CN105572883A - 立体显示装置的校正系统及其校正方法 - Google Patents
立体显示装置的校正系统及其校正方法 Download PDFInfo
- Publication number
- CN105572883A CN105572883A CN201410535938.3A CN201410535938A CN105572883A CN 105572883 A CN105572883 A CN 105572883A CN 201410535938 A CN201410535938 A CN 201410535938A CN 105572883 A CN105572883 A CN 105572883A
- Authority
- CN
- China
- Prior art keywords
- display device
- correction parameter
- stereo
- picture
- display
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012937 correction Methods 0.000 title claims abstract description 328
- 238000000034 method Methods 0.000 title claims abstract description 63
- 230000008569 process Effects 0.000 claims abstract description 51
- 238000001514 detection method Methods 0.000 claims description 72
- 230000001143 conditioned effect Effects 0.000 claims description 60
- 238000009434 installation Methods 0.000 claims description 10
- 230000000694 effects Effects 0.000 abstract description 69
- 230000009467 reduction Effects 0.000 abstract description 3
- 238000005516 engineering process Methods 0.000 abstract description 2
- 230000008859 change Effects 0.000 description 57
- 230000006872 improvement Effects 0.000 description 11
- 238000004891 communication Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 6
- 238000013519 translation Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 238000003384 imaging method Methods 0.000 description 5
- 230000009931 harmful effect Effects 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 239000004973 liquid crystal related substance Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000008447 perception Effects 0.000 description 3
- 210000004556 brain Anatomy 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 230000035807 sensation Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/327—Calibration thereof
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/10—Processing, recording or transmission of stereoscopic or multi-view image signals
- H04N13/194—Transmission of image signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/20—Image signal generators
- H04N13/204—Image signal generators using stereoscopic image cameras
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
- Controls And Circuits For Display Device (AREA)
- Stereoscopic And Panoramic Photography (AREA)
Abstract
本发明适用于立体显示技术领域,提供了一种立体显示装置的校正系统,用于获得立体显示装置满足预设条件的校正参数,包括图像获取装置和控制装置,所述图像获取装置获取立体显示装置显示的立体图像,并将所述立体图像传送到所述控制装置,所述控制装置对接收到的所述立体图像进行处理,获得所述校正参数,所述校正参数用于校正所述立体显示装置的装配误差,降低校正操作难度,提升校正结果的可靠性,且不会影响立体显示装置的装配效率。本发明还提供一种立体显示装置的校正方法,获得立体显示装置满足预设条件的校正参数,立体显示装置根据校正参数消除装配误差对立体显示效果的影响。
Description
技术领域
本发明属于立体显示技术领域,尤其涉及一种对立体显示装置的参数进行测量以校正立体显示装置的光学器件装配误差的立体显示装置的校正系统及其校正方法。
背景技术
立体图像显示技术的成像原理是:基于观看者的双目视差,让观看者的左眼和右眼分别感知具有图像差异的视差图,观看者的大脑基于所感知的图像差异形成立体图像。
如图1所示,现有的立体显示装置1包括分光器件11和显示面板12,分光器件11设于显示面板12的出光侧。显示面板11提供具有图像差异的左视图和右视图,通过分光器件12的分光作用,使得左视图进入观看者的左眼,右视图进入观看者的右眼,观看者的大脑基于所感知的图像差异形成立体图像视觉。
显示时,要求分光器件11与显示面板12之间精确配合,避免出现左视图进入观看者的右眼,右视图进入观看者的左眼的串扰问题。然而,在装配过程中,无法避免分光器件11与显示面板12之间的装配误差,导致分光器件11无法按照设计要求精确地贴合在显示面板12上,从而出现串扰、立体显示效果不佳甚至无法满足立体成像要求等问题。若立体显示装置在出厂前不加以处理,会直接影响使用者体验,进而限制立体显示技术的发展。
现有技术提供液晶狭缝光栅立体显示装置的校正方法,通过对第一引线电极打断处理,将每个液晶狭缝的初始状态校正一致,这种立体显示装置的校正方法是在液晶狭缝光栅与显示面板贴合之前操作的,然而,在贴合过程中,仍无法降低液晶狭缝光栅与显示面板之间的装配误差,导致贴合后的立体显示装置显示效果不佳。
现有技术公开了一种立体显示装置的参数测量系统,通过对立体显示装置在显示预设测试画面时投影在测试版上形成的投影图像进行检测,并根据检测结果进行解析,可以测量出立体显示装置的光栅参数实际值,该立体显示装置的参数测量系统测试时,需要将测试板移动至与位置调整指令相对应的位置处,操作复杂,测试效率低下,而且仅能获取光栅参数。
发明内容
本发明实施方式的目的在于提供一种立体显示装置的校正系统,旨在解决由现有技术的局限和缺点产生的一个或多个技术问题。
本发明实施方式是这样实现的,提供立体显示装置的校正系统,用于获得立体显示装置满足预设条件的校正参数,包括图像获取装置和控制装置,所述图像获取装置获取立体显示装置显示的立体图像,并将所述立体图像传送到所述控制装置,所述控制装置对接收到的所述立体图像进行处理,获得所述校正参数,所述校正参数用于校正所述立体显示装置的装配误差。
优选地,所述校正参数存储于所述立体显示装置,或者存储于存储介质。
