[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN105625146B - 一种高输出扭矩低噪音的道路平整装置 - Google Patents

一种高输出扭矩低噪音的道路平整装置 Download PDF

Info

Publication number
CN105625146B
CN105625146B CN201610042216.3A CN201610042216A CN105625146B CN 105625146 B CN105625146 B CN 105625146B CN 201610042216 A CN201610042216 A CN 201610042216A CN 105625146 B CN105625146 B CN 105625146B
Authority
CN
China
Prior art keywords
pressure
engine
hydraulic
valve
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610042216.3A
Other languages
English (en)
Other versions
CN105625146A (zh
Inventor
丁克芳
丁力
顾亚军
周涛
沈彧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taizhou Hailing Hydraulic Machinery Co., Ltd.
Original Assignee
SUZHOU HAILING HYDRAULIC MACHINERY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUZHOU HAILING HYDRAULIC MACHINERY Co Ltd filed Critical SUZHOU HAILING HYDRAULIC MACHINERY Co Ltd
Priority to CN201610042216.3A priority Critical patent/CN105625146B/zh
Publication of CN105625146A publication Critical patent/CN105625146A/zh
Application granted granted Critical
Publication of CN105625146B publication Critical patent/CN105625146B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/22Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for consolidating or finishing laid-down unset materials
    • E01C19/23Rollers therefor; Such rollers usable also for compacting soil
    • E01C19/26Rollers therefor; Such rollers usable also for compacting soil self-propelled or fitted to road vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/024Installations or systems with accumulators used as a supplementary power source, e.g. to store energy in idle periods to balance pump load

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Civil Engineering (AREA)
  • Architecture (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

本发明公开了一种高输出扭矩低噪音的道路平整装置,包括压路机和与压路机相连的发动机,发动机用于驱动压路机,发动机包括动力部分、喷油系统和液压部分,液压部分包括压缩腔、泵腔、回位腔以及液压回路,压缩腔设置于发动机的后部,在其上设置有第一油口、第二油口,所述第一油口、第二油口分别通过第一控制阀和第二控制阀与压缩蓄能器相连,泵腔通过单向阀分别与低压油路和高压油路相连,低压油路与上设置有回位控制阀和低压蓄能器;高压蓄能器到缸体的油管路上设置有减压阀,压缩蓄能器与所述高压蓄能器之间的油管路上设置有启动阀。该道路平整装置结构简单、制造方便、扫气效率高、性能稳定、输出扭矩大,并设计了完整的控制系统和位置检测系统。

