容。The invention synthesizes a class of molecular sieves with a hierarchical structure by adding starch to regulate the synthesis path of the SSZ-32 molecular sieve. Starch is rich in hydroxyl groups, and forms a sponge-like structure by itself at the aging temperature. At the same time, the hydroxyl groups interact with the molecular sieve silica-alumina structure, and finally form a mesoporous-microporous hierarchical composite structure. The mesoporous channel structure is produced after calcination to remove starch. The SSZ-32 molecular sieve synthesized by the method is based on the MTT microporous structure and contains abundant mesopores in and between crystal grains, and has a large mesopore-confined specific surface area and mesopore volume.
本发明的制备方法具体步骤如下:Preparation method concrete steps of the present invention are as follows:
(1)将铝源、氢氧化钠、去离子水均质化混合;(1) The aluminum source, sodium hydroxide, and deionized water are homogenized and mixed;
(2)向步骤(1)混合物中加入模板剂及硅源,再次均质化混合;(2) Add templating agent and silicon source to the mixture of step (1), homogenize and mix again;
(3)向(2)混合物中加入淀粉,得到初始凝胶混合物;(3) adding starch to (2) mixture to obtain initial gel mixture;
(4)对步骤(3)初始凝胶混合物进行老化处理,再进行晶化,将晶化固体产物分离、洗涤、干燥,得到SSZ-32分子筛原粉;(4) aging the initial gel mixture in step (3), and then crystallizing, separating, washing and drying the crystallized solid product to obtain the original powder of SSZ-32 molecular sieve;
(5)将SSZ-32分子筛原粉焙烧,得到介孔-微孔分等级结构的SSZ-32分子筛;(5) Roasting the former powder of SSZ-32 molecular sieve to obtain SSZ-32 molecular sieve with mesoporous-microporous hierarchical structure;
其中在合成过程中,硅源以SiO2计,铝源以Al2O3计,氢氧化钠以OH-计,淀粉以C6H10O5计,各加入物的摩尔比控制为: In the synthesis process, the silicon source is calculated as SiO2 , the aluminum source is calculated as Al2O3 , the sodium hydroxide is calculated as OH- , and the starch is calculated as C6H10O5 . The molar ratio of each addition is controlled as follows:
SiO2:Al2O3:模板剂:OH-:C6H10O5:去离子水=1.0:0.01-0.05:0.01-0.5:0.05-1.5:0.1-0.6:5-150。SiO 2 : Al 2 O 3 : Templating agent: OH − : C 6 H 10 O 5 : Deionized water = 1.0: 0.01-0.05: 0.01-0.5: 0.05-1.5: 0.1-0.6: 5-150.
如上所述淀粉的化学式为[(C6H10O5)n]。所采用淀粉可以为谷物淀粉及薯类淀粉中的一种或几种As mentioned above, the chemical formula of starch is [(C 6 H 10 O 5 ) n ]. The starch used can be one or more of corn starch and potato starch
如上所采用的铝源可以为铝酸钠、硫酸铝、异丙醇铝、异丁醇铝中的一种或几种,所采用的硅源可以为硅溶胶、白炭黑、正硅酸乙酯中的一种或几种,所采用的模板剂可以为异丁胺、二异丁胺、二异丙胺、N,N′-二异丙基咪唑鎓氢氧化物中的一种或几种。The aluminum source used above can be one or more of sodium aluminate, aluminum sulfate, aluminum isopropoxide, and aluminum isobutoxide, and the silicon source used can be silica sol, white carbon black, ethyl orthosilicate One or more of esters, the template used can be one or more of isobutylamine, diisobutylamine, diisopropylamine, N,N'-diisopropylimidazolium hydroxide .
如上所述的步骤(1)、(2)、(3)混合过程在20-50℃中进行。The mixing process of steps (1), (2) and (3) as mentioned above is carried out at 20-50°C.
如上所述的步骤(4)老化温度可以控制为90-140℃,老化时间可以控制为1-8小时,晶化温度可以控制为160-260℃,晶化时间可以控制为0.5-6天。In step (4) above, the aging temperature can be controlled at 90-140° C., the aging time can be controlled at 1-8 hours, the crystallization temperature can be controlled at 160-260° C., and the crystallization time can be controlled at 0.5-6 days.