进一步地,所述立体显示装置包括沿第一方向排布的分光单元和沿第二方向排布的显示单元,所述校正参数包括平移量校正参数,所述平移量校正参数用于校正所述装配误差中由所述分光单元与所述显示单元排布周期不匹配产生的平移量误差。
具体地,所述控制装置包括平移量校正模块,所述平移量校正模块根据所述立体图像获取满足所述预设条件的所述平移量校正参数。
进一步地,所述校正参数还包括角度校正参数,所述角度校正参数用于校正所述装配误差中由所述第一方向与所述第二方向之间的夹角产生的角度误差。
具体地,所述控制装置还包括角度校正模块,所述角度校正模块根据所述立体图像获取满足所述预设条件的所述角度校正参数。
进一步地,所述立体显示装置包括跟踪单元,所述图像获取装置安装在可被所述跟踪单元识别的标记模型上,当所述跟踪单元跟踪到所述标记模型时,所述图像获取装置获取所述立体显示装置显示的所述立体图像。
进一步地,所述校正参数还包括位置校正参数,所述位置校正参数用于校正所述装配误差中由所述跟踪单元安装位置产生的位置误差。
具体地,所述控制装置还包括位置校正模块,所述位置校正模块根据所述立体图像获取满足所述预设条件的所述位置校正参数。
进一步地,所述标记模型上设有可被所述跟踪单元识别的图像特征。
优选地,所述图像特征包括人脸特征、字符特征以及颜色特征中的至少一种。
优选地,所述图像获取装置包括至少一个摄像头,所述摄像头设置在人眼位置处。
进一步地,所述控制装置还包括区域检测模块,所述区域检测模块用于检测所述立体显示装置的显示区域。
进一步地,所述控制装置安装在所述立体显示装置上,或者独立于所述立体显示装置。
优选地,所述控制装置与所述立体显示装置连接,并控制所述立体显示装置显示所述立体图像。
本发明实施方式提供的立体显示装置的校正系统,通过图像获取装置获取立体显示装置显示的立体图像,并将立体图像传送到控制装置,控制装置对接收的立体图像进行处理,获得满足预设条件的校正参数,当使用者开启经校正处理过的立体显示装置,立体显示装置使用校正参数校正装配误差,消除装配误差对立体显示装置显示效果的不良影响,相对于现有技术,立体显示装置的校正系统自动获取立体显示装置的校正参数,降低操作人员的劳动强度,且提高校正效率。
本发明实施方式的另一目的在于提供立体显示装置的校正方法,用于获得立体显示装置满足预设条件的校正参数,包括如下步骤:
S1获取所述立体显示装置显示的立体图像;
S2根据所述立体图像获取所述校正参数,所述校正参数用于校正所述立体显示装置的装配误差。
进一步地,所述装配误差包括平移量误差,步骤S2包括:
S21根据所述立体图像获取平移量校正参数,所述平移量校正参数用于校正所述平移量误差。
具体地,步骤S21具体包括:
S211设定平移量检测区间;
S212根据所述平移量检测区间获取所述立体图像;
S213根据所述立体图像获取满足预设条件的所述平移量校正参数。
进一步地,所述装配误差包括角度误差,步骤S2还包括:
S22根据所述立体图像获取所述角度校正参数,所述角度校正参数用于校正所述角度误差。
具体地,步骤S22具体包括:
S221设定角度检测区间;
S222根据所述角度检测区间获取所述立体图像;
S223根据所述立体图像获取满足预设条件的所述角度校正参数。
进一步地,所述立体显示装置设有跟踪单元,所述跟踪单元用于跟踪预定的标记模型,步骤S2之前还包括:
S3跟踪步骤,当所述跟踪单元跟踪到标记模型时,进入步骤S2。
进一步地,所述装配误差还包括由所述跟踪单元安装位置产生的位置误差,步骤S2还包括:
S23根据所述立体图像获取位置校正参数,所述位置校正参数用于校正所述位置误差。
具体地,步骤S23具体包括:
S231设定位置检测区间;
S232根据所述位置检测区间获取所述立体图像;
S233根据所述立体图像获取满足预设条件的所述位置校正参数。
进一步地,在步骤S1之前,还包括:
S4检测所述立体显示装置的显示区域。
进一步地,在步骤S2之后,还包括:
S5保存所述校正参数。
本发明实施方式提供的立体显示装置的校正方法,获得满足预设条件的校正参数,当使用者开启经校正处理过的立体显示装置,立体显示装置使用校正参数校正装配误差,消除装配误差对立体显示装置显示效果的不良影响,相对于现有技术,本实施方式提供的立体显示装置的校正方法,操作步骤少,自动获取立体显示装置的校正参数,降低操作人员的劳动强度,且提高校正效率。
附图说明
图1是现有技术提供的立体显示装置的结构示意图;
图2是本发明实施方式一提供的立体显示装置的校正系统示结构意图;
图3是本发明实施方式一提供的控制装置结构示意图;
图4是本发明实施方式一提供的图像获取装置结构示意图;
图5是本发明实施方式二提供的跟踪单元与标记模型交互示意图;
图6是本发明实施方式三提供的立体显示装置的校正方法流程示意图;
图7是图6中S2的具体流程示意图;
图8是图7中S21的具体流程示意图;
图9是图7中S22的具体流程示意图;
图10是图7中S23的具体流程示意图。
具体实施方式
为了使本发明要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施方式,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施方式仅仅用以解释本发明,并不用于限定本发明。
实施方式一
如图1与图2所示,本发明实施方式提供的立体显示装置的校正系统(图中未示出),用于获得立体显示装置1满足预设条件的校正参数,本实施方式提供的校正参数是通过检测已经装配完成的立体显示装置1,获得与装配误差相对应的参数。立体显示装置的校正系统包括控制装置2和图像获取装置3,图像获取装置3获取立体显示装置1显示的立体图像,并将立体图像传送到控制装置2,控制装置2对接收到的立体图像进行处理,获得校正参数,校正参数用于校正立体显示装置1的装配误差。当使用者开启立体显示装置1,立体显示装置1根据校正参数校正装配误差,消除装配误差对立体显示装置1显示效果的不良影响。本发明实施方式提供的立体显示装置的校正系统结构简单,通过图像获取装置3获取立体图像,控制装置2对立体图像进行处理,获得校正参数,结果可靠性高。相对于现有技术,本发明实施方式提供的立体显示装置的校正系统对装配完成后的立体显示装置1进行处理,获得校正参数,不会影响立体显示装置1的装配效率。立体显示装置1在显示立体图像时,根据校正参数对显示单元121进行排列处理,消除装配误差对显示效果的影响。获取校正参数无需操作者手动操作,降低操作者的劳动强度,而且,在立体显示装置1装配完成后再进行校正,校正结果可靠性高,有益于提升立体显示效果。
本实施方式提出的预设条件是指,立体显示装置1在显示立体图像时,根据校正参数对显示单元121进行排列处理,消除装配误差对显示效果的影响
如图1、图2与图4所示,图像获取装置3包括至少一个摄像头,摄像头拍摄立体显示装置1显示的立体图像。在本实施方式中,图像获取装置3包括间隔设置的左摄像头31a和右摄像头31b,左摄像头31a和右摄像头31b的结构、物理性能都相同。左摄像头31a与右摄像头31b之间的间距可理解为人眼瞳距,符合立体成像要求。立体显示装置1显示变化的立体图像,左摄像头31a和右摄像头31b同时对立体显示装置1进行拍摄,左摄像头31a拍摄立体图像获得第一图像变化,右摄像头31b拍摄立体图像获得第二图像变化。控制装置2分别对第一图像变化和第二图像变化进行处理,获得第一图像变化中满足预设条件的左视图参数,以及第二图像变化中满足预设条件的右视图参数。控制装置2结合左视图参数、右视图参数获得满足预设条件的校正参数。当使用者使用立体显示装置1显示立体图像时,根据校正参数校正装配误差,显示的立体图像均无串扰、摩尔纹等影响显示效果的不良因素,获得良好的显示效果,消除因装配误差影响立体显示效果的问题。相较于现有技术,本实施方式提供的立体显示装置的校正系统可以获取立体显示装置1的校正参数,立体显示装置1根据校正参数校正装配误差,消除装配误差对显示效果的影响,提高立体显示装置1的显示效果,而且操作方便,提高检测效率,获取的校正参数可靠性高。
如图1所示,本实施方式中提供的左视图参数、右视图参数可以是具体点值,也可以是一段数值区间。立体显示装置1在显示立体图像时,根据校正参数,对显示单元121进行排列处理,获得良好的显示效果,且无明显串扰、摩尔纹等问题,符合3D成像要求,提高立体显示效果,消除装配误差对立体显示效果的影响。