Description

一种高输出扭矩低噪音的道路平整装置
技术领域
本发明涉及道路施工领域,具体涉及一种高输出扭矩低噪音的道路平整装置。
背景技术
道路平整装置,主要指压路机,在工程机械中属于道路设备的范畴,广泛用于高等级公路、铁路、机场跑道、大坝、体育场等大型工程项目的填方压实作业,可以碾压沙性、半粘性及粘性土壤、路基稳定土及沥青混凝土路面层。
如何进一步降低道路平整装置,主要是压路机的工作能耗并提高效率,是人们一直关心的问题。现在的压路机,基本都是用发动机驱动,而现有的发动机普遍存在结构过于复杂、控制不够精准、输出扭矩不足等问题,因此我们可以从这个方面着手改善道路平整装置的性能。
发明内容
针对上述问题,本发明提供一种结构紧凑、控制精确、性能稳定且输出扭矩大的道路平整装置。
本发明的目的采用以下技术方案来实现:
一种高输出扭矩低噪音的道路平整装置,包括压路机和与压路机相连的发动机,发动机用于驱动压路机,其特征是,发动机包括动力部分、喷油系统和液压部分,所述的动力部分包括进气单向阀、动力活塞、燃烧室、喷油器、扫气口,液压部分包括压缩腔、泵腔、回位腔以及液压回路,所述压缩腔设置于发动机的后部,在其上设置有第一油口、第二油口,所述第一油口、第二油口分别通过第一控制阀和第二控制阀与压缩蓄能器相连,所述泵腔通过低压油路单向阀和高压油路单向阀分别与低压油路和高压油路相连,高压油路用于向发动机负载供油,低压油路上设置有回位控制阀和低压蓄能器,回位控制阀上旁路设置有回油单向阀;所述回位腔与高压蓄能器直接连接,在所述高压蓄能器到缸体的油管路上设置有减压阀,起动工况和失火工况时减压阀保持开启,正常工况时减压阀关闭;所述压缩蓄能器与高压蓄能器通过油管路相连通,且所述压缩蓄能器与高压蓄能器之间的油管路上设置有启动阀,用于启动工况时提高发动机的压缩比,正常工况时启动阀关闭;所述高压油路连接有一负载蓄能器,减压阀后引出有一路与所述压缩蓄能器相连;发动机的末端设置有液压球囊,液压球囊内充满预先注入的压力油,其底部通过油管路与低压蓄能器相连,液压球囊与低压蓄能器之间还设置有弹簧式安全阀;所述液压球囊的左上方设置有倾斜的死区油口,其所在直线与液压球囊相切,死区油口和压缩蓄能器通过设置在两者之间的死区回位电磁阀相连,在失火工况,当活塞组件的末端处于第二油口与液压球囊之间的死区位置时,通过打开死区回位电磁阀使活塞组件回到第二油口与第一油口之间的理想下止点区域以开始下一个行程;所述喷油系统为高压共轨式电控喷射系统,包括高压油泵、共轨管、电控喷油器、压力传感器以及电子控制单元,发动机工作时,在输油泵的作用下,燃油经过滤清器进入高压油泵,经过高压油泵的压缩后,低压油变为高压油,并被高压油泵输入共轨管,在共轨管中,电子控制单元接收压力传感器的反馈并控制限压阀,以调节轨内压力值并使其保持恒定,随后将高压油输入电控喷油器内,等待电子控制单元的喷油指令;
所述发动机还包括位置检测系统,位置检测系统通过线性位移传感器和位置触发传感器检测并发出活塞组件到达上止点位置、下止点位置和前馈位置时的信号,前馈位置位于上止点位置与下止点位置之间靠近上止点位置的一侧,用于启动工况活塞压缩行程时控制第一控制阀的关闭,前馈位置根据活塞的速度值配合位置检测系统确定;所述发动机还包括恒压驱动系统,所述恒压驱动系统包括发动机和液压变量马达,通过马达驱动力矩与负载阻力矩保持输出油液压力的恒定;液压变量马达由输出高压油液驱动,并通过减速装置与负载联接,其排量随工作压力的变化而自动调节;
所述发动机还包括起动控制系统、正常工作控制系统和失火控制系统:
起动控制系统,用于发动机起动工况的控制:当起动信号发出后,打开启动阀和减压阀,压缩蓄能器由于与高压蓄能器连通而压力升高,发动机的压缩比得到提高;发动机控制单元对位移传感器的信号进行检测,如果检测结果显示活塞组件处于下止点,则将第一控制阀和第二控制阀打开,活塞组件在压缩蓄能器的作用下,开始压缩行程,如果检测到活塞组件不在下止点,首先打开回位控制阀,将泵腔和压缩腔内的液压油由低压油路放出,使活塞组件在高压蓄能器压力的作用下回复到下止点位置,关闭回位控制阀,再开始压缩行程;当活塞到达前馈位置时,第二控制阀关闭,当活塞到达上止点后,第一控制阀关闭,回位控制阀打开,活塞组件重新回到下止点后,关闭回位控制阀,活塞组件完成一个工作循环,该过程中记录活塞组件到达上止点时缸内的压力和温度值,当频率阀开启信号再次发出,判断上一循环记录的缸压和温度是否满足柴油的着火条件,如果缸内压力和温度不满足着火条件,则重复以上所述的工作过程,直到压力和温度满足着火条件后,开始进入正常工作的控制过程;
正常工作控制系统,用于发动机正常工况的控制:进入正常工况后,关闭启动阀和减压阀,第一控制阀保持常开状态,当起动信号发出后,第二控制阀打开,压缩蓄能器内的液压油首先通过第二控制阀进入压缩腔,推动活塞组件向上止点运动,当第一油口打开后,第二控制阀关闭,压缩腔和压缩蓄能器之间由第一油口连通,当活塞组件到达喷油位置时,触发传感器,产生喷油信号,并控制喷油量使得压缩时间和膨胀时间之比等于液压泵两个冲程的容积变化之比,从而使得膨胀流量与压缩流量相等,以减小发动机输出流量脉动,由喷油系统完成燃料喷射过程,在上止点附近,燃料燃烧放热,活塞组件在气缸压力的作用下回到下止点,并在第二控制阀再次开启前稳定在下止点;
失火控制系统,用于发动机失火工况的控制:在发动机工作过程中,当起动信号发出后,都对活塞组件位置进行一次检测,如果发动机频率和频率变化率均小于设定值,则检测活塞组件的位置,如果活塞组件不在下止点位置,且缸温缸压小于失火值,则认为发动机在上一循环中发生失火,此时首先关闭第一控制阀,并打开减压阀和回位控制阀,使活塞组件回复到下止点位置,然后第一控制阀开启,等待下一个起动脉冲信号,发动机再按照正常工作循环运动。
本发明的有益效果为:1、液压系统在压缩和膨胀过程中均能向负载供油,并能有效防止系统之间不该出现的串压串油现象;配合各个蓄能器来减小输出流量脉动、减低噪音;针对各个工况发动机的运行特点,设计了新的控制系统,能更精准、有效地控制发动机的运行;2、在上止点和下止点之间增加了前馈位置,在启动工况下活塞组件到达前馈位置时就关闭频率阀,在到达上止点后再关闭开关阀,这样既保证了压缩行程的速度,又减小了膨胀行程的阻力,整体上提高了发动机的工作效率并减小行程时间;3、通过控制高压蓄能器和压缩蓄能器之间的启动阀,来增加发动机的压缩比,而且不会对输出油压造成影响发生油压脉动,正常工况后关闭启动阀,取代传统的油站系统调高压缩比的方法,具有经济实用结构简单的特点;4、为了避免回位控制阀的误开以及提高失火判断的精准程度,采取缸温缸压和活塞组件的位置作为失火的主判断依据,同时考虑到缸温下降的延迟性,加入频率和频率变化速率(或者位移变化率)的前馈信号,即先判断频率和频率变化率小于设定值,然后再判断活塞是否在下止点位置,如果不在,则打开回位控制阀;5、设计了新的液压球囊式缓冲装置及其附属的防超压装置,在起到缓冲和防超压功能的同时还能对发动机的液压损失起到一定的补充作用;6、通过死区油口和死区回位电磁阀的设置,可以有效解决活塞组件在死区位置很难回到下止点开始下一行程的问题,同时通过相切的油口设置来减少活塞组件进入死区后的蠕动时间,进一步提高发动机的整体效率。
附图说明
利用附图对本发明作进一步说明,但附图中的实施例不构成对本发明的任何限制,对于本领域的普通技术人员,在不付出创造性劳动的前提下,还可以根据以下附图获得其它的附图。
图1为该道路平整装置发动机的结构示意图;
图2为喷油系统的结构示意图;
图3为理想下止点区域和死区的位置示意图。
附图标记:1-压缩腔;2-第二控制阀;3-第一控制阀;4-压缩蓄能器;5-第一油口;6-第二油口;7-泵腔;8-高压蓄能器;9-进气单向阀;10-动力活塞;11-燃烧室;12-喷油器;13-扫气口;14-回位腔;15-回位活塞;17-回位控制阀;18-低压蓄能器;19-压缩活塞;21-回油单向阀;22-减压阀;23-启动阀;24-负载蓄能器;25-高压油路;26-低压油路;27-液压球囊;28-弹簧式安全阀;29-输油泵;30-滤清器;31-高压油泵;32-共轨管;33-电控喷油器;34-死区油口;35-死区回位电磁阀;36-低压油路单向阀;37-高压油路单向阀;A-理想下止点区域;B-死区。
具体实施方式
结合以下实施例对本发明作进一步描述。
实施例1:如图1-3所示的一种高输出扭矩低噪音的道路平整装置,包括压路机和与压路机相连的发动机,发动机用于驱动压路机,发动机包括动力部分、喷油系统和液压部分,所述的动力部分包括进气单向阀9、动力活塞10、燃烧室11、喷油器12、扫气口13、回位活塞15、压缩活塞19,液压部分包括压缩腔1、泵腔7、回位腔14以及液压回路,所述压缩腔1设置于发动机的后部,在其上设置有第一油口5、第二油口6,所述第一油口5、第二油口6分别通过第一控制阀3和第二控制阀2与压缩蓄能器4相连,所述泵腔7分别通过低压油路单向阀36和高压油路单向阀37分别与低压油路26和高压油路25相连,高压油路25用于向发动机负载供油,低压油路26上设置有回位控制阀17和低压蓄能器18,回位控制阀17上还旁路设置有回油单向阀21;所述回位腔14与高压蓄能器8直接连接,在所述高压蓄能器8到缸体的油管路上设置有减压阀22;所述压缩蓄能器4与所述高压蓄能器8通过油管路相连通,所述压缩蓄能器4与所述高压蓄能器8之间的油管路上还设置有启动阀23;所述高压油路25连接有一负载蓄能器24,所述减压阀22后引出有一路与所述压缩蓄能器4相连;所述喷油系统为高压共轨式电控喷射系统。