如上所述的步骤(5)焙烧温度可以控制为500-600℃,焙烧时间可以控制为5-12小时。The calcination temperature in step (5) above can be controlled at 500-600° C., and the calcination time can be controlled at 5-12 hours.
本发明制备介孔-微孔分等级结构SSZ-32分子筛的技术指标为比表面积为200-360m2/g,微孔面积为120-190m2/g,介孔面积为110-180m2/g,介孔平均孔径为12-20nm。The technical indicators for preparing SSZ-32 molecular sieve with mesoporous-micropore hierarchical structure in the present invention are that the specific surface area is 200-360m 2 /g, the micropore area is 120-190m 2 /g, and the mesoporous area is 110-180m 2 /g , Mesopore average pore size of 12-20nm.
在直链C20-C30烷的临氢异构化反应中,与传统SSZ-32分子筛相比,具有分等级结构SSZ-32分子筛在异构化产物收率相似的情况下,多支链产物与单支链产物的比例大为增加,有助于产品倾点的降低。In the hydroisomerization reaction of linear C20-C30 alkanes, compared with traditional SSZ-32 molecular sieves, SSZ-32 molecular sieves with hierarchical structure have similar yields of isomerization products, and the multi-branched products are compared with traditional SSZ-32 molecular sieves. The proportion of single-chain branched products is greatly increased, which helps to reduce the pour point of the product.
本发明与现有技术相比的优点如下:The advantages of the present invention compared with the prior art are as follows:
1、本合成方法采用廉价淀粉实现了介孔-微孔分等级结构SSZ-32的合成,有利于增加SSZ-32分子筛的介孔面积,利于分等级结构SSZ-32分子筛的大规模应用。1. The synthesis method uses cheap starch to realize the synthesis of the mesoporous-microporous hierarchical structure SSZ-32, which is conducive to increasing the mesoporous area of the SSZ-32 molecular sieve, and is conducive to the large-scale application of the hierarchical structure SSZ-32 molecular sieve.
2、通过选择不同类型的淀粉,调节淀粉中支链分子和直链分子的类型和比例,可以较为容易的来调控分等级结构SSZ-32中介孔的结构。2. By selecting different types of starch and adjusting the types and proportions of branched chain molecules and linear chain molecules in starch, it is relatively easy to control the structure of mesopores in the hierarchical structure SSZ-32.
具体实施方式Detailed ways
实施例1Example 1
30℃搅拌下,将0.64g铝酸钠和1.2g氢氧化钠加入50ml去离子水中均质化混合,加入异丁胺1.97g,然后加入白炭黑5.6g,再次均质化混合一小时。往所得混合物中加入谷物淀粉2.5g,将体系升温到90℃,搅拌老化8小时。最后将得到的混合物装入带聚四氟乙烯内衬的不锈钢反应釜中,在160℃静态晶化144小时,取出,冷却,过滤,80℃烘干,得到分子筛原粉。在空气气氛下500℃焙烧12小时,即得最后分等级结构的SSZ-32分子筛(总BET比表面积为269m2/g,微孔面积为145m2/g,介孔面积为124m2/g,介孔平均孔径为12nm)。Under stirring at 30°C, add 0.64g of sodium aluminate and 1.2g of sodium hydroxide into 50ml of deionized water for homogenization and mixing, add 1.97g of isobutylamine, then add 5.6g of white carbon black, and homogenize and mix again for one hour. 2.5 g of corn starch was added to the obtained mixture, the temperature of the system was raised to 90° C., and the mixture was aged with stirring for 8 hours. Finally, the obtained mixture was put into a stainless steel reaction kettle lined with polytetrafluoroethylene, statically crystallized at 160°C for 144 hours, taken out, cooled, filtered, and dried at 80°C to obtain the molecular sieve powder. Calcined at 500°C for 12 hours in an air atmosphere, the SSZ-32 molecular sieve with the final hierarchical structure (the total BET specific surface area is 269m 2 /g, the micropore area is 145m 2 /g, the mesopore area is 124m 2 /g, The average pore diameter of mesopores is 12nm).