如图1、图2与图4所示,在上述实施方式中,采用左摄像头31a和右摄像头31b分别对立体显示装置1显示的立体图像进行拍摄,当然,也可以采用一个摄像头对立体图像进行拍摄。如,将左摄像头31a设置在人左眼位置处,对立体显示装置1显示的立体图像进行拍摄获得第一图像变化,通过对第一图像变化进行相应的图像处理,可获得满足预设条件的左视图参数。立体显示装置1根据左视图参数校正立体显示装置1的装配误差,消除装配误差对立体显示装置1显示效果的影响。同样地,将右摄像头31b设置在人右眼位置处,拍摄立体显示装置1显示的立体图像获得第二图像变化,通过对第二图像变化进行相应的图像处理,获得满足预设条件的右视图参数。立体显示装置1根据右视图参数校正立体显示装置1的装配误差,消除装配误差对立体显示装置1显示效果的影响。提供多种图像获取方案,便于操作者根据实际生产进行选择。
在本实施方式中,可采用二值法,对第一图像变化和/或第二图像变化进行处理,获得满足预设条件的左视图参数和/或右视图参数。当然,本发明实施方式提供的图像处理方法并不仅局限于此,也可以通过像素值比较的方法,获得第一图像变化对应的第一变化曲线,和/或第二图像变化对应的第二变化曲线。根据分光器件11的分光特性,通过比较第一变化曲线和/或第二变化曲线,获得左视图参数和/或右视图参数,结合左视图参数和/或右视图参数获得校正参数。本实施方式并不仅限于上述两种图像处理方式,本领域技术人员公知的图像处理方式都应在本发明的保护范围之内。
如图1所示,在本实施方式中,立体显示装置1提供立体图像,立体图像包括具有图像差异的左视图与右视图。为便于区别左视图和右视图,设定左视图为纯红图片,右视图为纯绿图片。本实施方式提供的无串扰现象是指,即左视图中无绿色图像,右视图中无红色图像。当然,本发明实施方式提供的立体图像并不仅局限于此,只要具有图像差异的立体图像都可应用于本发明实施方式提供的立体显示装置的校正系统中,如,红/蓝立体图,黑/白立体图,或者,左视图中的图像元素为矩形,右视图中的图像元素为三角形,再或者,左视图中的图像元素为数字1,右视图中的图像元素为数字2等,可知本领域技术人员公知的立体图像都应在本发明的保护范围之内,左视图、右视图来源广泛,无限制,扩大本发明的应用领域。
在本实施方式中,如图1与图2所示,可以在立体显示装置1中预存立体图像,通过设定立体图像的显示频率,图像获取装置3获取立体图像,并传送到控制装置2,当然也可以通过控制装置2控制立体显示装置1显示的频率,实现图像获取装置3获取立体图像的目的,可采用多种方式显示立体图像,操作方便,扩大本实施方式提供的立体显示装置的校正系统的使用范围。
如图2所示,图像获取装置3与控制装置2之间可以是导线直接连接,也可以是无线电连接,如通过蓝牙通信方式、NFC(近场通信)方式、WiFi方式、RFID通信方式,还可以是USB接口模块连接的方式,连接方式多种,供不同装配环境的选用。
在获取校正参数过程中,可根据装配误差设定检测区间,以缩短检测时间,当未获得校正参数时,可以将检测步长取值大一些,加速检测,以尽快获取满足预设条件的校正参数。当获得满足预设条件的校正参数时,可以将检测步长回归正常或者取值小一些,多获取满足预设条件校正参数。当发现再次未获得校正参数时,则可以停止检测,缩短检测时间,提升立体显示装置1的检测效率。或者,通过对检测区间进行二值化处理,若在检测区间内获得校正参数,则继续检测,若在检测区间内未获得校正参数,则跳过该检测区间。
在本实施方式中,立体显示装置1可以是移动终端,也可以电脑等具有显示功能的电子装置,控制装置2可以是电脑或移动终端等带有处理和通信功能的设备,在此并不一一赘述。
在本实施方式中,优选控制装置2为电脑,立体显示装置1为手机,立体显示装置1通过数据线与控制装置2连接,图像获取装置3通过数据线与控制装置2连接,电脑处理效率更高,缩短处理时间,提升处理效率。
作为上述实施方式的进一步改进,如图1与图2所示,本实施方式提供的校正参数存储于立体显示装置1,或者存储于存储介质。控制装置2根据立体图像获得满足预设条件的校正参数,可以将校正参数存储于立体显示装置1中。当使用者使用立体显示装置1时,立体显示装置1根据校正参数校正装配误差,消除装配误差对显示效果的影响。当然,控制装置2也可以将校正参数存储于存储介质,当使用者使用立体显示装置1时,从存储介质获取校正参数,操作方便。本实施方式提供的存储介质可以是云服务或应用商店客户端等平台。当然,使用者可根据自己的喜爱或个人差异,对显示效果进行调节。
作为上述实施方式的进一步改进,如图1与图2所示,本实施方式提供的控制装置2安装在立体显示装置1上,控制装置2可以作为立体显示装置1的处理装置,校正参数存储于控制装置2中,使用时,从控制装置2取出校正参数,对装配误差进行校正。当然控制装置2也可以独立于立体显示装置1,获得满足预设条件的校正参数,控制装置2可以根据用户需求改变安装位置,安装更加灵活。
作为上述实施方式的进一步改进,如图1与图2所示,控制装置2与立体显示装置1连接,并控制立体显示装置1显示立体图像。控制装置2与立体显示装置1可以通过导线直接连接,也可以是无线电连接,如通过蓝牙通信方式、NFC(近场通信)方式、WiFi方式、RFID通信方式,还可以是USB接口模块连接的方式,连接方式多种,供不同装配环境的选用。通过控制装置2控制立体显示装置1显示立体图像,并控制图像获取装置3获取立体图像,实现自动获得校正参数,操作更加方便,降低操作人员的工作负担,且自动化操作,校正参数准确性高。
作为上述实施方式的进一步改进,如图1与图2所示,立体显示装置1包括分光器件11和显示面板12,分光器件11包括沿第一方向排布的分光单元111,显示面板12包括沿第二方向排布的显示单元121,本实施方式提供的显示单元121是指立体显示的最小显示单位。根据设计要求,分光器件11倾斜放置于显示面板12上,立体显示装置1装配完成后,装配误差包括由分光单元111与显示单元121排布周期不匹配产生的平移量误差,如果不加以校正,则会产生图像串扰问题,影响立体显示装置1的显示效果。校正参数包括平移量校正参数用于校正平移量误差,图像获取装置3获取立体显示装置1显示的立体图像,控制装置2根据立体图像获得满足预设条件的平移量校正参数。当使用者使用立体显示装置1时,立体显示装置1根据平移量校正参数校正平移量误差,消除平移量误差对立体显示的影响,提示立体显示效果。
具体地,如图1至图3所示,控制装置2包括平移量校正模块21,平移量校正模块21根据立体图像获取满足预设条件的平移量校正参数。平移量校正模块21根据显示单元121的排布周期设定平移量检测区间及平移量检测步长,平移量校正模块21根据初始平移量校正参数L0控制立体显示装置1对显示单元121进行相应的图像处理。具体地,设定初始平移量校正参数为L0,平移量校正模块21根据初始平移量校正参数L0发出平移量控制信号,立体显示装置1根据平移量控制信号对显示单元121进行排列处理,并显示排列处理后的立体图像,图像获取装置3获取该立体图像,并存储于平移量校正模块21中。设定第i次平移量校正参数为Li,平移量检测步长为b1,则Li=L0+(i-1)b1,(i≥1)。在根据第i次平移量校正参数Li进行图像处理之前,平移量校正模块21判断第i次平移量校正参数Li是否在平移量检测区间。若第i次平移量校正参数Li不在平移量检测区间,则停止上述操作。若第i次平移量校正参数Li在平移量检测区间,则平移量校正模块21根据第i次平移量校正参数Li发出平移量控制信号,立体显示装置1根据平移量控制信号对显示单元121进行排列处理,并显示排列处理后的立体图像,图像获取装置3获取该立体图像,并存储于平移量校正模块21中。直至第i次平移量校正参数Li不在平移量检测区间,则停止上述操作。平移量校正模块21对立体图像进行图像处理,获得满足预设条件的平移量校正参数。立体显示装置1在显示立体图像时,根据平移量校正参数对显示单元121进行排列处理,消除平移量误差对显示效果的影响。获取平移量校正参数无需操作者手动操作,降低操作者的劳动强度,而且,在立体显示装置1装配完成后再进行校正,校正结果可靠性高,有益于提升立体显示效果。
作为上述实施方式的进一步改进,如图1与图2所示,为避免分光单元111与显示单元121排列周期性干涉,将分光器件11倾斜放置于显示面板12上,分光单元111沿第一方向排列,显示单元121沿第二方向排列,装配误差还包括由第一方向与第二方向之间的夹角产生的角度误差。如果不加以校正角度误差,则会产生图像串扰、颗粒感等影响立体显示装置1的显示效果。校正参数包括角度校正参数,用于校正角度误差,图像获取装置3获得立体显示装置1显示的立体图像,控制装置2根据立体图像获得满足预设条件的角度校正参数。当使用者使用立体显示装置1时,立体显示装置1根据角度校正参数校正角度误差,消除角度误差对立体显示的影响,提示立体显示效果。