发动机的末端设置有液压球囊27,液压球囊27内充满预先注入的一定压力的压力油,其底部通过油管路与低压蓄能器18相连,当负载压力突然降低或喷油量超调导致活塞以较大速度越过第二油口6时,液压球囊27能起到很好的缓冲作用,而且基本不会产生反弹作用;同时为了防止液压球囊27超压破裂,液压球囊27与低压蓄能器18之间还设置有弹簧式安全阀28,一旦液压球囊27超压弹簧式安全阀28就会自动打开,并通过低压蓄能器18缓冲压力,这时液压球囊27会对发动机的液压系统起到一定的补充作用。所述液压球囊27的左上方设置有倾斜的死区油口34,其所在直线与液压球囊27相切,死区油口34和压缩蓄能器4通过设置在两者之间的死区回位电磁阀35相连,在失火工况,当活塞组件的末端处于第二油口6与液压球囊27之间的死区B时,通过打开死区回位电磁阀35使活塞组件回到第二油口6与第一油口5之间的理想下止点区域A以开始下一个行程。
高压蓄能器8的作用在于:一是保证了在发动机停机时,活塞组件能够停留在下止点位置,减少蠕动;二是在发动机起动工况下以及失火情况发生时,推动活塞组件回复到下止点位置,使发动机能够继续开始下一个循环。
该发动机还包括位置检测系统,所述位置检测系统通过线性位移传感器和位置触发传感器检测活塞组件到达上止点位置、下止点位置和前馈位置时的信号,前馈位置位于上止点位置和下止点位置之间靠近上止点位置的一侧,用于启动工况活塞压缩行程时控制第一控制阀3的关闭,前馈位置根据活塞的速度值配合位置检测系统确定。
所述喷油系统包括高压油泵31、共轨管32、电控喷油器33、压力传感器以及电子控制单元,发动机工作时,在输油泵29的作用下,燃油经过滤清器30进入高压油泵31,经过高压油泵31的压缩后,低压油变为高压油,并被高压油泵31输入共轨管32,在共轨管32中,电子控制单元接收压力传感器的反馈并控制限压阀,以调节轨内压力值并使其保持恒定,随后将相对稳定并具有一定压力的高压油输入电控喷油器33内,等待电子控制单元的喷油指令。
该发动机还设置有恒压驱动系统,所述恒压驱动系统主要包括发动机和液压变量马达,通过马达驱动力矩与负载阻力矩,保持了输出油液压力的恒定。液压变量马达由输出高压油液驱动,并通过减速装置与负载联接,其排量随工作压力的变化而自动调节。液压变量马达与负载机械连接,两者转速相等;在稳定工作情况下,马达驱动力矩与负载阻力矩大小相等,方向相反,当阻力变大时,马达驱动力矩小于负载阻力矩,使马达转速降低。由于输出液压油的流量不变,输出液压油在背压增大的情况下流动阻力增大,从而引起系统内压力的升高。此时,液压马达的变量机构接收到该压力升高信号的反馈并进行调节,使自身排量增大,在转速降低的情况下增大了马达的流量,从而降低油液流动阻力,保持了发动机输出油液压力的恒定。同时,由于排量增大,马达驱动力矩也随之增大,并逐渐与负载阻力矩相平衡,系统再次实现达到稳定工作状态。同样,当负载阻力减小,液压马达驱动力矩大于负载阻力矩时,马达转速升高,引起液压系统内压力的降低。此时,液压变量马达排量向减小的方向调节,使驱动力矩与负载阻力矩相平衡,在实现系统稳定工作的同时保持系统内压力的恒定。
所述发动机还包括起动控制系统、正常工作控制系统和失火控制系统:
起动控制系统,用于发动机起动工况的控制:当起动信号发出后,打开启动阀23和减压阀22,压缩蓄能器4由于与高压蓄能器8连通而压力升高,发动机的压缩比得到提高;发动机控制单元对位移传感器的信号进行检测,如果检测结果显示活塞组件处于下止点,则将第一控制阀3和第二控制阀2打开,活塞组件在压缩蓄能器4的作用下,开始压缩行程,如果检测到活塞组件不在下止点,首先打开回位控制阀17,将泵腔7和压缩腔1内的液压油由低压油路26放出,使活塞组件在高压蓄能器8压力的作用下回复到下止点位置,关闭回位控制阀17,再开始压缩行程;当活塞的速度减小至某一设定值时,认为其到达前馈位置,此时将第二控制阀2关闭,当活塞到达上止点后,第一控制阀3关闭,回位控制阀17打开,这种将第一控制阀3和第二控制阀2分步关闭的控制方式,既保证了压缩行程的速度,又减小了膨胀行程的阻力;活塞组件重新回到下止点后,关闭回位控制阀17,活塞组件完成一个工作循环,该过程中记录活塞组件到达上止点时缸内的压力和温度值,当第二控制阀2开启信号再次发出,判断上一循环记录的缸压和温度是否满足柴油的着火条件,如果缸内压力和温度都较低,则重复以上所述的工作过程,直到压力和温度满足着火条件后,开始进入正常工作的控制过程。
正常工作控制系统,用于发动机正常工况的控制:进入正常工况后,关闭启动阀23和减压阀22,第一控制阀3保持常开状态,当起动信号发出后,第二控制阀2打开,压缩蓄能器4内的液压油首先通过第二控制阀2进入压缩腔1,推动活塞组件向上止点运动,当第一油口5打开后,第二控制阀2关闭,压缩腔1和压缩蓄能器4之间由第一油口5连通,当活塞组件到达喷油位置时,触发传感器,产生喷油信号,并控制喷油量使得压缩时间和膨胀时间之比等于液压泵两个冲程的容积变化之比,从而使得膨胀流量与压缩流量基本相等,以减小发动机输出流量脉动,由喷油系统完成燃料喷射过程,在上止点附近,燃料燃烧放热,活塞组件在气缸压力的作用下回到下止点,并在第二控制阀2再次开启前稳定在下止点。
失火控制系统,用于发动机失火工况的控制:在发动机工作过程中,当起动信号发出后,都对活塞组件位置进行一次检测,如果发动机频率和频率变化率均小于设定值,则检测活塞组件的位置,如果活塞组件不在下止点位置,且缸温缸压小于失火值,则认为发动机在上一循环中发生失火,此时首先关闭第一控制阀3,并打开减压阀22和回位控制阀17,使活塞组件回复到下止点位置,然后第一控制阀3开启,等待下一个起动脉冲信号,发动机再按照正常工作循环运动。
所述第二控制阀2采用最大流量为250L/min、开启脉宽为10ms的高频电液伺服阀,电液伺服阀是一种接受模拟量电控制信号,输出随电控制信号大小及极性变化、且快速响应的液压控制阀,具有快速的动态响应及良好的静态特性,如:分辨率高、滞环小、线性度好等。第二控制阀2的最大流量,当使用最大流量为250L/min、开启脉宽为10ms的电液伺服阀时,活塞组件的加速度段长度会增加到原来的5倍左右,压缩行程所用时间明显减小,从而使运动周期比原来减小了将近7ms,显著的提高了发动机的最大工作频率,取得了意想不到的效果。
实施例2:如图1-3所示的一种高输出扭矩低噪音的道路平整装置,包括压路机和与压路机相连的发动机,发动机用于驱动压路机,发动机包括动力部分、喷油系统和液压部分,所述的动力部分包括进气单向阀9、动力活塞10、燃烧室11、喷油器12、扫气口13、回位活塞15、压缩活塞19,液压部分包括压缩腔1、泵腔7、回位腔14以及液压回路,所述压缩腔1设置于发动机的后部,在其上设置有第一油口5、第二油口6,所述第一油口5、第二油口6分别通过第一控制阀3和第二控制阀2与压缩蓄能器4相连,所述泵腔7分别通过低压油路单向阀36和高压油路单向阀37分别与低压油路26和高压油路25相连,高压油路25用于向发动机负载供油,低压油路26上设置有回位控制阀17和低压蓄能器18,回位控制阀17上还旁路设置有回油单向阀21;所述回位腔14与高压蓄能器8直接连接,在所述高压蓄能器8到缸体的油管路上设置有减压阀22;所述压缩蓄能器4与所述高压蓄能器8通过油管路相连通,所述压缩蓄能器4与所述高压蓄能器8之间的油管路上还设置有启动阀23;所述高压油路25连接有一负载蓄能器24,所述减压阀22后引出有一路与所述压缩蓄能器4相连;所述喷油系统为高压共轨式电控喷射系统。
发动机的末端设置有液压球囊27,液压球囊27内充满预先注入的一定压力的压力油,其底部通过油管路与低压蓄能器18相连,当负载压力突然降低或喷油量超调导致活塞以较大速度越过第二油口6时,液压球囊27能起到很好的缓冲作用,而且基本不会产生反弹作用;同时为了防止液压球囊27超压破裂,液压球囊27与低压蓄能器18之间还设置有弹簧式安全阀28,一旦液压球囊27超压弹簧式安全阀28就会自动打开,并通过低压蓄能器18缓冲压力,这时液压球囊27会对发动机的液压系统起到一定的补充作用。所述液压球囊27的左上方设置有倾斜的死区油口34,其所在直线与液压球囊27相切,死区油口34和压缩蓄能器4通过设置在两者之间的死区回位电磁阀35相连,在失火工况,当活塞组件的末端处于第二油口6与液压球囊27之间的死区B时,通过打开死区回位电磁阀35使活塞组件回到第二油口6与第一油口5之间的理想下止点区域A以开始下一个行程。
高压蓄能器8的作用在于:一是保证了在发动机停机时,活塞组件能够停留在下止点位置,减少蠕动;二是在发动机起动工况下以及失火情况发生时,推动活塞组件回复到下止点位置,使发动机能够继续开始下一个循环。
该发动机还包括位置检测系统,所述位置检测系统通过线性位移传感器和位置触发传感器检测活塞组件到达上止点位置、下止点位置和前馈位置时的信号,前馈位置位于上止点位置和下止点位置之间靠近上止点位置的一侧,用于启动工况活塞压缩行程时控制第一控制阀3的关闭,前馈位置根据活塞的速度值配合位置检测系统确定。