实施例2Example 2
30℃搅拌下,将0.64g铝酸钠和1.2g氢氧化钠加入50ml去离子水中均质化混合,加入二异丁胺3.48g,然后加入白炭黑5.6g,再次均质化混合一小时。往所得混合物中加入谷物淀粉4.5g,将体系升温到120℃,搅拌老化4小时。最后将得到的混合物装入带聚四氟乙烯内衬的不锈钢反应釜中,在200℃静态晶化24小时,取出,冷却,过滤,80℃烘干,得到分子筛原粉。在空气气氛下550℃焙烧5小时,即得最后分等级结构的SSZ-32分子筛(总BET比表面积为336m2/g,微孔面积为163m2/g,介孔面积为173m2/g,介孔平均孔径为14nm)。Under stirring at 30°C, add 0.64g of sodium aluminate and 1.2g of sodium hydroxide into 50ml of deionized water for homogenization and mixing, add 3.48g of diisobutylamine, then add 5.6g of white carbon black, and homogenize and mix again for one hour . 4.5 g of corn starch was added to the obtained mixture, the temperature of the system was raised to 120° C., and the mixture was aged with stirring for 4 hours. Finally, the obtained mixture was put into a stainless steel reaction kettle lined with polytetrafluoroethylene, statically crystallized at 200°C for 24 hours, taken out, cooled, filtered, and dried at 80°C to obtain the molecular sieve powder. Calcined at 550°C for 5 hours in an air atmosphere, the SSZ-32 molecular sieve with the final hierarchical structure (the total BET specific surface area is 336m 2 /g, the micropore area is 163m 2 /g, the mesopore area is 173m 2 /g, The average pore diameter of mesopores is 14nm).
实施例3Example 3
20℃搅拌下,将1.10g的异丙醇铝和1.8g氢氧化钠加入50ml去离子水中均质化混合,加入二异丙胺1.97g,然后加入硅溶胶(SiO2 25wt%)22.2g,再次均质化混合一小时。加入谷物淀粉5.5g,将体系升温到140℃,搅拌老化1小时。最后将得到的混合物装入带聚四氟乙烯内衬的不锈钢反应釜中,在200℃静态晶化24小时,取出,冷却,过滤,80℃烘干,得到分子筛原粉。在空气气氛下600℃焙烧5小时,即得最后分等级结构的SSZ-32分子筛(总BET比表面积为355m2/g,微孔面积为188m2/g,介孔面积为167m2/g,介孔平均孔径为14nm)。Under stirring at 20°C, add 1.10g of aluminum isopropoxide and 1.8g of sodium hydroxide into 50ml of deionized water for homogenization and mixing, add 1.97g of diisopropylamine, then add 22.2g of silica sol (SiO 2 25wt%), and again Homogenize and mix for one hour. Add 5.5 g of corn starch, raise the temperature of the system to 140° C., and stir and age for 1 hour. Finally, the obtained mixture was put into a stainless steel reaction kettle lined with polytetrafluoroethylene, statically crystallized at 200°C for 24 hours, taken out, cooled, filtered, and dried at 80°C to obtain the molecular sieve powder. Calcined at 600°C for 5 hours in an air atmosphere, the SSZ-32 molecular sieve with the final hierarchical structure (the total BET specific surface area is 355m 2 /g, the micropore area is 188m 2 /g, the mesopore area is 167m 2 / g, The average pore diameter of mesopores is 14nm).