具体地,如图1至图3所示,控制装置2包括角度校正模块22,角度校正模块22根据立体图像获得满足预设条件的角度校正参数。角度校正模块22根据设计要求以及装配精度设定角度检测区间及角度检测步长。具体地,设定初始角度校正参数为A0,角度校正模块22根据初始角度校正参数A0发出角度控制信号,立体显示装置1根据角度控制信号对显示单元121进行排列处理,并显示排列处理后的立体图像,图像获取装置3获取该立体图像,并存储于角度校正模块22中。设定第i次角度校正参数为Ai,角度检测步长为b2,则Ai=A0+(i-1)b2,(i≥1),在根据第i次角度校正参数Ai进行图像处理之前,角度校正模块22判断第i次角度校正参数Ai是否在角度检测区间。若第i次角度校正参数Ai不在角度检测区间,则停止上述操作。若第i次角度校正参数Ai在角度检测区间,则角度校正模块22根据第i次角度校正参数Ai发出角度控制信号,立体显示装置1根据角度控制信号对显示单元121进行排列处理,并显示排列处理后的立体图像,图像获取装置3获取该立体图像,并存储于角度校正模块22中。直至第i次角度校正参数Ai不在角度检测区间,则停止上述操作。立体显示装置1在显示立体图像时,根据角度校正参数对显示单元121进行排列处理,消除角度误差对显示效果的影响。获取角度校正参数无需操作者手动操作,降低操作者的劳动强度,而且,在立体显示装置1装配完成后再进行校正,校正结果可靠性高,有益于提升立体显示效果。
作为上述实施方式的进一步改进,如图1与图3所示,控制装置2还包括区域检测模块24,用于检测立体显示装置1中的显示区域。由于图像获取装置3获取的图像不仅包括立体显示装置1显示的立体图像,还有包括显示区域以外的外部环境,为避免外部环境影响角度校正参数、平移量校正参数的准确,需要在图像处理前,检测立体显示装置1的显示区域,在显示区域内进行图像的相关处理。区域检测模块24可以通过提取显示区域内的图像通道值,然后使用边缘检测,检测出显示区域的边界点及边界曲线,再结合图像面积,自动检测出显示区域。进一步降低外界环境对检测结果的影响,确保校正结果的可靠性。
实施方式二
本实施方式提供的立体显示装置的校正系统与实施方式一提供的立体显示装置的校正系统结构大体相同,不同之处在于,如图1、图2与图5所示,立体显示装置1设有具有跟踪功能的跟踪单元13,图像获取装置3安装在可被跟踪单元13识别的标记模型4上。本实施方式提供的跟踪单元13可以是红外线检测装置、跟踪摄像头等可检测到标记模型4的装置。开启跟踪单元13的跟踪功能,当跟踪单元13跟踪到标记模型4,立体显示装置1将跟踪信号反馈给控制装置2。控制装置2根据跟踪信号,控制图像获取装置3获取立体显示装置1显示的立体图像。采用标记模型4代替使用者,立体显示装置1根据标记模型4的位置调整立体显示内容,因而,在实际使用中,可以使观看者能够不间断地观看到立体图像,并且观看到的内容会根据使用者的方位和运动趋势做相应的改变,实现使用者与显示内容的互动,提高立体显示的真实感。当跟踪单元13跟踪到标记模型4,立体显示装置1发出控制信号,控制装置2根据控制信号控制图像获取装置3获取立体显示装置1显示的立体图像,将立体图像存储于控制装置2中,控制装置2根据立体图像获得满足预设条件的校正参数。当使用者使用立体显示装置1时,立体显示装置1根据校正参数对显示单元121进行排列处理,并显示排列处理后的立体图像,图像获取装置3获取该立体图像,并存储于控制装置2中。控制装置2对立体图像进行图像处理,获得满足预设条件的校正参数,立体显示装置1根据校正参数校正装配误差,消除装配误差对立体显示效果的影响。
进一步地,标记模型4上设有可被跟踪单元13识别的图像特征。跟踪单元13跟踪到图像特征,立体显示装置1将跟踪信号反馈给控制装置2。控制装置2根据跟踪信号,控制图像获取装置3获取立体显示装置1显示的立体图像。采用标记模型4代替使用者,立体显示装置1根据标记模型4的位置调整立体显示内容,因而,在实际使用中,可以使观看者能够不间断地观看到立体效果,并且观看到的内容会根据使用者的方位和运动趋势做相应的改变,实现使用者与显示内容的互动,提高立体显示的真实感。本实施方式中提供的标记模型4可以是平面纸板或立体头像等带有可被跟踪单元13识别的特征,如人脸特征、字符特征或图像特征等,在此并不一一赘述。
作为上述实施方式的进一步改进,图像特征包括人脸特征、字符特征以及颜色特征中的一种或多种。采用人脸特征,代替使用者,模拟使用者的观看环境,获得的校正参数更加贴近真实。当然图像特征也可以是其他特征,只要跟踪单元13可识别的特征应均在本发明的保护范围内。
如图1与图4所示,图像获取装置3包括至少一个摄像头,摄像头设置在人眼位置处,拍摄立体显示装置1显示的立体图像。在本实施方式中,图像获取装置3包括间隔设置的左摄像头31a和右摄像头31b,左摄像头31a和右摄像头31b结构、物理性能都相同,左摄像头31a与右摄像头31b之间的间距可理解为人眼瞳距,符合立体成像要求。立体显示装置1显示变化的立体图像,左摄像头31a和右摄像头31b同时对立体显示装置1进行拍摄,左摄像头31a拍摄立体图像获得第一图像变化,右摄像头31b拍摄立体图像获得第二图像变化。控制装置2分别对第一图像变化和第二图像变化进行处理,获得第一图像变化中满足预设条件的左视图参数,以及第二图像变化中满足预设条件的右视图参数。控制装置2结合左视图参数、右视图参数获得满足预设条件的校正参数。当使用者使用立体显示装置1显示立体图像时,根据校正参数校正装配误差,显示的立体图像均无串扰、摩尔纹等影响显示效果的不良因素,获得良好的显示效果,消除因装配误差影响立体显示效果的问题。相较于现有技术,本实施方式提供的立体显示装置的校正系统可以获取立体显示装置1的校正参数,立体显示装置1根据校正参数校正装配误差,消除装配误差对显示效果的影响,提高立体显示装置1的显示效果,而且操作方便,提高检测效率,获取的校正参数可靠性高。
如图1与图4所示,在上述实施方式中,采用左摄像头31a和右摄像头31b分别对立体显示装置1显示的立体图像进行拍摄,当然,也可以采用一个摄像头对立体图像进行拍摄。如,将左摄像头31a设置在人左眼位置处,对立体显示装置1显示的立体图像进行拍摄获得第一图像变化,通过对第一图像变化进行相应的图像处理,可获得满足预设条件的左视图参数。立体显示装置1根据左视图参数校正立体显示装置1的装配误差,消除装配误差对立体显示装置1显示效果的影响。同样地,将右摄像头31b设置在人右眼位置处,拍摄立体显示装置1显示的立体图像获得第二图像变化,通过对第二图像变化进行相应的图像处理,获得满足预设条件的右视图参数。立体显示装置1根据右视图参数校正立体显示装置1的装配误差,消除装配误差对立体显示装置1显示效果的影响。提供多种图像获取方案,便于操作者根据实际生产进行选择。
作为上述实施方式的进一步改进,如图1、图2与图5所示,装配误差还包括跟踪单元13安装在立体显示装置1上产生的位置误差。如果不加以校正位置误差,则会影响立体显示装置1的显示效果。校正参数包括位置校正参数,用于校正位置误差,图像获取装置3获得立体显示装置1显示的立体图像,控制装置2根据立体图像获得满足预设条件的位置校正参数。当使用者使用立体显示装置1时,立体显示装置1根据位置校正参数校正位置误差,消除位置误差对立体显示的影响,提示立体显示效果。
具体地,如图1、图3与图5所示,控制装置2还包括位置校正模块23,位置校正模块23根据立体图像获得满足预设条件的位置校正参数。位置校正模块23根据设计要求中跟踪单元13的安装位置以及装配精度确定位置检测区间及位置检测步长。具体地,设定初始位置校正参数为Z0,位置校正模块23根据初始位置校正参数Z0发出位置控制信号,立体显示装置1根据位置控制信号对显示单元121进行排列处理,并显示排列处理后的立体图像,图像获取装置3获取该立体图像,并存储于位置校正模块23中。设定第i次位置校正参数为Zi,位置检测步长为b3,则Zi=Z0+(i-1)b3,i≥1,在根据第i次位置校正参数Zi进行图像处理之前,位置校正模块23判断第i次位置校正参数Zi是否在位置检测区间。若第i次位置校正参数Zi不在位置检测区间,则停止上述操作。若第i次位置校正参数Zi在位置检测区间,则位置校正模块23根据第i次位置校正参数Zi发出位置控制信号,立体显示装置1根据位置控制信号对显示单元121进行排列处理,并显示排列处理后的立体图像,图像获取装置3获取该立体图像,并存储于位置校正模块23中。直至第i次位置校正参数Zi不在位置检测区间,则停止上述操作。立体显示装置1在显示立体图像时,根据位置校正参数对显示单元121进行排列处理,消除位置误差对显示效果的影响。获取位置校正参数无需操作者手动操作,降低操作者的劳动强度,而且,在立体显示装置1装配完成后再进行校正,校正结果可靠性高,有益于提升立体显示效果。
实施方式三
如图1与图6所示,本实施方式提供立体显示装置的校正方法,用于获得立体显示装置1满足预设条件的校正参数,包括如下步骤:
S1获取立体显示装置1显示的立体图像;