所述喷油系统包括高压油泵31、共轨管32、电控喷油器33、压力传感器以及电子控制单元,发动机工作时,在输油泵29的作用下,燃油经过滤清器30进入高压油泵31,经过高压油泵31的压缩后,低压油变为高压油,并被高压油泵31输入共轨管32,在共轨管32中,电子控制单元接收压力传感器的反馈并控制限压阀,以调节轨内压力值并使其保持恒定,随后将相对稳定并具有一定压力的高压油输入电控喷油器33内,等待电子控制单元的喷油指令。
该发动机还设置有恒压驱动系统,所述恒压驱动系统主要包括发动机和液压变量马达,通过马达驱动力矩与负载阻力矩,保持了输出油液压力的恒定。液压变量马达由输出高压油液驱动,并通过减速装置与负载联接,其排量随工作压力的变化而自动调节。液压变量马达与负载机械连接,两者转速相等;在稳定工作情况下,马达驱动力矩与负载阻力矩大小相等,方向相反,当阻力变大时,马达驱动力矩小于负载阻力矩,使马达转速降低。由于输出液压油的流量不变,输出液压油在背压增大的情况下流动阻力增大,从而引起系统内压力的升高。此时,液压马达的变量机构接收到该压力升高信号的反馈并进行调节,使自身排量增大,在转速降低的情况下增大了马达的流量,从而降低油液流动阻力,保持了发动机输出油液压力的恒定。同时,由于排量增大,马达驱动力矩也随之增大,并逐渐与负载阻力矩相平衡,系统再次实现达到稳定工作状态。同样,当负载阻力减小,液压马达驱动力矩大于负载阻力矩时,马达转速升高,引起液压系统内压力的降低。此时,液压变量马达排量向减小的方向调节,使驱动力矩与负载阻力矩相平衡,在实现系统稳定工作的同时保持系统内压力的恒定。
所述发动机还包括起动控制系统、正常工作控制系统和失火控制系统:
起动控制系统,用于发动机起动工况的控制:当起动信号发出后,打开启动阀23和减压阀22,压缩蓄能器4由于与高压蓄能器8连通而压力升高,发动机的压缩比得到提高;发动机控制单元对位移传感器的信号进行检测,如果检测结果显示活塞组件处于下止点,则将第一控制阀3和第二控制阀2打开,活塞组件在压缩蓄能器4的作用下,开始压缩行程,如果检测到活塞组件不在下止点,首先打开回位控制阀17,将泵腔7和压缩腔1内的液压油由低压油路26放出,使活塞组件在高压蓄能器8压力的作用下回复到下止点位置,关闭回位控制阀17,再开始压缩行程;当活塞的速度减小至某一设定值时,认为其到达前馈位置,此时将第二控制阀2关闭,当活塞到达上止点后,第一控制阀3关闭,回位控制阀17打开,这种将第一控制阀3和第二控制阀2分步关闭的控制方式,既保证了压缩行程的速度,又减小了膨胀行程的阻力;活塞组件重新回到下止点后,关闭回位控制阀17,活塞组件完成一个工作循环,该过程中记录活塞组件到达上止点时缸内的压力和温度值,当第二控制阀2开启信号再次发出,判断上一循环记录的缸压和温度是否满足柴油的着火条件,如果缸内压力和温度都较低,则重复以上所述的工作过程,直到压力和温度满足着火条件后,开始进入正常工作的控制过程。
正常工作控制系统,用于发动机正常工况的控制:进入正常工况后,关闭启动阀23和减压阀22,第一控制阀3保持常开状态,当起动信号发出后,第二控制阀2打开,压缩蓄能器4内的液压油首先通过第二控制阀2进入压缩腔1,推动活塞组件向上止点运动,当第一油口5打开后,第二控制阀2关闭,压缩腔1和压缩蓄能器4之间由第一油口5连通,当活塞组件到达喷油位置时,触发传感器,产生喷油信号,并控制喷油量使得压缩时间和膨胀时间之比等于液压泵两个冲程的容积变化之比,从而使得膨胀流量与压缩流量基本相等,以减小发动机输出流量脉动,由喷油系统完成燃料喷射过程,在上止点附近,燃料燃烧放热,活塞组件在气缸压力的作用下回到下止点,并在第二控制阀2再次开启前稳定在下止点。
失火控制系统,用于发动机失火工况的控制:在发动机工作过程中,当起动信号发出后,都对活塞组件位置进行一次检测,如果发动机频率和频率变化率均小于设定值,则检测活塞组件的位置,如果活塞组件不在下止点位置,且缸温缸压小于失火值,则认为发动机在上一循环中发生失火,此时首先关闭第一控制阀3,并打开减压阀22和回位控制阀17,使活塞组件回复到下止点位置,然后第一控制阀3开启,等待下一个起动脉冲信号,发动机再按照正常工作循环运动。
所述第二控制阀2采用最大流量为200L/min、开启脉宽为15ms的高频电液伺服阀,电液伺服阀是一种接受模拟量电控制信号,输出随电控制信号大小及极性变化、且快速响应的液压控制阀,具有快速的动态响应及良好的静态特性,如:分辨率高、滞环小、线性度好等。第二控制阀2的最大流量,当使用最大流量为200L/min、开启脉宽为15ms的电液伺服阀时,活塞组件的加速度段长度会增加到原来的6倍左右,压缩行程所用时间明显减小,从而使运动周期比原来减小了将近10ms,显著的提高了发动机的最大工作频率,取得了意想不到的效果。
实施例3:如图1-3所示的一种高输出扭矩低噪音的道路平整装置,包括压路机和与压路机相连的发动机,发动机用于驱动压路机,发动机包括动力部分、喷油系统和液压部分,所述的动力部分包括进气单向阀9、动力活塞10、燃烧室11、喷油器12、扫气口13、回位活塞15、压缩活塞19,液压部分包括压缩腔1、泵腔7、回位腔14以及液压回路,所述压缩腔1设置于发动机的后部,在其上设置有第一油口5、第二油口6,所述第一油口5、第二油口6分别通过第一控制阀3和第二控制阀2与压缩蓄能器4相连,所述泵腔7分别通过低压油路单向阀36和高压油路单向阀37分别与低压油路26和高压油路25相连,高压油路25用于向发动机负载供油,低压油路26上设置有回位控制阀17和低压蓄能器18,回位控制阀17上还旁路设置有回油单向阀21;所述回位腔14与高压蓄能器8直接连接,在所述高压蓄能器8到缸体的油管路上设置有减压阀22;所述压缩蓄能器4与所述高压蓄能器8通过油管路相连通,所述压缩蓄能器4与所述高压蓄能器8之间的油管路上还设置有启动阀23;所述高压油路25连接有一负载蓄能器24,所述减压阀22后引出有一路与所述压缩蓄能器4相连;所述喷油系统为高压共轨式电控喷射系统。
发动机的末端设置有液压球囊27,液压球囊27内充满预先注入的一定压力的压力油,其底部通过油管路与低压蓄能器18相连,当负载压力突然降低或喷油量超调导致活塞以较大速度越过第二油口6时,液压球囊27能起到很好的缓冲作用,而且基本不会产生反弹作用;同时为了防止液压球囊27超压破裂,液压球囊27与低压蓄能器18之间还设置有弹簧式安全阀28,一旦液压球囊27超压弹簧式安全阀28就会自动打开,并通过低压蓄能器18缓冲压力,这时液压球囊27会对发动机的液压系统起到一定的补充作用。所述液压球囊27的左上方设置有倾斜的死区油口34,其所在直线与液压球囊27相切,死区油口34和压缩蓄能器4通过设置在两者之间的死区回位电磁阀35相连,在失火工况,当活塞组件的末端处于第二油口6与液压球囊27之间的死区B时,通过打开死区回位电磁阀35使活塞组件回到第二油口6与第一油口5之间的理想下止点区域A以开始下一个行程。
高压蓄能器8的作用在于:一是保证了在发动机停机时,活塞组件能够停留在下止点位置,减少蠕动;二是在发动机起动工况下以及失火情况发生时,推动活塞组件回复到下止点位置,使发动机能够继续开始下一个循环。
该发动机还包括位置检测系统,所述位置检测系统通过线性位移传感器和位置触发传感器检测活塞组件到达上止点位置、下止点位置和前馈位置时的信号,前馈位置位于上止点位置和下止点位置之间靠近上止点位置的一侧,用于启动工况活塞压缩行程时控制第一控制阀3的关闭,前馈位置根据活塞的速度值配合位置检测系统确定。
所述喷油系统包括高压油泵31、共轨管32、电控喷油器33、压力传感器以及电子控制单元,发动机工作时,在输油泵29的作用下,燃油经过滤清器30进入高压油泵31,经过高压油泵31的压缩后,低压油变为高压油,并被高压油泵31输入共轨管32,在共轨管32中,电子控制单元接收压力传感器的反馈并控制限压阀,以调节轨内压力值并使其保持恒定,随后将相对稳定并具有一定压力的高压油输入电控喷油器33内,等待电子控制单元的喷油指令。
该发动机还设置有恒压驱动系统,所述恒压驱动系统主要包括发动机和液压变量马达,通过马达驱动力矩与负载阻力矩,保持了输出油液压力的恒定。液压变量马达由输出高压油液驱动,并通过减速装置与负载联接,其排量随工作压力的变化而自动调节。液压变量马达与负载机械连接,两者转速相等;在稳定工作情况下,马达驱动力矩与负载阻力矩大小相等,方向相反,当阻力变大时,马达驱动力矩小于负载阻力矩,使马达转速降低。由于输出液压油的流量不变,输出液压油在背压增大的情况下流动阻力增大,从而引起系统内压力的升高。此时,液压马达的变量机构接收到该压力升高信号的反馈并进行调节,使自身排量增大,在转速降低的情况下增大了马达的流量,从而降低油液流动阻力,保持了发动机输出油液压力的恒定。同时,由于排量增大,马达驱动力矩也随之增大,并逐渐与负载阻力矩相平衡,系统再次实现达到稳定工作状态。同样,当负载阻力减小,液压马达驱动力矩大于负载阻力矩时,马达转速升高,引起液压系统内压力的降低。此时,液压变量马达排量向减小的方向调节,使驱动力矩与负载阻力矩相平衡,在实现系统稳定工作的同时保持系统内压力的恒定。