实施例4Example 4
50℃搅拌下,将1.20g的异丁醇铝和1.8g氢氧化钠加入50ml去离子水中。然后加入溶液,溶液均质化后,加入N,N′-二异丙基咪唑鎓氢氧化物2.87g,然后加入正硅酸乙酯18.7g,再次均质化一小时。加入谷物淀粉4.5g,将混合物升温到100℃,搅拌老化4小时。最后将得到的混合物装入带聚四氟乙烯内衬的不锈钢反应釜中,在190℃静态晶化96小时,取出,冷却,过滤,80℃烘干,得到分子筛原粉。在空气气氛下600℃焙烧8小时,即得最后分等级结构的SSZ-32分子筛(总BET比表面积为234m2/g,微孔面积为124m2/g,介孔面积为110m2/g,介孔平均孔径为15nm)。Under stirring at 50°C, 1.20 g of aluminum isobutoxide and 1.8 g of sodium hydroxide were added to 50 ml of deionized water. Then the solution was added, and after the solution was homogenized, 2.87 g of N,N'-diisopropylimidazolium hydroxide was added, and then 18.7 g of ethyl orthosilicate was added, and homogenized again for one hour. 4.5 g of corn starch was added, the temperature of the mixture was raised to 100° C., and the mixture was stirred and aged for 4 hours. Finally, the obtained mixture was put into a stainless steel reaction kettle lined with polytetrafluoroethylene, statically crystallized at 190°C for 96 hours, taken out, cooled, filtered, and dried at 80°C to obtain the molecular sieve powder. Calcined at 600°C for 8 hours in an air atmosphere, the SSZ-32 molecular sieve with the final hierarchical structure (the total BET specific surface area is 234m 2 /g, the micropore area is 124m 2 /g, the mesopore area is 110m 2 /g, The average pore diameter of mesopores is 15nm).
实施例5Example 5
采用上述实施例4的制备过程,老化时间为1小时,老化温度为140℃,晶化时间为24小时,晶化温度为260℃(无聚四氟乙烯内衬的不锈钢反应釜)。最后分等级结构的SSZ-32分子筛总BET比表面积为272m2/g,微孔面积为163m2/g,介孔面积为109m2/g,介孔平均孔径为20nm。Using the above preparation process of Example 4, the aging time was 1 hour, the aging temperature was 140° C., the crystallization time was 24 hours, and the crystallization temperature was 260° C. (stainless steel reactor without polytetrafluoroethylene lining). Finally, the total BET specific surface area of SSZ-32 molecular sieve with hierarchical structure is 272m 2 /g, the micropore area is 163m 2 /g, the mesopore area is 109m 2 /g, and the average mesopore diameter is 20nm.
实施例6Example 6
采用上述实施例1的制备过程,模板剂为异丁胺与二异丙胺的混合物,其中异丁胺为1.2g,二异丙胺为0.77g。最后分等级结构的SSZ-32分子筛总BET比表面积为313m2/g,微孔面积为190m2/g,介孔面积为123m2/g,介孔平均孔径为14nm。Using the preparation process of the above-mentioned Example 1, the template agent is a mixture of isobutylamine and diisopropylamine, wherein isobutylamine is 1.2 g, and diisopropylamine is 0.77 g. Finally, the total BET specific surface area of SSZ-32 molecular sieve with hierarchical structure is 313m 2 /g, the micropore area is 190m 2 /g, the mesopore area is 123m 2 /g, and the average mesopore diameter is 14nm.
实施例7Example 7
采用上述实施例6的制备过程,谷物淀粉加入量为5.5g。最后分等级结构的SSZ-32分子筛总BET比表面积为309m2/g,微孔面积为165m2/g,介孔面积为144m2/g,介孔平均孔径为18nm。Adopt the preparation process of above-mentioned embodiment 6, the addition amount of corn starch is 5.5g. Finally, the total BET specific surface area of SSZ-32 molecular sieve with hierarchical structure is 309m 2 /g, the micropore area is 165m 2 /g, the mesopore area is 144m 2 /g, and the average mesopore diameter is 18nm.
实施例8Example 8
50℃搅拌下,将0.29g的硫酸铝和2.2g氢氧化钠加入50ml去离子水中均质化,加入异丁胺1.2g和二异丙胺0.77g,然后加入白炭黑5.6g,再次均质化混合一小时。加入薯类淀粉4.5g,将混合物升温到140℃,搅拌老化1小时。最后将得到的混合物装入带聚四氟乙烯内衬的不锈钢反应釜中,在200℃静态晶化12小时,取出,冷却,过滤,80℃烘干,得到分子筛原粉。在空气气氛下650℃焙烧4小时,即得最后分等级结构的SSZ-32分子筛(总BET比表面积为217m2/g,微孔面积为105m2/g,介孔面积为112m2/g,介孔平均孔径为13nm)。Under stirring at 50°C, add 0.29g of aluminum sulfate and 2.2g of sodium hydroxide into 50ml of deionized water for homogenization, add 1.2g of isobutylamine and 0.77g of diisopropylamine, then add 5.6g of white carbon black, and homogenize again Mix for one hour. Add 4.5 g of potato starch, raise the temperature of the mixture to 140° C., and stir and age for 1 hour. Finally, the obtained mixture was put into a stainless steel reaction kettle lined with polytetrafluoroethylene, statically crystallized at 200°C for 12 hours, taken out, cooled, filtered, and dried at 80°C to obtain the molecular sieve powder. Calcined at 650°C for 4 hours in an air atmosphere, the SSZ-32 molecular sieve with the final hierarchical structure (the total BET specific surface area is 217m 2 /g, the micropore area is 105m 2 /g, the mesopore area is 112m 2 /g, The average pore diameter of mesopores is 13nm).