S2根据立体图像获取校正参数,校正参数用于校正立体显示装置1的装配误差。
本实施方式中的校正参数是通过检测已经装配完成的立体显示装置1,获得与装配误差相对应的参数。获取立体显示装置1显示的立体图像,根据立体图像获得满足预设条件的校正参数,校正参数用于校正立体显示装置1的装配误差。当使用者开启立体显示装置1,立体显示装置1根据校正参数校正装配误差,消除装配误差对立体显示装置1显示效果的不良影响。本发明实施方式提供的立体显示装置的校正方法操作简单,易于实施,结果可靠性高。相对于现有技术,本发明实施方式提供的立体显示装置的校正方法通过对装配完成后的立体显示装置1进行操作,获得校正参数,不会影响立体显示装置1的装配效率,立体显示装置1根据校正参数校正装配误差,提升校正结果的可靠性,获得良好的显示效果,而且,在获得校正参数过程中,无需改变立体显示装置1的放置位置,降低操作难度,减轻操作人员的工作强度。
立体显示装置1显示立体图像,立体图像包括具有图像差异的左视图和右视图,获得左视图对应的第一图像变化,右视图对应的第二图像变化。分别对第一图像变化和第二图像变化进行处理,获得第一图像变化中满足预设条件的左视图参数,以及第二图像变化中满足预设条件的右视图参数。结合左视图参数、右视图参数获得满足预设条件的校正参数。当使用者使用该立体显示装置1显示立体图像时,根据校正参数校正装配误差,消除因装配误差影响立体显示效果的问题,显示的立体图像均无串扰、摩尔纹等影响显示效果的不良因素,获得良好的显示效果。相较于现有技术,本实施方式提供的立体显示装置的校正方法获取立体显示装置1的校正参数,立体显示装置1根据校正参数校正装配误差,消除装配误差对显示效果的影响,提高立体显示装置1的显示效果,而且操作方便,提高检测效率,获取的校正参数可靠性高。
本实施方式中提供的左视图参数、右视图参数可以是具体点值,也可以是一段数值区间。立体显示装置1在显示立体图像时,根据该校正参数,对显示单元121进行排列处理,获得良好的显示效果,且无明显串扰、摩尔纹等问题,符合3D成像要求,提高立体显示效果,消除装配误差对立体显示效果的影响。
在上述实施方式中,分别获得左视图的第一图像变化,和右视图对应的第二图像变化,当然,也可以只获得第一图像变化或第二图像变化。如,仅获得第一图像变化,通过对第一图像变化进行相应的图像处理,可获得满足预设条件的左视图参数。立体显示装置1根据左视图参数校正立体显示装置1的装配误差,消除装配误差对立体显示装置1显示效果的影响。同样地,仅获得第二图像变化,通过对第二图像变化进行相应的图像处理,获得满足预设条件的右视图参数。立体显示装置1根据右视图参数校正立体显示装置1的装配误差,消除装配误差对立体显示装置1显示效果的影响。提供多种图像获取方案,便于操作者根据实际生产进行选择。
在本实施方式中,可采用二值法,对第一图像变化和/或第二图像变化进行处理,获得满足预设条件的左视图参数和/或右视图参数。当然,本发明实施方式提供的图像处理方法并不仅局限于此,也可以通过像素值比较的方法,获得第一图像变化对应的第一变化曲线,和/或第二图像变化对应的第二变化曲线。根据分光器件11的分光特性,通过比较第一变化曲线和第二变化曲线,获得左视图参数和右视图参数,结合左视图参数和右视图参数获得校正参数。本实施方式并不仅限于上述两种图像处理方式,本领域技术人员公知的图像处理方式都应在本发明的保护范围之内。
在本实施方式中,立体显示装置1提供具立体图像,立体图像包括有图像差异的左视图与右视图。为便于区别左视图和右视图,设定左视图为纯红图片,右视图为纯绿图片。本实施方式中的无串扰现象,是指左视图中无绿色图像,右视图中无红色图像。当然,本发明实施方式提供的立体图像并不仅局限于此,只要具有图像差异的立体图像都可应用于本发明实施方式提供的立体显示装置的校正方法中,如,红/蓝立体图,黑/白立体图,或者,左视图中的图像元素为矩形,右视图中的图像元素为三角形,再或者,左视图中的图像元素为数字1,右视图中的图像元素为数字2等,可知本领域技术人员公知的立体图像都应在本发明的保护范围之内,左视图、右视图来源广泛,无限制,扩大本发明的应用领域。
在本实施方式中,可以在立体显示装置1中预存立体图像,通过设定立体图像的显示频率获取立体图像,当然也可以通过控制立体显示装置1显示的频率,实现获取立体图像的目的,可采用多种方式显示立体图像,操作方便,扩大本实施方式提供的立体显示装置的校正方法的使用范围。
如图1与图7所示,装配误差包括平移量误差,步骤S2包括:
S21根据立体图像获取平移量校正参数,平移量校正参数用于校正平移量误差。
立体显示装置1包括分光器件11和显示面板12,分光器件11包括沿第一方向排布的分光单元111,显示面板12包括沿第二方向排布的显示单元121,本实施方式提供的显示单元121是指立体显示的最小显示单位。根据设计要求,分光器件11倾斜放置于显示面板12上,立体显示装置1装配完成后,装配误差包括由分光单元111与显示单元121排布周期不匹配产生的平移量误差,如果不加以校正,则会产生图像串扰问题,影响立体显示装置1的显示效果。校正参数包括平移量校正参数,用于校正平移量误差,获得立体显示装置1显示的立体图像,根据立体图像获得满足预设条件的平移量校正参数。当使用者使用立体显示装置1时,立体显示装置1根据平移量校正参数校正平移量误差,消除平移量误差对立体显示的影响,提示立体显示效果。
如图7与图8所示,步骤S21具体包括:
S211设定平移量检测区间;
S212根据平移量检测区间获取立体图像;
S213根据立体图像获取满足预设条件的平移量校正参数。
根据显示单元121的排布周期设定平移量检测区间及平移量检测步长,根据初始平移量校正参数L0控制立体显示装置1对显示单元121进行相应的图像处理。具体地,设定初始平移量校正参数为L0,根据初始平移量校正参数L0发出平移量控制信号,立体显示装置1根据平移量控制信号对显示单元121进行排列处理,并显示排列处理后的立体图像,获取该立体图像,并存储于。设定第i次平移量校正参数为Li,平移量检测步长为b1,则Li=L0+(i-1)b1,(i≥1)。在根据第i次平移量校正参数Li进行图像处理之前,判断第i次平移量校正参数Li是否在平移量检测区间。若第i次平移量校正参数Li不在平移量检测区间,则停止上述操作。若第i次平移量校正参数Li在平移量检测区间,则根据第i次平移量校正参数Li发出平移量控制信号,立体显示装置1根据平移量控制信号对显示单元121进行排列处理,并显示排列处理后的立体图像,获取该立体图像。直至第i次平移量校正参数Li不在平移量检测区间,则停止上述操作。对存储的立体图像进行图像处理,获得满足预设条件的平移量校正参数,并保存平移量校正参数。立体显示装置1在显示立体图像时,根据平移量校正参数对显示单元121进行排列处理,消除平移量误差对显示效果的影响。获取平移量校正参数无需操作者手动操作,降低操作者的劳动强度,而且,在立体显示装置1装配完成后再进行校正,校正结果可靠性高,有益于提升立体显示效果。
根据立体图像获得平移量校正参数,可以将平移量校正参数存储于立体显示装置1中,当使用者使用立体显示装置1,立体显示装置1根据平移量校正参数校正装配误差,消除装配误差对显示效果的影响。当然,也可以将平移量校正参数存储于存储介质,当使用者使用立体显示装置1时,从存储介质获取平移量校正参数,操作方便。本实施方式提供的存储介质可以是云服务或应用商店客户端等平台。
如图1与图7所示,装配误差包括角度误差,步骤S2还包括:
S22根据立体图像获取角度校正参数,角度校正参数用于校正角度误差。
为避免分光单元111与显示单元121排列周期性干涉,将分光器件11倾斜放置于显示面板12上,分光单元111沿第一方向排列,显示单元121沿第二方向排列,装配误差还包括由第一方向与第二方向之间的夹角产生的角度误差。如果不加以校正角度误差,则会产生图像串扰、颗粒感等影响立体显示装置1的显示效果。校正参数包括角度校正参数,用于校正角度误差,获得立体显示装置1显示的立体图像,根据立体图像获得满足预设条件的角度校正参数。当使用者使用立体显示装置1时,立体显示装置1根据角度校正参数校正角度误差,消除角度误差对立体显示的影响,提示立体显示效果。
如图7与图9所示,步骤S22具体包括:
S221设定角度检测区间;
S222根据所述角度检测区间获取所述立体图像;
S223根据所述立体图像获取满足预设条件的所述角度校正参数。
根据设计要求中分光器件11的倾斜角度以及角度误差确定角度检测区间及角度检测步长。具体地,设定初始角度校正参数为A0,根据初始角度校正参数A0发出角度控制信号,立体显示装置1根据角度控制信号对显示单元121进行排列处理,并显示排列处理后的立体图像,获取该立体图像,并存储。设定第i次角度校正参数为Ai,角度检测步长为b2,则Ai=A0+(i-1)b2,i≥1,在根据第i次角度校正参数Ai进行图像处理之前,判断第i次角度校正参数Ai是否在角度检测区间。若第i次角度校正参数Ai不在角度检测区间,则停止上述操作。若第i次角度校正参数Ai在角度检测区间,则根据第i次角度校正参数Ai发出角度控制信号,立体显示装置1根据角度控制信号对显示单元121进行排列处理,并显示排列处理后的立体图像,获取该立体图像。直至第i次角度校正参数Ai不在角度检测区间,则停止上述操作。对存储的立体图像进行图像处理,获得满足预设条件的角度校正参数,并保存角度校正参数。立体显示装置1在显示立体图像时,根据角度校正参数对显示单元121进行排列处理,消除角度误差对显示效果的影响。获取角度校正参数无需操作者手动操作,降低操作者的劳动强度,而且,在立体显示装置1装配完成后再进行校正,校正结果可靠性高,有益于提升立体显示效果。
根据立体图像获得校正参数,可以将角度校正参数存储于立体显示装置1中,当使用者使用立体显示装置1,立体显示装置1根据角度校正参数校正装配误差,消除装配误差对显示效果的影响。当然,也可以将角度校正参数存储于存储介质,当使用者使用立体显示装置1时,从存储介质获取角度校正参数,操作方便。本实施方式提供的存储介质可以是云服务或应用商店客户端等平台。
作为上述实施方式的进一步改进,如图1与图6所示,在步骤S1之前,还包括:
S4检测立体显示装置1的显示区域。
由于获取的图像不仅包括立体显示装置1显示的立体图像,还有包括显示区域以外的外部环境,为避免外部环境影响角度校正参数、平移量校正参数的准确,需要在图像处理前,检测显示区域,在显示区域内进行图像的相关处理。可以通过提取显示区域内的图像通道值,然后使用边缘检测,检测出显示区域的边界点及边界曲线,再结合图像面积,自动检测出显示区域。进一步降低外界环境对检测结果的影响,确保校正结果的可靠性。
实施方式四
本实施方式提供的立体显示装置的校正方法与实施方式三提供的立体显示装置的校正方法处理步骤大致相同,不同之处在于,作为上述实施方式的进一步改进,如图1、图5与图6所示,立体显示装置1设有跟踪单元13,跟踪单元13用于跟踪预定的标记模型4,步骤S1之前还包括:
S3跟踪步骤,当跟踪单元13跟踪到标记模型4时,进入步骤S2。
开启跟踪单元13的跟踪功能,当跟踪到标记模型4,再开始获取立体显示装置1显示的立体图像。采用标记模型4代替使用者,立体显示装置1根据标记模型4的位置调整立体显示内容,因而,在实际使用中,可以使观看者能够不间断地观看到立体效果,并且观看到的内容会根据使用者的方位和运动趋势做相应的改变,实现使用者与显示内容的互动,提高立体显示的真实感。
本实施方式中提供的标记模型4上设有可被跟踪单元13识别的图像特征。跟踪单元13跟踪到图像特征,立体显示装置1将跟踪信号反馈给控制装置2。控制装置2根据跟踪信号,控制图像获取装置3获取立体显示装置1显示的立体图像。采用标记模型4代替使用者,立体显示装置1根据标记模型4的位置调整立体显示内容,因而,在实际使用中,可以使观看者能够不间断地观看到立体效果,并且观看到的内容会根据使用者的方位和运动趋势做相应的改变,实现使用者与显示内容的互动,提高立体显示的真实感。本实施方式中提供的标记模型4可以是平面纸板或立体头像等带有可被跟踪单元13识别的特征,如人脸特征、字符特征或图像特征等,在此并不一一赘述。
具体地,如图5至图7,装配误差还包括由跟踪单元13安装位置产生的位置误差,步骤S2还包括:
S23根据立体图像获取位置校正参数,位置校正参数用于校正位置误差。
装配误差包括由跟踪单元13安装位置产生的位置误差,如果不加以校正,则会产生图像串扰问题,影响立体显示装置1的显示效果。校正参数包括位置校正参数,用于校正位置误差,获取立体显示装置1显示的立体图像,根据立体图像获得满足预设条件的位置校正参数。当使用者使用立体显示装置1时,立体显示装置1根据位置校正参数校正位置误差,消除位置误差对立体显示的影响,提示立体显示效果。
如图1、图5、图7与图10所示,步骤S23具体包括:
S231设定位置检测区间;
S232根据位置检测区间获取立体图像;
S233根据立体图像获取满足预设条件的位置校正参数;
根据跟踪单元13的安装位置设定位置检测区间,根据初始位置校正参数Z0控制立体显示装置1对显示单元121进行相应的图像处理。具体地,设定初始位置校正参数为Z0,根据初始位置校正参数Z0发出位置控制信号,立体显示装置1根据位置控制信号对显示单元121进行排列处理,并显示排列处理后的立体图像,获取该立体图像,并存储于。设定第i次位置校正参数为Zi,位置检测步长为b3,则,Zi=Z0+(i-1)b3(i≥1)。在根据第i次位置校正参数Zi进行图像处理之前,判断第i次位置校正参数Zi是否在位置检测区间。若第i次位置校正参数Zi不在位置检测区间,则停止上述操作。若第i次位置校正参数Zi在位置检测区间,则根据第i次位置校正参数Zi发出位置控制信号,立体显示装置1根据位置控制信号对显示单元121进行排列处理,并显示排列处理后的立体图像,获取该立体图像。直至第i次位置校正参数Zi不在位置检测区间,则停止上述操作。对存储的立体图像进行图像处理,获得满足预设条件的位置校正参数,并保存位置校正参数。立体显示装置1在显示立体图像时,根据位置校正参数对显示单元121进行排列处理,消除位置误差对显示效果的影响。获取位置校正参数无需操作者手动操作,降低操作者的劳动强度,而且,在立体显示装置1装配完成后再进行校正,校正结果可靠性高,有益于提升立体显示效果。
实施方式五
本实施方式提供的立体显示装置的校正方法与实施方式三、实施方式四提供的立体显示装置的校正方法大致相同,不同之处在于,如图6所示,
在步骤S2之后,还包括:
S5保存校正参数。
在本实施方法中,根据立体图像获得校正参数,可以将校正参数存储于立体显示装置1中,当使用者使用立体显示装置1,立体显示装置1根据校正参数校正装配误差,消除装配误差对显示效果的影响。当然,也可以将校正参数存储于存储介质,当使用者使用立体显示装置1时,从存储介质获取校正参数,操作方便。
以上所述仅为本发明的较佳实施方式而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
Claims (25)
1.立体显示装置的校正系统,用于获得立体显示装置满足预设条件的校正参数,其特征在于:包括图像获取装置和控制装置,所述图像获取装置获取立体显示装置显示的立体图像,并将所述立体图像传送到所述控制装置,所述控制装置对接收到的所述立体图像进行处理,获得所述校正参数,所述校正参数用于校正所述立体显示装置的装配误差。
2.如权利要求1所述的立体显示装置的校正系统,其特征在于:所述校正参数存储于所述立体显示装置,或者存储于存储介质。
3.如权利要求2所述的立体显示装置的校正系统,其特征在于:所述立体显示装置包括沿第一方向排布的分光单元和沿第二方向排布的显示单元,所述校正参数包括平移量校正参数,所述平移量校正参数用于校正所述装配误差中由所述分光单元与所述显示单元排布周期不匹配产生的平移量误差。
4.如权利要求3所述的立体显示装置的校正系统,其特征在于:所述控制装置包括平移量校正模块,所述平移量校正模块根据所述立体图像获取满足所述预设条件的所述平移量校正参数。
5.如权利要求3所述的立体显示装置的校正系统,其特征在于:所述校正参数还包括角度校正参数,所述角度校正参数用于校正所述装配误差中由所述第一方向与所述第二方向之间的夹角产生的角度误差。
6.如权利要求5所述的立体显示装置的校正系统,其特征在于:所述控制装置还包括角度校正模块,所述角度校正模块根据所述立体图像获取满足所述预设条件的所述角度校正参数。
7.如权利要求1至6中任一项所述的立体显示装置的校正系统,其特征在于:所述立体显示装置包括跟踪单元,所述图像获取装置安装在可被所述跟踪单元识别的标记模型上,当所述跟踪单元跟踪到所述标记模型时,所述图像获取装置获取所述立体显示装置显示的所述立体图像。
8.如权利要求7所述的立体显示装置的校正系统,其特征在于:所述校正参数还包括位置校正参数,所述校正参数用于校正所述装配误差中由所述跟踪单元安装位置产生的位置误差。
9.如权利要求8所述的立体显示装置的校正系统,其特征在于:所述控制装置还包括位置校正模块,所述位置校正模块根据所述立体图像获取满足所述预设条件的所述位置校正参数。
10.如权利要求7所述的立体显示装置的校正系统,其特征在于:所述标记模型上设有可被所述跟踪单元识别的图像特征。
11.如权利要求10所述的立体显示装置的校正系统,其特征在于:所述图像特征包括人脸特征、图形特征、字符特征以及颜色特征中的一种或多种。
12.如权利要求7所述的立体显示装置的校正系统,其特征在于:所述图像获取装置包括至少一个摄像头,所述摄像头设置在人眼位置处。
13.如权利要求7所述的立体显示装置的校正系统,其特征在于:所述控制装置还包括区域检测模块,所述区域检测模块用于检测所述立体显示装置的显示区域。
14.如权利要求7所述的立体显示装置的校正系统,其特征在于:所述控制装置安装在所述立体显示装置上,或者独立于所述立体显示装置。
15.如权利要求14所述的立体显示装置的校正系统,其特征在于:所述控制装置与所述立体显示装置连接,并控制所述立体显示装置显示所述立体图像。
16.立体显示装置的校正方法,用于获得立体显示装置满足预设条件的校正参数,其特征在于:包括如下步骤:
S1获取所述立体显示装置显示的立体图像;
S2根据所述立体图像获取所述校正参数,所述校正参数用于校正所述立体显示装置的装配误差。
17.如权利要求16所述的立体显示装置的校正方法,其特征在于:所述装配误差包括平移量误差,步骤S2包括:
S21根据所述立体图像获取平移量校正参数,所述平移量校正参数用于校正所述平移量误差。
18.如权利要求17所述的立体显示装置的校正方法,其特征在于:步骤S21具体包括:
S211设定平移量检测区间;
S212根据所述平移量检测区间获取所述立体图像;
S213根据所述立体图像获取满足预设条件的所述平移量校正参数。
19.如权利要求16所述的立体显示装置的校正方法,其特征在于:所述装配误差包括角度误差,步骤S2还包括:
S22根据所述立体图像获取所述角度校正参数,所述角度校正参数用于校正所述角度误差。
20.如权利要求19所述的立体显示装置的校正方法,其特征在于:步骤S22具体包括:
S221设定角度检测区间;
S222根据所述角度检测区间获取所述立体图像;
S223根据所述立体图像获取满足预设条件的所述角度校正参数。
21.如权利要求16至20中任一项所述的立体显示装置的校正方法,其特征在于:所述立体显示装置设有跟踪单元,所述跟踪单元用于跟踪预定的标记模型,步骤S2之前还包括:
S3跟踪步骤,当所述跟踪单元跟踪到标记模型时,进入步骤S2。
22.如权利要求21所述的立体显示装置的校正方法,其特征在于:所述装配误差还包括由所述跟踪单元安装位置产生的位置误差,步骤S2还包括:
S23根据所述立体图像获取位置校正参数,所述位置校正参数用于校正所述位置误差。
23.如权利要求22所述的立体显示装置的校正方法,其特征在于:步骤S23具体包括:
S231设定位置检测区间;
S232根据所述位置检测区间获取所述立体图像;
S233根据所述立体图像获取满足预设条件的所述位置校正参数。
24.如权利要求21所述的立体显示装置的校正方法,其特征在于:在步骤S1之前,还包括:
S4检测所述立体显示装置的显示区域。
25.如权利要求22所述的立体显示装置的校正方法,其特征在于:在步骤S2之后,还包括:
S5保存所述校正参数。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410535938.3A CN105572883B (zh) | 2014-10-11 | 2014-10-11 | 立体显示装置的校正系统及其校正方法 |
TW103144573A TWI569039B (zh) | 2014-10-11 | 2014-12-19 | 立體顯示裝置的校正系統以及其校正方法 |
JP2014262001A JP6002204B2 (ja) | 2014-10-11 | 2014-12-25 | 立体表示装置の校正システム及びその校正方法 |
KR1020140190637A KR101627335B1 (ko) | 2014-10-11 | 2014-12-26 | 입체 표시 장치의 보정 시스템 및 그 보정 방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410535938.3A CN105572883B (zh) | 2014-10-11 | 2014-10-11 | 立体显示装置的校正系统及其校正方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105572883A true CN105572883A (zh) | 2016-05-11 |
CN105572883B CN105572883B (zh) | 2018-01-30 |
Family
ID=55883197
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410535938.3A Expired - Fee Related CN105572883B (zh) | 2014-10-11 | 2014-10-11 | 立体显示装置的校正系统及其校正方法 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6002204B2 (zh) |
KR (1) | KR101627335B1 (zh) |
CN (1) | CN105572883B (zh) |
TW (1) | TWI569039B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107155104A (zh) * | 2017-06-23 | 2017-09-12 | 深圳超多维科技有限公司 | 一种裸眼立体显示设备的显示校正方法及装置 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102570277B1 (ko) * | 2016-11-16 | 2023-08-24 | 삼성전자주식회사 | 3d 영상 장치의 왜곡 보정 방법 및 그 방법을 이용하는 장치 |
CN109491087B (zh) * | 2017-09-11 | 2022-09-20 | 杜比实验室特许公司 | 用于ar/vr/mr的模块化拆卸式可穿戴装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102207424A (zh) * | 2010-12-29 | 2011-10-05 | 深圳超多维光电子有限公司 | 立体显示装置的参数测量系统和方法 |
CN102401631A (zh) * | 2010-08-25 | 2012-04-04 | Ntl科技股份有限公司 | 安装精度检查方法以及使用所述检查方法的检查设备 |
KR20120060978A (ko) * | 2010-09-30 | 2012-06-12 | 한국기초과학지원연구원 | 시선 위치 추적 기반의 3차원 인간-컴퓨터 상호작용 장치 및 방법 |
CN102595182A (zh) * | 2012-03-16 | 2012-07-18 | 深圳超多维光电子有限公司 | 立体显示设备及其校正方法、装置和系统 |
KR20130037326A (ko) * | 2011-10-06 | 2013-04-16 | 엘지디스플레이 주식회사 | 3d 화질개선방법과 이를 이용한 입체영상 표시장치 |
JP2013190713A (ja) * | 2012-03-15 | 2013-09-26 | Sony Corp | 表示装置および方法、情報処理装置および方法、並びにプログラム |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004020684A (ja) * | 2002-06-13 | 2004-01-22 | Tatsuo Uchida | 3次元表示装置 |
DE102005001503A1 (de) * | 2005-01-07 | 2006-07-27 | Seereal Technologies Gmbh | Sweet-Spot-Einheit |
JP2009077234A (ja) * | 2007-09-21 | 2009-04-09 | Toshiba Corp | 三次元画像処理装置、方法及びプログラム |
CN102449534B (zh) * | 2010-04-21 | 2014-07-02 | 松下电器产业株式会社 | 立体影像显示装置、立体影像显示方法 |
JP5673008B2 (ja) * | 2010-08-11 | 2015-02-18 | ソニー株式会社 | 画像処理装置、立体画像表示装置および立体画像表示システム、ならびに立体画像表示装置の視差ずれ検出方法および立体画像表示装置の製造方法 |
TW201223242A (en) * | 2010-11-24 | 2012-06-01 | Himax Media Solutions Inc | 2D-to-3D delay compensation system and method thereof |
KR101956173B1 (ko) * | 2012-03-26 | 2019-03-08 | 삼성전자주식회사 | 3차원 위치/방향 추정 시스템의 보정 장치 및 방법 |
-
2014
- 2014-10-11 CN CN201410535938.3A patent/CN105572883B/zh not_active Expired - Fee Related
- 2014-12-19 TW TW103144573A patent/TWI569039B/zh active
- 2014-12-25 JP JP2014262001A patent/JP6002204B2/ja not_active Expired - Fee Related
- 2014-12-26 KR KR1020140190637A patent/KR101627335B1/ko active IP Right Grant
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102401631A (zh) * | 2010-08-25 | 2012-04-04 | Ntl科技股份有限公司 | 安装精度检查方法以及使用所述检查方法的检查设备 |
KR20120060978A (ko) * | 2010-09-30 | 2012-06-12 | 한국기초과학지원연구원 | 시선 위치 추적 기반의 3차원 인간-컴퓨터 상호작용 장치 및 방법 |
CN102207424A (zh) * | 2010-12-29 | 2011-10-05 | 深圳超多维光电子有限公司 | 立体显示装置的参数测量系统和方法 |
KR20130037326A (ko) * | 2011-10-06 | 2013-04-16 | 엘지디스플레이 주식회사 | 3d 화질개선방법과 이를 이용한 입체영상 표시장치 |
JP2013190713A (ja) * | 2012-03-15 | 2013-09-26 | Sony Corp | 表示装置および方法、情報処理装置および方法、並びにプログラム |
CN102595182A (zh) * | 2012-03-16 | 2012-07-18 | 深圳超多维光电子有限公司 | 立体显示设备及其校正方法、装置和系统 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107155104A (zh) * | 2017-06-23 | 2017-09-12 | 深圳超多维科技有限公司 | 一种裸眼立体显示设备的显示校正方法及装置 |
CN107155104B (zh) * | 2017-06-23 | 2020-08-04 | 深圳超多维科技有限公司 | 一种裸眼立体显示设备的显示校正方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
JP6002204B2 (ja) | 2016-10-05 |
KR101627335B1 (ko) | 2016-06-07 |
JP2016081027A (ja) | 2016-05-16 |
TWI569039B (zh) | 2017-02-01 |
KR20160042737A (ko) | 2016-04-20 |
TW201614326A (en) | 2016-04-16 |
CN105572883B (zh) | 2018-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN204305233U (zh) | 立体显示装置校正设备 | |
CN106961596B (zh) | 调整图像位置的方法与设备 | |
JP6609929B2 (ja) | 両眼光学拡張現実システムの深さ−視差較正 | |
EP3109825B1 (en) | Marker, method of detecting position and pose of marker, and computer program | |
CN102595182B (zh) | 立体显示设备及其校正方法、装置和系统 | |
US10321820B1 (en) | Measuring optical properties of an eyewear device | |
US20170374354A1 (en) | Apparatus and method for focal length adjustment and depth map determination | |
US20140055580A1 (en) | Depth Of Field Maintaining Apparatus, 3D Display System And Display Method | |
CN105578175A (zh) | 立体显示装置检测系统及其检测方法 | |
CN106576159A (zh) | 一种获取深度信息的拍照设备和方法 | |
CN105511092A (zh) | 立体显示装置的校正设备 | |
KR20170086476A (ko) | 동영상 카메라 초점 응용을 위한 거리 측정 디바이스 | |
CN105572883A (zh) | 立体显示装置的校正系统及其校正方法 | |
CN104019752B (zh) | 显示屏的厚度均匀性检测方法、装置及系统 | |
US9538166B2 (en) | Apparatus and method for measuring depth of the three-dimensional image | |
US20130027418A1 (en) | Image Reproduction Device Calibration | |
CN105391997A (zh) | 立体显示装置的三维视点校正方法 | |
CN102523479B (zh) | 一种3d可视距离和可视角度的测量系统和方法 | |
US20190102945A1 (en) | Imaging device and imaging method for augmented reality apparatus | |
CN202276428U (zh) | 一种立体投影设备的质量评价装置 | |
KR101799643B1 (ko) | 입체 표시 장치의 교정 장비 | |
CN204465757U (zh) | 立体显示装置检测设备 | |
CN105704480A (zh) | 立体显示装置检测系统及其检测方法 | |
US11375084B2 (en) | Measurement method for measuring a physical property value of light output of a display device | |
KR20110100568A (ko) | 슈라우드 노즐 수직도 측정 및 안내 시스템 및 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20180720 Address after: 518000 Room 201, building A, No. 1, Qian Wan Road, Qianhai Shenzhen Hong Kong cooperation zone, Shenzhen, Guangdong (Shenzhen Qianhai business secretary Co., Ltd.) Patentee after: SUPERD Co.,Ltd. Address before: 518053 East Guangdong H-1 East 101, overseas Chinese town, Nanshan District, Shenzhen. Patentee before: SHENZHEN SUPER PERFECT OPTICS Ltd. |
|
TR01 | Transfer of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180130 |
|
CF01 | Termination of patent right due to non-payment of annual fee |