所述发动机还包括起动控制系统、正常工作控制系统和失火控制系统:
起动控制系统,用于发动机起动工况的控制:当起动信号发出后,打开启动阀23和减压阀22,压缩蓄能器4由于与高压蓄能器8连通而压力升高,发动机的压缩比得到提高;发动机控制单元对位移传感器的信号进行检测,如果检测结果显示活塞组件处于下止点,则将第一控制阀3和第二控制阀2打开,活塞组件在压缩蓄能器4的作用下,开始压缩行程,如果检测到活塞组件不在下止点,首先打开回位控制阀17,将泵腔7和压缩腔1内的液压油由低压油路26放出,使活塞组件在高压蓄能器8压力的作用下回复到下止点位置,关闭回位控制阀17,再开始压缩行程;当活塞的速度减小至某一设定值时,认为其到达前馈位置,此时将第二控制阀2关闭,当活塞到达上止点后,第一控制阀3关闭,回位控制阀17打开,这种将第一控制阀3和第二控制阀2分步关闭的控制方式,既保证了压缩行程的速度,又减小了膨胀行程的阻力;活塞组件重新回到下止点后,关闭回位控制阀17,活塞组件完成一个工作循环,该过程中记录活塞组件到达上止点时缸内的压力和温度值,当第二控制阀2开启信号再次发出,判断上一循环记录的缸压和温度是否满足柴油的着火条件,如果缸内压力和温度都较低,则重复以上所述的工作过程,直到压力和温度满足着火条件后,开始进入正常工作的控制过程。
正常工作控制系统,用于发动机正常工况的控制:进入正常工况后,关闭启动阀23和减压阀22,第一控制阀3保持常开状态,当起动信号发出后,第二控制阀2打开,压缩蓄能器4内的液压油首先通过第二控制阀2进入压缩腔1,推动活塞组件向上止点运动,当第一油口5打开后,第二控制阀2关闭,压缩腔1和压缩蓄能器4之间由第一油口5连通,当活塞组件到达喷油位置时,触发传感器,产生喷油信号,并控制喷油量使得压缩时间和膨胀时间之比等于液压泵两个冲程的容积变化之比,从而使得膨胀流量与压缩流量基本相等,以减小发动机输出流量脉动,由喷油系统完成燃料喷射过程,在上止点附近,燃料燃烧放热,活塞组件在气缸压力的作用下回到下止点,并在第二控制阀2再次开启前稳定在下止点。
失火控制系统,用于发动机失火工况的控制:在发动机工作过程中,当起动信号发出后,都对活塞组件位置进行一次检测,如果发动机频率和频率变化率均小于设定值,则检测活塞组件的位置,如果活塞组件不在下止点位置,且缸温缸压小于失火值,则认为发动机在上一循环中发生失火,此时首先关闭第一控制阀3,并打开减压阀22和回位控制阀17,使活塞组件回复到下止点位置,然后第一控制阀3开启,等待下一个起动脉冲信号,发动机再按照正常工作循环运动。
所述第二控制阀2采用最大流量为220L/min、开启脉宽为20ms的高频电液伺服阀,电液伺服阀是一种接受模拟量电控制信号,输出随电控制信号大小及极性变化、且快速响应的液压控制阀,具有快速的动态响应及良好的静态特性,如:分辨率高、滞环小、线性度好等。第二控制阀2的最大流量,当使用最大流量为220L/min、开启脉宽为20ms的电液伺服阀时,活塞组件的加速度段长度会增加到原来的7倍左右,压缩行程所用时间明显减小,从而使运动周期比原来减小了将近12ms,显著的提高了发动机的最大工作频率,取得了意想不到的效果。
实施例4:如图1-3所示的一种高输出扭矩低噪音的道路平整装置,包括压路机和与压路机相连的发动机,发动机用于驱动压路机,发动机包括动力部分、喷油系统和液压部分,所述的动力部分包括进气单向阀9、动力活塞10、燃烧室11、喷油器12、扫气口13、回位活塞15、压缩活塞19,液压部分包括压缩腔1、泵腔7、回位腔14以及液压回路,所述压缩腔1设置于发动机的后部,在其上设置有第一油口5、第二油口6,所述第一油口5、第二油口6分别通过第一控制阀3和第二控制阀2与压缩蓄能器4相连,所述泵腔7分别通过低压油路单向阀36和高压油路单向阀37分别与低压油路26和高压油路25相连,高压油路25用于向发动机负载供油,低压油路26上设置有回位控制阀17和低压蓄能器18,回位控制阀17上还旁路设置有回油单向阀21;所述回位腔14与高压蓄能器8直接连接,在所述高压蓄能器8到缸体的油管路上设置有减压阀22;所述压缩蓄能器4与所述高压蓄能器8通过油管路相连通,所述压缩蓄能器4与所述高压蓄能器8之间的油管路上还设置有启动阀23;所述高压油路25连接有一负载蓄能器24,所述减压阀22后引出有一路与所述压缩蓄能器4相连;所述喷油系统为高压共轨式电控喷射系统。
发动机的末端设置有液压球囊27,液压球囊27内充满预先注入的一定压力的压力油,其底部通过油管路与低压蓄能器18相连,当负载压力突然降低或喷油量超调导致活塞以较大速度越过第二油口6时,液压球囊27能起到很好的缓冲作用,而且基本不会产生反弹作用;同时为了防止液压球囊27超压破裂,液压球囊27与低压蓄能器18之间还设置有弹簧式安全阀28,一旦液压球囊27超压弹簧式安全阀28就会自动打开,并通过低压蓄能器18缓冲压力,这时液压球囊27会对发动机的液压系统起到一定的补充作用。所述液压球囊27的左上方设置有倾斜的死区油口34,其所在直线与液压球囊27相切,死区油口34和压缩蓄能器4通过设置在两者之间的死区回位电磁阀35相连,在失火工况,当活塞组件的末端处于第二油口6与液压球囊27之间的死区B时,通过打开死区回位电磁阀35使活塞组件回到第二油口6与第一油口5之间的理想下止点区域A以开始下一个行程。
高压蓄能器8的作用在于:一是保证了在发动机停机时,活塞组件能够停留在下止点位置,减少蠕动;二是在发动机起动工况下以及失火情况发生时,推动活塞组件回复到下止点位置,使发动机能够继续开始下一个循环。
该发动机还包括位置检测系统,所述位置检测系统通过线性位移传感器和位置触发传感器检测活塞组件到达上止点位置、下止点位置和前馈位置时的信号,前馈位置位于上止点位置和下止点位置之间靠近上止点位置的一侧,用于启动工况活塞压缩行程时控制第一控制阀3的关闭,前馈位置根据活塞的速度值配合位置检测系统确定。
所述喷油系统包括高压油泵31、共轨管32、电控喷油器33、压力传感器以及电子控制单元,发动机工作时,在输油泵29的作用下,燃油经过滤清器30进入高压油泵31,经过高压油泵31的压缩后,低压油变为高压油,并被高压油泵31输入共轨管32,在共轨管32中,电子控制单元接收压力传感器的反馈并控制限压阀,以调节轨内压力值并使其保持恒定,随后将相对稳定并具有一定压力的高压油输入电控喷油器33内,等待电子控制单元的喷油指令。
该发动机还设置有恒压驱动系统,所述恒压驱动系统主要包括发动机和液压变量马达,通过马达驱动力矩与负载阻力矩,保持了输出油液压力的恒定。液压变量马达由输出高压油液驱动,并通过减速装置与负载联接,其排量随工作压力的变化而自动调节。液压变量马达与负载机械连接,两者转速相等;在稳定工作情况下,马达驱动力矩与负载阻力矩大小相等,方向相反,当阻力变大时,马达驱动力矩小于负载阻力矩,使马达转速降低。由于输出液压油的流量不变,输出液压油在背压增大的情况下流动阻力增大,从而引起系统内压力的升高。此时,液压马达的变量机构接收到该压力升高信号的反馈并进行调节,使自身排量增大,在转速降低的情况下增大了马达的流量,从而降低油液流动阻力,保持了发动机输出油液压力的恒定。同时,由于排量增大,马达驱动力矩也随之增大,并逐渐与负载阻力矩相平衡,系统再次实现达到稳定工作状态。同样,当负载阻力减小,液压马达驱动力矩大于负载阻力矩时,马达转速升高,引起液压系统内压力的降低。此时,液压变量马达排量向减小的方向调节,使驱动力矩与负载阻力矩相平衡,在实现系统稳定工作的同时保持系统内压力的恒定。
所述发动机还包括起动控制系统、正常工作控制系统和失火控制系统:
起动控制系统,用于发动机起动工况的控制:当起动信号发出后,打开启动阀23和减压阀22,压缩蓄能器4由于与高压蓄能器8连通而压力升高,发动机的压缩比得到提高;发动机控制单元对位移传感器的信号进行检测,如果检测结果显示活塞组件处于下止点,则将第一控制阀3和第二控制阀2打开,活塞组件在压缩蓄能器4的作用下,开始压缩行程,如果检测到活塞组件不在下止点,首先打开回位控制阀17,将泵腔7和压缩腔1内的液压油由低压油路26放出,使活塞组件在高压蓄能器8压力的作用下回复到下止点位置,关闭回位控制阀17,再开始压缩行程;当活塞的速度减小至某一设定值时,认为其到达前馈位置,此时将第二控制阀2关闭,当活塞到达上止点后,第一控制阀3关闭,回位控制阀17打开,这种将第一控制阀3和第二控制阀2分步关闭的控制方式,既保证了压缩行程的速度,又减小了膨胀行程的阻力;活塞组件重新回到下止点后,关闭回位控制阀17,活塞组件完成一个工作循环,该过程中记录活塞组件到达上止点时缸内的压力和温度值,当第二控制阀2开启信号再次发出,判断上一循环记录的缸压和温度是否满足柴油的着火条件,如果缸内压力和温度都较低,则重复以上所述的工作过程,直到压力和温度满足着火条件后,开始进入正常工作的控制过程。
正常工作控制系统,用于发动机正常工况的控制:进入正常工况后,关闭启动阀23和减压阀22,第一控制阀3保持常开状态,当起动信号发出后,第二控制阀2打开,压缩蓄能器4内的液压油首先通过第二控制阀2进入压缩腔1,推动活塞组件向上止点运动,当第一油口5打开后,第二控制阀2关闭,压缩腔1和压缩蓄能器4之间由第一油口5连通,当活塞组件到达喷油位置时,触发传感器,产生喷油信号,并控制喷油量使得压缩时间和膨胀时间之比等于液压泵两个冲程的容积变化之比,从而使得膨胀流量与压缩流量基本相等,以减小发动机输出流量脉动,由喷油系统完成燃料喷射过程,在上止点附近,燃料燃烧放热,活塞组件在气缸压力的作用下回到下止点,并在第二控制阀2再次开启前稳定在下止点。
失火控制系统,用于发动机失火工况的控制:在发动机工作过程中,当起动信号发出后,都对活塞组件位置进行一次检测,如果发动机频率和频率变化率均小于设定值,则检测活塞组件的位置,如果活塞组件不在下止点位置,且缸温缸压小于失火值,则认为发动机在上一循环中发生失火,此时首先关闭第一控制阀3,并打开减压阀22和回位控制阀17,使活塞组件回复到下止点位置,然后第一控制阀3开启,等待下一个起动脉冲信号,发动机再按照正常工作循环运动。
所述第二控制阀2采用最大流量为270L/min、开启脉宽为25ms的高频电液伺服阀,电液伺服阀是一种接受模拟量电控制信号,输出随电控制信号大小及极性变化、且快速响应的液压控制阀,具有快速的动态响应及良好的静态特性,如:分辨率高、滞环小、线性度好等。第二控制阀2的最大流量,当使用最大流量为270L/min、开启脉宽为25ms的电液伺服阀时,活塞组件的加速度段长度会增加到原来的7.5倍左右,压缩行程所用时间明显减小,从而使运动周期比原来减小了将近12ms,显著的提高了发动机的最大工作频率,取得了意想不到的效果。
实施例5:如图1-3所示的一种高输出扭矩低噪音的道路平整装置,包括压路机和与压路机相连的发动机,发动机用于驱动压路机,发动机包括动力部分、喷油系统和液压部分,所述的动力部分包括进气单向阀9、动力活塞10、燃烧室11、喷油器12、扫气口13、回位活塞15、压缩活塞19,液压部分包括压缩腔1、泵腔7、回位腔14以及液压回路,所述压缩腔1设置于发动机的后部,在其上设置有第一油口5、第二油口6,所述第一油口5、第二油口6分别通过第一控制阀3和第二控制阀2与压缩蓄能器4相连,所述泵腔7分别通过低压油路单向阀36和高压油路单向阀37分别与低压油路26和高压油路25相连,高压油路25用于向发动机负载供油,低压油路26上设置有回位控制阀17和低压蓄能器18,回位控制阀17上还旁路设置有回油单向阀21;所述回位腔14与高压蓄能器8直接连接,在所述高压蓄能器8到缸体的油管路上设置有减压阀22;所述压缩蓄能器4与所述高压蓄能器8通过油管路相连通,所述压缩蓄能器4与所述高压蓄能器8之间的油管路上还设置有启动阀23;所述高压油路25连接有一负载蓄能器24,所述减压阀22后引出有一路与所述压缩蓄能器4相连;所述喷油系统为高压共轨式电控喷射系统。
发动机的末端设置有液压球囊27,液压球囊27内充满预先注入的一定压力的压力油,其底部通过油管路与低压蓄能器18相连,当负载压力突然降低或喷油量超调导致活塞以较大速度越过第二油口6时,液压球囊27能起到很好的缓冲作用,而且基本不会产生反弹作用;同时为了防止液压球囊27超压破裂,液压球囊27与低压蓄能器18之间还设置有弹簧式安全阀28,一旦液压球囊27超压弹簧式安全阀28就会自动打开,并通过低压蓄能器18缓冲压力,这时液压球囊27会对发动机的液压系统起到一定的补充作用。所述液压球囊27的左上方设置有倾斜的死区油口34,其所在直线与液压球囊27相切,死区油口34和压缩蓄能器4通过设置在两者之间的死区回位电磁阀35相连,在失火工况,当活塞组件的末端处于第二油口6与液压球囊27之间的死区B时,通过打开死区回位电磁阀35使活塞组件回到第二油口6与第一油口5之间的理想下止点区域A以开始下一个行程。
高压蓄能器8的作用在于:一是保证了在发动机停机时,活塞组件能够停留在下止点位置,减少蠕动;二是在发动机起动工况下以及失火情况发生时,推动活塞组件回复到下止点位置,使发动机能够继续开始下一个循环。
该发动机还包括位置检测系统,所述位置检测系统通过线性位移传感器和位置触发传感器检测活塞组件到达上止点位置、下止点位置和前馈位置时的信号,前馈位置位于上止点位置和下止点位置之间靠近上止点位置的一侧,用于启动工况活塞压缩行程时控制第一控制阀3的关闭,前馈位置根据活塞的速度值配合位置检测系统确定。
所述喷油系统包括高压油泵31、共轨管32、电控喷油器33、压力传感器以及电子控制单元,发动机工作时,在输油泵29的作用下,燃油经过滤清器30进入高压油泵31,经过高压油泵31的压缩后,低压油变为高压油,并被高压油泵31输入共轨管32,在共轨管32中,电子控制单元接收压力传感器的反馈并控制限压阀,以调节轨内压力值并使其保持恒定,随后将相对稳定并具有一定压力的高压油输入电控喷油器33内,等待电子控制单元的喷油指令。
该发动机还设置有恒压驱动系统,所述恒压驱动系统主要包括发动机和液压变量马达,通过马达驱动力矩与负载阻力矩,保持了输出油液压力的恒定。液压变量马达由输出高压油液驱动,并通过减速装置与负载联接,其排量随工作压力的变化而自动调节。液压变量马达与负载机械连接,两者转速相等;在稳定工作情况下,马达驱动力矩与负载阻力矩大小相等,方向相反,当阻力变大时,马达驱动力矩小于负载阻力矩,使马达转速降低。由于输出液压油的流量不变,输出液压油在背压增大的情况下流动阻力增大,从而引起系统内压力的升高。此时,液压马达的变量机构接收到该压力升高信号的反馈并进行调节,使自身排量增大,在转速降低的情况下增大了马达的流量,从而降低油液流动阻力,保持了发动机输出油液压力的恒定。同时,由于排量增大,马达驱动力矩也随之增大,并逐渐与负载阻力矩相平衡,系统再次实现达到稳定工作状态。同样,当负载阻力减小,液压马达驱动力矩大于负载阻力矩时,马达转速升高,引起液压系统内压力的降低。此时,液压变量马达排量向减小的方向调节,使驱动力矩与负载阻力矩相平衡,在实现系统稳定工作的同时保持系统内压力的恒定。
所述发动机还包括起动控制系统、正常工作控制系统和失火控制系统:
起动控制系统,用于发动机起动工况的控制:当起动信号发出后,打开启动阀23和减压阀22,压缩蓄能器4由于与高压蓄能器8连通而压力升高,发动机的压缩比得到提高;发动机控制单元对位移传感器的信号进行检测,如果检测结果显示活塞组件处于下止点,则将第一控制阀3和第二控制阀2打开,活塞组件在压缩蓄能器4的作用下,开始压缩行程,如果检测到活塞组件不在下止点,首先打开回位控制阀17,将泵腔7和压缩腔1内的液压油由低压油路26放出,使活塞组件在高压蓄能器8压力的作用下回复到下止点位置,关闭回位控制阀17,再开始压缩行程;当活塞的速度减小至某一设定值时,认为其到达前馈位置,此时将第二控制阀2关闭,当活塞到达上止点后,第一控制阀3关闭,回位控制阀17打开,这种将第一控制阀3和第二控制阀2分步关闭的控制方式,既保证了压缩行程的速度,又减小了膨胀行程的阻力;活塞组件重新回到下止点后,关闭回位控制阀17,活塞组件完成一个工作循环,该过程中记录活塞组件到达上止点时缸内的压力和温度值,当第二控制阀2开启信号再次发出,判断上一循环记录的缸压和温度是否满足柴油的着火条件,如果缸内压力和温度都较低,则重复以上所述的工作过程,直到压力和温度满足着火条件后,开始进入正常工作的控制过程。
正常工作控制系统,用于发动机正常工况的控制:进入正常工况后,关闭启动阀23和减压阀22,第一控制阀3保持常开状态,当起动信号发出后,第二控制阀2打开,压缩蓄能器4内的液压油首先通过第二控制阀2进入压缩腔1,推动活塞组件向上止点运动,当第一油口5打开后,第二控制阀2关闭,压缩腔1和压缩蓄能器4之间由第一油口5连通,当活塞组件到达喷油位置时,触发传感器,产生喷油信号,并控制喷油量使得压缩时间和膨胀时间之比等于液压泵两个冲程的容积变化之比,从而使得膨胀流量与压缩流量基本相等,以减小发动机输出流量脉动,由喷油系统完成燃料喷射过程,在上止点附近,燃料燃烧放热,活塞组件在气缸压力的作用下回到下止点,并在第二控制阀2再次开启前稳定在下止点。
失火控制系统,用于发动机失火工况的控制:在发动机工作过程中,当起动信号发出后,都对活塞组件位置进行一次检测,如果发动机频率和频率变化率均小于设定值,则检测活塞组件的位置,如果活塞组件不在下止点位置,且缸温缸压小于失火值,则认为发动机在上一循环中发生失火,此时首先关闭第一控制阀3,并打开减压阀22和回位控制阀17,使活塞组件回复到下止点位置,然后第一控制阀3开启,等待下一个起动脉冲信号,发动机再按照正常工作循环运动。
所述第二控制阀2采用最大流量为230L/min、开启脉宽为30ms的高频电液伺服阀,电液伺服阀是一种接受模拟量电控制信号,输出随电控制信号大小及极性变化、且快速响应的液压控制阀,具有快速的动态响应及良好的静态特性,如:分辨率高、滞环小、线性度好等。第二控制阀2的最大流量,当使用最大流量为230L/min、开启脉宽为30ms的电液伺服阀时,活塞组件的加速度段长度会增加到原来的8倍左右,压缩行程所用时间明显减小,从而使运动周期比原来减小了将近14ms,显著的提高了发动机的最大工作频率,取得了意想不到的效果。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (2)

1.一种高输出扭矩低噪音的道路平整装置,包括压路机和与压路机相连的发动机,发动机用于驱动压路机,其特征是,发动机包括动力部分、喷油系统和液压部分,所述的动力部分包括进气单向阀、动力活塞、燃烧室、喷油器、扫气口,液压部分包括压缩腔、泵腔、回位腔以及液压回路,所述压缩腔设置于发动机的后部,在其上设置有第一油口、第二油口,所述第一油口、第二油口分别通过第一控制阀和第二控制阀与压缩蓄能器相连,所述泵腔通过低压油路单向阀和高压油路单向阀分别与低压油路和高压油路相连,高压油路用于向发动机负载供油,低压油路上设置有回位控制阀和低压蓄能器,回位控制阀上旁路设置有回油单向阀;所述回位腔与高压蓄能器直接连接,在所述高压蓄能器到缸体的油管路上设置有减压阀,起动工况和失火工况时减压阀保持开启,正常工况时减压阀关闭;所述压缩蓄能器与高压蓄能器通过油管路相连通,且所述压缩蓄能器与高压蓄能器之间的油管路上设置有启动阀,用于启动工况时提高发动机的压缩比,正常工况时启动阀关闭;所述高压油路连接有一负载蓄能器,减压阀后引出有一路与所述压缩蓄能器相连;发动机的末端设置有液压球囊,液压球囊内充满预先注入的压力油,其底部通过油管路与低压蓄能器相连,液压球囊与低压蓄能器之间还设置有弹簧式安全阀;所述液压球囊的左上方设置有倾斜的死区油口,其所在直线与液压球囊相切,死区油口和压缩蓄能器通过设置在两者之间的死区回位电磁阀相连,在失火工况,当活塞组件的末端处于第二油口与液压球囊之间的死区位置时,通过打开死区回位电磁阀使活塞组件回到第二油口与第一油口之间的理想下止点区域以开始下一个行程;所述喷油系统为高压共轨式电控喷射系统,包括高压油泵、共轨管、电控喷油器、压力传感器以及电子控制单元,发动机工作时,在输油泵的作用下,燃油经过滤清器进入高压油泵,经过高压油泵的压缩后,低压油变为高压油,并被高压油泵输入共轨管,在共轨管中,电子控制单元接收压力传感器的反馈并控制限压阀,以调节轨内压力值并使其保持恒定,随后将高压油输入电控喷油器内,等待电子控制单元的喷油指令;
所述发动机还包括位置检测系统,位置检测系统通过线性位移传感器和位置触发传感器检测并发出活塞组件到达上止点位置、下止点位置和前馈位置时的信号,前馈位置位于上止点位置与下止点位置之间靠近上止点位置的一侧,用于启动工况活塞压缩行程时控制第一控制阀的关闭,前馈位置根据活塞的速度值配合位置检测系统确定;所述发动机还包括恒压驱动系统,所述恒压驱动系统包括发动机和液压变量马达,通过马达驱动力矩与负载阻力矩保持输出油液压力的恒定;液压变量马达由输出高压油液驱动,并通过减速装置与负载联接,其排量随工作压力的变化而自动调节;
所述发动机还包括正常工作控制系统和失火控制系统:
正常工作控制系统,用于发动机正常工况的控制:进入正常工况后,关闭启动阀和减压阀,第一控制阀保持常开状态,当起动信号发出后,第二控制阀打开,压缩蓄能器内的液压油首先通过第二控制阀进入压缩腔,推动活塞组件向上止点运动,当第一油口打开后,第二控制阀关闭,压缩腔和压缩蓄能器之间由第一油口连通,当活塞组件到达喷油位置时,触发传感器,产生喷油信号,并控制喷油量使得压缩时间和膨胀时间之比等于液压泵两个冲程的容积变化之比,从而使得膨胀流量与压缩流量相等,以减小发动机输出流量脉动,由喷油系统完成燃料喷射过程,在上止点附近,燃料燃烧放热,活塞组件在气缸压力的作用下回到下止点,并在第二控制阀再次开启前稳定在下止点;
失火控制系统,用于发动机失火工况的控制:在发动机工作过程中,当起动信号发出后,都对活塞组件位置进行一次检测,如果发动机频率和频率变化率均小于设定值,则检测活塞组件的位置,如果活塞组件不在下止点位置,且缸温缸压小于失火值,则认为发动机在上一循环中发生失火,此时首先关闭第一控制阀,并打开减压阀和回位控制阀,使活塞组件回复到下止点位置,然后第一控制阀开启,等待下一个起动脉冲信号,发动机再按照正常工作循环运动;
所述第二控制阀采用最大流量为250L/min的高频电液伺服阀,其开启脉宽为10ms。
2.根据权利要求1所述的一种高输出扭矩低噪音的道路平整装置,其特征是,还包括起动控制系统,用于发动机起动工况的控制:当起动信号发出后,打开启动阀和减压阀,压缩蓄能器由于与高压蓄能器连通而压力升高,发动机的压缩比得到提高;发动机控制单元对位移传感器的信号进行检测,如果检测结果显示活塞组件处于下止点,则将第一控制阀和第二控制阀打开,活塞组件在压缩蓄能器的作用下,开始压缩行程,如果检测到活塞组件不在下止点,首先打开回位控制阀,将泵腔和压缩腔内的液压油由低压油路放出,使活塞组件在高压蓄能器压力的作用下回复到下止点位置,关闭回位控制阀,再开始压缩行程;当活塞到达前馈位置时,第二控制阀关闭,当活塞到达上止点后,第一控制阀关闭,回位控制阀打开,活塞组件重新回到下止点后,关闭回位控制阀,活塞组件完成一个工作循环,该过程中记录活塞组件到达上止点时缸内的压力和温度值,当频率阀开启信号再次发出,判断上一循环记录的缸压和温度是否满足柴油的着火条件,如果缸内压力和温度不满足着火条件,则重复以上所述的工作过程,直到压力和温度满足着火条件后,开始进入正常工作的控制过程。
CN201610042216.3A 2016-01-21 2016-01-21 一种高输出扭矩低噪音的道路平整装置 Active CN105625146B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610042216.3A CN105625146B (zh) 2016-01-21 2016-01-21 一种高输出扭矩低噪音的道路平整装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610042216.3A CN105625146B (zh) 2016-01-21 2016-01-21 一种高输出扭矩低噪音的道路平整装置

Publications (2)

Publication Number Publication Date
CN105625146A CN105625146A (zh) 2016-06-01
CN105625146B true CN105625146B (zh) 2017-11-07

Family

ID=56040459

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610042216.3A Active CN105625146B (zh) 2016-01-21 2016-01-21 一种高输出扭矩低噪音的道路平整装置

Country Status (1)

Country Link
CN (1) CN105625146B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111946674B (zh) * 2020-09-25 2022-07-19 南京理工大学 用于大负载悬臂伺服机构的多蓄能器平衡装置及设计方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4583613A (en) * 1983-02-25 1986-04-22 Honda Giken Kogyo Kabushiki Kaisha Three wheel motorcycle with reverse mechanism
EP1283120A2 (en) * 2001-08-10 2003-02-12 Kabushiki Kaisha Moric Engine control method and device for small vehicles or motorcycles
US8230955B2 (en) * 2007-06-06 2012-07-31 Bayerische Motoren Werke Aktiengesellschaft Method of controlling an overrun operation of a motor vehicle, a control device for implementing the method, and a corresponding motor vehicle
CN103174688B (zh) * 2013-03-27 2015-03-25 南京工业大学 一种液压节能系统
CN105065343A (zh) * 2015-08-19 2015-11-18 华润水泥技术研发有限公司 一种下行胶带机盘式制动器液压控制系统及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4583613A (en) * 1983-02-25 1986-04-22 Honda Giken Kogyo Kabushiki Kaisha Three wheel motorcycle with reverse mechanism
EP1283120A2 (en) * 2001-08-10 2003-02-12 Kabushiki Kaisha Moric Engine control method and device for small vehicles or motorcycles
US8230955B2 (en) * 2007-06-06 2012-07-31 Bayerische Motoren Werke Aktiengesellschaft Method of controlling an overrun operation of a motor vehicle, a control device for implementing the method, and a corresponding motor vehicle
CN103174688B (zh) * 2013-03-27 2015-03-25 南京工业大学 一种液压节能系统
CN105065343A (zh) * 2015-08-19 2015-11-18 华润水泥技术研发有限公司 一种下行胶带机盘式制动器液压控制系统及方法

Also Published As

Publication number Publication date
CN105625146A (zh) 2016-06-01

Similar Documents

Publication Publication Date Title
JP3382617B2 (ja) 流体エネルギー装置を具備する自由ピストンエンジン
US4459084A (en) Internal combustion driven pumping system and variable torque transmission
JPH09508686A (ja) 油圧駆動電子燃料噴射システム
CN206346966U (zh) 一种应用于单出杆液压缸压机的直驱式电液伺服系统
CN105625146B (zh) 一种高输出扭矩低噪音的道路平整装置
CN102852685B (zh) 用于大型涡轮增压二冲程柴油发动机的燃料阀
CN108180128B (zh) 主动配流的单柱塞泵
CN107100723B (zh) 液压自由活塞发动机能量回收装置及能量回收方法
CN105604122B (zh) 一种具有快速启动功能的挖掘装置
CN105604691B (zh) 一种高效道路洒水装置
CN105507318A (zh) 一种新型高效打桩装置
CN105626246A (zh) 一种具有优化控制系统的建筑用打夯装置
CN105626249A (zh) 一种高输出扭矩低噪音的石油运输装置
CN105715390A (zh) 一种新型高效物料运输装置
CN212407163U (zh) 液压悬挂装置的液压分配器
CN105673196B (zh) 一种具有优化控制系统的景区巡查装置
CN105626245A (zh) 一种具有快速启动功能的河道污染治理装置
CN105649767A (zh) 一种具有快速启动功能的垃圾分类收集装置
CN105715365B (zh) 一种高效变电站维护装置
CN105626247B (zh) 一种具有优化控制系统的桥梁施工装置
CN105649766B (zh) 一种高输出扭矩低噪音的地质采样装置
CN105626242A (zh) 一种新型高效起重装置
CN105649763B (zh) 一种高输出扭矩低噪音的山地越野装置
CN105649768B (zh) 一种高输出扭矩低噪音的可移动维修站
CN105532619A (zh) 一种具有优化控制系统的农药喷洒装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20170817

Address after: 510640 Guangdong City, Tianhe District Province, No. five, road, public education building, unit 371-1, unit 2401

Applicant after: Guangdong Gaohang Intellectual Property Operation Co., Ltd.

Address before: Tunnel road, Zhenhai District 315200 Zhejiang city of Ningbo province No. 555

Applicant before: Yang Bing

TA01 Transfer of patent application right
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Ding Kefang

Inventor after: Ding Li

Inventor after: Gu Yajun

Inventor after: Zhou Tao

Inventor after: Shen Yu

Inventor before: Yang Bing

TA01 Transfer of patent application right

Effective date of registration: 20170918

Address after: 225300 Jiangsu province Taizhou Taidong Industrial Park No. 8

Applicant after: Suzhou Hailing Hydraulic Machinery Co., Ltd.

Address before: 510640 Guangdong City, Tianhe District Province, No. five, road, public education building, unit 371-1, unit 2401

Applicant before: Guangdong Gaohang Intellectual Property Operation Co., Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: 225300 Taidong Industrial Park No. 8, Taizhou City, Jiangsu Province

Patentee after: Taizhou Hailing Hydraulic Machinery Co., Ltd.

Address before: 225300 Taidong Industrial Park No. 8, Taizhou City, Jiangsu Province

Patentee before: Suzhou Hailing Hydraulic Machinery Co., Ltd.

CP01 Change in the name or title of a patent holder