对比例comparative example
50℃搅拌下,将1.20g的异丁醇铝和1.8g氢氧化钠加入50ml去离子水中。然后加入溶液,溶液均质化后,加入N,N′-二异丙基咪唑鎓氢氧化物2.87g,然后加入正硅酸乙酯18.7g,再次均质化一小时。将混合物升温到100℃,搅拌老化4小时。最后将得到的混合物装入带聚四氟乙烯内衬的不锈钢反应釜中,在190℃静态晶化96小时,取出,冷却,过滤,80℃烘干,得到分子筛原粉。在空气气氛下600℃焙烧8小时,即得最后分等级结构的SSZ-32分子筛(总BET比表面积为146m2/g,微孔面积为135m2/g,介孔面积为11m2/g。Under stirring at 50°C, 1.20 g of aluminum isobutoxide and 1.8 g of sodium hydroxide were added to 50 ml of deionized water. Then the solution was added, and after the solution was homogenized, 2.87 g of N,N'-diisopropylimidazolium hydroxide was added, and then 18.7 g of ethyl orthosilicate was added, and homogenized again for one hour. The mixture was warmed to 100°C and aged with stirring for 4 hours. Finally, the obtained mixture was put into a stainless steel reaction kettle lined with polytetrafluoroethylene, statically crystallized at 190°C for 96 hours, taken out, cooled, filtered, and dried at 80°C to obtain the molecular sieve powder. Calcined at 600°C for 8 hours in an air atmosphere, the SSZ-32 molecular sieve with the final hierarchical structure (the total BET specific surface area is 146m 2 /g, the micropore area is 135m 2 /g, and the mesopore area is 11m 2 /g.
对比例与实施例4在直链C20-C30烷临氢异构化反应中反应条件及催化结果如下:The reaction conditions and catalytic results of comparative example and Example 4 in the linear C20-C30 alkane hydroisomerization reaction are as follows:
反应条件:反应温度280℃;液体空速1.1h-1;氢油比750;反应氢压4.0MpaReaction conditions: reaction temperature 280°C; liquid space velocity 1.1h -1 ; hydrogen-oil ratio 750; reaction hydrogen pressure 4.0Mpa
对比例:液收(C5+):96%;C20-C30异构化程度:100%;C20-C30异构化产品收率:51%;C20-C30异构化产品中多支链产物与单支链产物的比例:0.6Comparative example: liquid yield (C5+): 96%; C20-C30 isomerization degree: 100%; C20-C30 isomerization product yield: 51%; Proportion of branched chain products: 0.6
实施例4:液收(C5+):95%;C20-C30异构化程度:100%;C20-C30异构化产品收率:55%;C20-C30异构化产品中多支链产物与单支链产物的比例:2.2。Example 4: Liquid yield (C5+): 95%; C20-C30 isomerization degree: 100%; C20-C30 isomerization product yield: 55%; Ratio of single branched products: 2.2.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610113195.XA CN105645428B (en) | 2016-02-29 | 2016-02-29 | The preparation method of the molecular sieves of SSZ 32 with mesoporous micropore graded structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610113195.XA CN105645428B (en) | 2016-02-29 | 2016-02-29 | The preparation method of the molecular sieves of SSZ 32 with mesoporous micropore graded structure |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105645428A CN105645428A (en) | 2016-06-08 |
CN105645428B true CN105645428B (en) | 2018-03-02 |
Family
ID=56492914
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610113195.XA Active CN105645428B (en) | 2016-02-29 | 2016-02-29 | The preparation method of the molecular sieves of SSZ 32 with mesoporous micropore graded structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105645428B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018093511A1 (en) * | 2016-11-17 | 2018-05-24 | Chevron U.S.A. Inc. | High-silica ssz-32x zeolite |
CN109704361B (en) * | 2017-10-26 | 2021-02-09 | 中国石油化工股份有限公司 | TON structure molecular sieve and preparation method and application thereof |
US20200360907A1 (en) * | 2018-02-06 | 2020-11-19 | Basf Se | A process for preparing a zeolitic material having a framework structure type rth |
KR20200144133A (en) * | 2018-04-20 | 2020-12-28 | 바스프 에스이 | Method for producing a porous oxide containing a zeolite material including micropores and mesopores and having a skeleton type AEI |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5053373A (en) * | 1988-03-23 | 1991-10-01 | Chevron Research Company | Zeolite SSZ-32 |
US7390763B2 (en) * | 2003-10-31 | 2008-06-24 | Chevron U.S.A. Inc. | Preparing small crystal SSZ-32 and its use in a hydrocarbon conversion process |
US8545805B2 (en) * | 2010-11-05 | 2013-10-01 | Chevron U.S.A. Inc. | Method for preparing small crystal SSZ-32 |
CN103663493B (en) * | 2013-12-04 | 2016-04-20 | 中国科学院山西煤炭化学研究所 | There is the method for making of mesoporous-micropore graded structure silicoaluminophosphamolecular molecular sieves |
-
2016
- 2016-02-29 CN CN201610113195.XA patent/CN105645428B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN105645428A (en) | 2016-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103663493B (en) | There is the method for making of mesoporous-micropore graded structure silicoaluminophosphamolecular molecular sieves | |
CN105645428B (en) | The preparation method of the molecular sieves of SSZ 32 with mesoporous micropore graded structure | |
CN105621445B (en) | A kind of NaY types molecular sieve and preparation method thereof | |
CN105540607A (en) | Preparation method of ZSM-23 molecular sieve with mesopore-micropore hierarchical structure | |
CN110342536A (en) | Preparation method of ZSM-48 molecular sieve with low silica-alumina ratio | |
CN101249968A (en) | Method for synthesizing Beta molecular sieve without organic template | |
CN105645427B (en) | The preparation method of the molecular sieves of ZSM 22 with mesoporous micropore graded structure | |
CN104709917A (en) | Method for synthesizing SSZ-13 molecular sieve through solid-phase grinding | |
CN104525246B (en) | A kind of preparation method and applications of 5 catalyst of Template-free method little crystal grain Zn ZSM | |
CN107032369A (en) | Mesoporous Beta zeolites and preparation method thereof | |
CN106395851B (en) | One kind LTL molecular sieves of hetero atom containing Ba and the preparation method and application thereof | |
CN104370295B (en) | A kind of synthetic method of ZSM-35 molecular sieve and Me-ZSM-35 | |
WO2016078016A1 (en) | Preparation method for beta zeolite | |
CN105800635B (en) | The preparation method of ZSM-48 molecular sieves with mesoporous-micropore graded structure | |
CN102180478A (en) | Method for synthesizing Beta molecular sieve by using silica gel under the condition without organic template | |
CN107416859A (en) | A kind of preparation method and application of step hole Beta molecular sieves | |
CN104098109A (en) | Spherical ZSM-5 zeolite molecular sieve and preparation and application thereof | |
CN107055567B (en) | A kind of preparation method of nano Y zeolite aggregate | |
CN103896301B (en) | A kind of method of synthesis of titanium silicon molecular sieve | |
CN106976889A (en) | Si-Al zeolite molecular sieve with BOG structures and preparation method thereof | |
CN110856819B (en) | Surface aluminum-rich molecular sieve, preparation method and application thereof, isomerization reaction catalyst and application thereof | |
WO2016145618A1 (en) | Method for synthesizing mordenite having mesopores and micropores, and product and application thereof | |
CN1351959A (en) | Process for synthesizing beta molecular sieve | |
CN103288098A (en) | Preparation method of nano-beta zeolite molecular sieve | |
JP2010155759A (en) | Method for synthesizing mesoporous aluminosilicate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |