CN105512365B - The circuit emulation method of grid edge roughness effect in fin FET - Google Patents
The circuit emulation method of grid edge roughness effect in fin FET Download PDFInfo
- Publication number
- CN105512365B CN105512365B CN201510845557.XA CN201510845557A CN105512365B CN 105512365 B CN105512365 B CN 105512365B CN 201510845557 A CN201510845557 A CN 201510845557A CN 105512365 B CN105512365 B CN 105512365B
- Authority
- CN
- China
- Prior art keywords
- mrow
- msub
- fin
- edge roughness
- effect transistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 26
- 230000000694 effects Effects 0.000 title claims description 10
- 238000004088 simulation Methods 0.000 claims abstract description 30
- 230000005669 field effect Effects 0.000 claims abstract description 27
- 238000005311 autocorrelation function Methods 0.000 claims abstract description 8
- 238000004364 calculation method Methods 0.000 abstract description 3
- 238000000342 Monte Carlo simulation Methods 0.000 abstract description 2
- INQLNSVYIFCUML-QZTLEVGFSA-N [[(2r,3s,4r,5r)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2r,3s,4r,5r)-5-(4-carbamoyl-1,3-thiazol-2-yl)-3,4-dihydroxyoxolan-2-yl]methyl hydrogen phosphate Chemical compound NC(=O)C1=CSC([C@H]2[C@@H]([C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=N1 INQLNSVYIFCUML-QZTLEVGFSA-N 0.000 abstract description 2
- 238000004377 microelectronic Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 8
- 230000003068 static effect Effects 0.000 description 6
- 238000012512 characterization method Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 4
- 238000000635 electron micrograph Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/30—Circuit design
- G06F30/39—Circuit design at the physical level
- G06F30/398—Design verification or optimisation, e.g. using design rule check [DRC], layout versus schematics [LVS] or finite element methods [FEM]
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
本发明公开了一种鳍型场效应晶体管中栅边缘粗糙度的电路仿真方法,属于微电子器件领域。该电路仿真方法基于可预测性集约模型,首先从鳍线条的电镜照片中提取出粗糙的栅边缘,计算它的自相关函数,然后利用计算公式得到鳍边缘粗糙度影响下的沟长涨落的均值和方差,嵌入到电路仿真软件的仿真网表中进行电路仿真,即可得到鳍边缘粗糙度所造成的电路性能参数。采用本发明可以很准确地得到的器件特性涨落影响,且所有参数都可以用TCAD蒙特卡洛仿真得到的结果进行基准调整。与传统方法相比,可以预测器件的亚阈斜率SS的涨落,以及亚阈斜率SS涨落和阈值电压Vth的相关性。
The invention discloses a circuit simulation method for gate edge roughness in a fin field effect transistor, which belongs to the field of microelectronic devices. The circuit simulation method is based on the predictability intensive model. Firstly, the rough gate edge is extracted from the electron microscope photo of the fin line, and its autocorrelation function is calculated, and then the calculation formula is used to obtain the fluctuation of the groove length under the influence of the fin edge roughness. The mean and variance are embedded in the simulation netlist of the circuit simulation software for circuit simulation, and the circuit performance parameters caused by the roughness of the fin edge can be obtained. The device characteristic fluctuation influence can be obtained very accurately by adopting the present invention, and all parameters can be adjusted with reference to the result obtained by TCAD Monte Carlo simulation. Compared with the traditional method, the subthreshold slope SS fluctuation of the device can be predicted, and the correlation between the subthreshold slope SS fluctuation and the threshold voltage V th can be predicted.
Description
技术领域technical field
本发明属于微电子器件领域,涉及到鳍型场效应晶体管中栅边缘粗糙度的电路仿真方法。The invention belongs to the field of microelectronic devices and relates to a circuit simulation method for gate edge roughness in fin field effect transistors.
背景技术Background technique
随着半导体器件尺度的逐渐缩小,器件中随机涨落的影响正在变得越来越不容忽视。器件的随机涨落是由于器件制备过程中,不可避免的工艺不确定性造成的,会导致器件电学特性,比如阈值电压的涨落,进一步地,会不可避免地造成电路性能参数的涨落。电路性能参数的涨落会最终导致芯片制备时的良率损失。因此,电路设计者需要在电路设计时就提前考虑到器件中随机涨落对电路特性的影响,这就需要有相应的可供电路仿真使用的随机涨落的集约模型。With the gradual reduction of the scale of semiconductor devices, the influence of random fluctuations in the devices is becoming more and more difficult to ignore. The random fluctuation of the device is caused by the inevitable process uncertainty in the device manufacturing process, which will lead to the fluctuation of the electrical characteristics of the device, such as the threshold voltage, and further, it will inevitably cause the fluctuation of the circuit performance parameters. Fluctuations in circuit performance parameters will eventually lead to yield loss during chip fabrication. Therefore, circuit designers need to take into account the impact of random fluctuations in devices on circuit characteristics in advance when designing circuits, which requires a corresponding intensive model of random fluctuations that can be used for circuit simulation.
另一方面,鳍型场效应晶体管(FinFET)正在逐步取代传统的平面结构器件,成为半导体工业中的主力军。在鳍型场效应晶体管中,随机涨落源主要有金属功函数涨落、鳍边缘粗糙度(FER)、栅边缘粗糙度(GER)。栅边缘粗糙度可以从器件的电镜照片中提取。栅边缘粗糙度一般采用基于自相关函数理论的方法来进行表征,主要有两个表征参数:均方差ΔGER和自相关长度ΛGER。均方差ΔGER表征栅边缘粗糙度的幅度,而自相关长度ΛGER表征栅边缘粗糙度的在空间上的变化周期。这两个表征参数的值是由工艺过程决定的。On the other hand, Fin Field Effect Transistors (FinFETs) are gradually replacing traditional planar devices and becoming the main force in the semiconductor industry. In fin field effect transistors, the sources of random fluctuations mainly include metal work function fluctuations, fin edge roughness (FER), and gate edge roughness (GER). The gate edge roughness can be extracted from the electron micrograph of the device. Gate edge roughness is generally characterized by a method based on autocorrelation function theory, and there are two main characterization parameters: mean square error Δ GER and autocorrelation length Λ GER . The mean square error Δ GER characterizes the magnitude of the gate edge roughness, while the autocorrelation length Δ GER characterizes the spatial variation period of the gate edge roughness. The values of these two characterization parameters are determined by the process.
目前,对于鳍边缘粗糙度和栅边缘粗糙度都没有可预测性的集约模型供电路模拟使用。传统的电路模拟方法,是将随机涨落对器件的影响,简化为所造成的器件阈值电压的涨落,直接加入到电路仿真当中。然而,这一方法具有很多局限性。首先,这一方法完全不具有预测性,即无法考虑到器件设计参数或者工艺变化所导致的涨落的变化。其次,这一方法将涨落对器件的影响完全看作是对阈值电压的影响,忽略了对器件其它参数,比如亚阈值斜率等的影响,会导致对电路涨落的错误估计。因此,提出一种准确的同时具有可预测性的针对鳍型场效应晶体管的栅边缘粗糙度的电路仿真方法是非常有必要的。Currently, there are no predictable intensive models for both fin edge roughness and gate edge roughness for use in circuit simulations. The traditional circuit simulation method simplifies the impact of random fluctuations on devices into the fluctuations in the threshold voltage of devices, which are directly added to the circuit simulation. However, this method has many limitations. First of all, this method is not predictive at all, that is, it cannot take into account fluctuations caused by device design parameters or process changes. Secondly, this method completely regards the influence of fluctuations on the device as the influence on the threshold voltage, ignoring the influence on other parameters of the device, such as the sub-threshold slope, which will lead to miscalculation of circuit fluctuations. Therefore, it is very necessary to propose an accurate and predictable circuit simulation method for the gate edge roughness of the fin field effect transistor.
发明内容Contents of the invention
本发明的目的在于提供一种基于可预测性集约模型的针对鳍型场效应晶体管中栅边缘粗糙度效应的电路仿真方法。The object of the present invention is to provide a circuit simulation method for the effect of gate edge roughness in a fin field effect transistor based on a predictable intensive model.
本发明提供的鳍型场效应晶体管中栅边缘粗糙度效应的电路仿真方法,包括如下步骤:The circuit simulation method of the gate edge roughness effect in the fin field effect transistor provided by the present invention comprises the following steps:
1)从鳍线条的电镜照片中提取出粗糙的栅边缘,计算它的自相关函数;1) Extract the rough gate edge from the electron microscope photo of the fin line, and calculate its autocorrelation function;
2)利用公式μ(Lg,eff)=Lg 2) Using the formula μ(L g, eff )=L g
得到鳍边缘粗糙度影响下Lg,eff涨落的均值和方差;Obtain the mean and variance of L g, eff fluctuation under the influence of fin edge roughness;
3)将上述Lg,eff涨落的均值和方差嵌入到电路仿真软件的仿真网表中,用电路仿真软件进行电路仿真, 即可得到栅边缘粗糙度效应的电路性能。3) Embedding the mean and variance of the fluctuations of L g and eff above into the simulation netlist of the circuit simulation software, and performing circuit simulation with the circuit simulation software, the circuit performance of the gate edge roughness effect can be obtained.
其中,从栅线条的电镜照片中提取出粗糙的栅边缘,计算它的自相关函数,用适当的函数形式,比如高斯函数拟合,得到栅边缘粗糙度的两个表征参数:均方根ΔGER和相关长度ΛGER。Among them, the rough grid edge is extracted from the electron microscope photo of the grid line, its autocorrelation function is calculated, and it is fitted with an appropriate function form, such as a Gaussian function, to obtain two characterization parameters of the grid edge roughness: root mean square Δ GER and correlation length Λ GER .
从物理机制上看,栅边缘粗糙度的影响,主要在于改变了了沟道的有效长度Lg,eff。因此,由1中得到的栅边缘粗糙度的表征参数以及电路仿真中所采用的鳍型场效应晶体管的鳍宽WFin和鳍高HFin,再根据以下公式,计算所造成的Lg,eff涨落的均值和方差:From the perspective of physical mechanism, the influence of gate edge roughness mainly lies in changing the effective length L g,eff of the channel. Therefore, from the characterization parameters of the gate edge roughness obtained in 1 and the fin width W Fin and fin height H Fin of the fin field effect transistor used in the circuit simulation, and then calculate the resulting L g, eff according to the following formula Mean and variance of fluctuations:
均值:μ(Lg,eff)=Lg Mean value: μ(L g, eff )=L g
方差:(适用于双栅型场效应晶体管)variance: (Applicable to dual-gate field effect transistors)
(适用于三栅型场效应晶体管) (Applicable to Tri-Gate Field Effect Transistor)
这里,RGER(*)为1中拟合栅边缘粗糙度的自相关函数。Here, R GER (*) is the autocorrelation function of the fitted gate edge roughness in 1.
根据上述计算公式,得到栅边缘粗糙度影响下的沟长Lg,eff涨落的均值和方差,加入到电路仿真的网表中,用电路仿真软件进行电路仿真,即可得到栅边缘粗糙度所造成的电路涨落影响,进而得到电路性能参数的涨落影响。According to the above calculation formula, the groove length L g under the influence of gate edge roughness, the mean value and variance of eff fluctuation are obtained, and added to the circuit simulation netlist, and the circuit simulation is performed with circuit simulation software, and the gate edge roughness can be obtained The resulting circuit fluctuations, and then get the fluctuations of circuit performance parameters.
采用本发明可以很准确地得到的器件特性涨落影响,且所有参数都可以用TCAD蒙特卡洛仿真得到的结果进行基准调整。与传统方法相比,可以预测器件的亚阈斜率SS的涨落,以及亚阈斜率SS和阈值电压Vth的相关性。The device characteristic fluctuation influence can be obtained very accurately by adopting the present invention, and all parameters can be adjusted with reference to the result obtained by TCAD Monte Carlo simulation. Compared with the traditional method, the fluctuation of the subthreshold slope SS of the device can be predicted, and the correlation between the subthreshold slope SS and the threshold voltage Vth can be predicted.
附图说明Description of drawings
图1本发明的电路仿真方法的流程示意图。FIG. 1 is a schematic flow chart of the circuit simulation method of the present invention.
图2本发明鳍场效应晶体管示意图,其中(a)鳍场效应晶体管的侧视示意图;(b)具有理想沟道和粗糙栅边缘的鳍型场效应晶体管的顶视示意图;Fig. 2 is a schematic diagram of a fin field effect transistor of the present invention, wherein (a) a schematic side view of a fin field effect transistor; (b) a schematic top view of a fin field effect transistor with an ideal channel and a rough gate edge;
图3本发明栅边缘粗糙度的提取和表征流程示意图,其中(a)为栅边缘粗糙度的电镜照片;(b)为从电镜照片中提取得到的结果;(c)为栅边缘粗糙度的自相关函数,用高斯函数拟合,从而得到表征参数均方差ΔGER和自相关长度ΛGER的示意图;The extraction and characterization flow diagram of Fig. 3 grid edge roughness of the present invention, wherein (a) is the electron micrograph of grid edge roughness; (b) is the result that obtains from electron microscope extraction; (c) is the grid edge roughness Autocorrelation function is fitted with a Gaussian function, thereby obtaining a schematic diagram of the characteristic parameter mean square error ΔGER and autocorrelation length ΔGER ;
图4静态随机存储器SRAM的电路示意图;The schematic circuit diagram of Fig. 4 static random access memory SRAM;
图5电路仿真得到的SRAM的蝶形图;The butterfly diagram of the SRAM obtained by the circuit simulation of Fig. 5;
图6根据SRAM蝶形图提取得到的SRAM的电路性能参数——静态噪声容限SNM的分布图。Fig. 6 is a distribution diagram of the static noise margin SNM, which is the circuit performance parameter of the SRAM extracted from the SRAM butterfly diagram.
具体实施方法Specific implementation method
下面将通过实例并结合附图,详细描述本发明的电路仿真方法。The circuit simulation method of the present invention will be described in detail below through examples and in conjunction with the accompanying drawings.
本实例考虑基于SOI衬底的双栅型鳍型场效应晶体管中栅边缘粗糙度对于静态随机存储器(SRAM)电路的性能参数——静态噪声容限(SNM)的影响,整体流程如图1所示。双栅型鳍型场效应晶体管的基本结构和参数定义如图2所示。This example considers the influence of the gate edge roughness on the performance parameter of the static random access memory (SRAM) circuit in the dual-gate fin field effect transistor based on the SOI substrate - the static noise margin (SNM). The overall process is shown in Figure 1 Show. The basic structure and parameter definitions of the dual-gate FinFET are shown in Figure 2.
具体步骤:Specific steps:
1)如图3所示,根据栅的电镜照片,提取出粗糙的栅边缘,计算它的自相关函数,并用高斯函数进行拟合,得到拟合参数ΔGER=2/3nm,ΛGER=30nm。1) As shown in Figure 3, according to the electron microscope photo of the grid, extract the rough grid edge, calculate its autocorrelation function, and use the Gaussian function Fitting is performed to obtain fitting parameters Δ GER =2/3nm, Δ GER =30nm.
2)采用双栅型鳍型场效应晶体管中σLg,eff的计算公式,RGER(*)采用高斯形式,得到Lg的均值和方差如下:2) Using the calculation formula of σL g,eff in the double-gate fin field effect transistor, R GER (*) adopts Gaussian form, and the mean value and variance of L g are obtained as follows:
均值:μ(Lg,eff)=Lg Mean value: μ(L g, eff )=L g
方差: variance:
3)本实例采用的鳍型场效应晶体管的Lg为20nm,WFin为10nm,因此,计算得到3) The L g of the fin field effect transistor adopted in this example is 20nm, and the W Fin is 10nm, therefore, the calculated
均值:μ(Lg,eff)=20nmMean value: μ(L g, eff )=20nm
标准差:σ(Lg,eff)=0.45nmStandard deviation: σ(L g, eff )=0.45nm
4)静态随机存储器SRAM的电路示意图如图4所示。将SRAM的仿真网表中的沟长,变为均值为20nm,标准差为0.45nm的高斯分布的随机变量,选择电路仿真软件HSPICE中的蒙特卡洛模式进行电路仿真。4) The schematic circuit diagram of the static random access memory (SRAM) is shown in FIG. 4 . Change the groove length in the SRAM simulation netlist to a Gaussian random variable with a mean value of 20nm and a standard deviation of 0.45nm, and select the Monte Carlo mode in the circuit simulation software HSPICE for circuit simulation.
5)根据电路仿真得到的蝶形曲线(如图5所示),提取得到SRAM的静态噪声容限(SNM)的分布如图6所示。5) According to the butterfly curve (as shown in FIG. 5 ) obtained by circuit simulation, the distribution of static noise margin (SNM) of the SRAM is extracted as shown in FIG. 6 .
上面给出了本发明实施例的说明以用于理解本发明。应理解,本发明不限于这里描述的特定实施例,而是如现在对本领域技术人员来说明显地,能够进行各种修改、调整和替代而不偏离本发明的范围。因此,下面的权利要求意图涵盖落在本发明的实质精神和范围内的这样的修改和变化。The descriptions of the embodiments of the present invention have been given above for the understanding of the present invention. It should be understood that the present invention is not limited to the particular embodiments described herein, but is capable of various modifications, adaptations and substitutions, as now apparent to those skilled in the art, without departing from the scope of the present invention. Accordingly, the following claims are intended to cover such modifications and changes as fall within the true spirit and scope of this invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510845557.XA CN105512365B (en) | 2015-11-26 | 2015-11-26 | The circuit emulation method of grid edge roughness effect in fin FET |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510845557.XA CN105512365B (en) | 2015-11-26 | 2015-11-26 | The circuit emulation method of grid edge roughness effect in fin FET |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105512365A CN105512365A (en) | 2016-04-20 |
CN105512365B true CN105512365B (en) | 2018-05-01 |
Family
ID=55720345
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510845557.XA Active CN105512365B (en) | 2015-11-26 | 2015-11-26 | The circuit emulation method of grid edge roughness effect in fin FET |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105512365B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102578644B1 (en) * | 2017-08-30 | 2023-09-13 | 삼성전자주식회사 | A apparatus for predicting a yield of a semiconductor integrated circuits, and a method for manufacturing a semiconductor device using the same |
CN108550532B (en) * | 2018-03-21 | 2020-10-02 | 上海集成电路研发中心有限公司 | A method for measuring the roughness of semiconductor fins |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103292747A (en) * | 2013-05-20 | 2013-09-11 | 北京大学 | Method and device for measuring surface roughness of side walls of FinFET (fin field-effect transistor) devices |
-
2015
- 2015-11-26 CN CN201510845557.XA patent/CN105512365B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103292747A (en) * | 2013-05-20 | 2013-09-11 | 北京大学 | Method and device for measuring surface roughness of side walls of FinFET (fin field-effect transistor) devices |
Non-Patent Citations (1)
Title |
---|
《三栅FinFET电学特性仿真分析与研究》;张燕;《中国优秀硕士学位论文全文数据库 信息科技辑》;20131215(第S2期);I135-239 * |
Also Published As
Publication number | Publication date |
---|---|
CN105512365A (en) | 2016-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bansal et al. | Device-optimization technique for robust and low-power FinFET SRAM design in nanoscale era | |
Leung et al. | Device-and circuit-level variability caused by line edge roughness for sub-32-nm FinFET technologies | |
Meinhardt et al. | Predictive evaluation of electrical characteristics of sub-22 nm FinFET technologies under device geometry variations | |
Zhang et al. | Comparison of SOI versus bulk FinFET technologies for 6T-SRAM voltage scaling at the 7-/8-nm node | |
Lin et al. | Modeling of width-quantization-induced variations in logic FinFETs for 22nm and beyond | |
Gerrer et al. | Accurate simulation of transistor-level variability for the purposes of TCAD-based device-technology cooptimization | |
Lu et al. | Compact modeling of variation in FinFET SRAM cells | |
CN105512365B (en) | The circuit emulation method of grid edge roughness effect in fin FET | |
CN104881520B (en) | A kind of extracting method of three gate FinFETs potential and subthreshold swing | |
Rathore et al. | Impact of line edge roughness on the performance of 14-nm FinFET: Device-circuit co-design | |
Jeong et al. | Investigation of RC parasitics considering middle-of-the-line in Si-bulk FinFETs for sub-14-nm node logic applications | |
Gu et al. | Statistical leakage estimation of double gate FinFET devices considering the width quantization property | |
CN105574232B (en) | The circuit emulation method of fin edge roughness effect in fin FET | |
Hatta et al. | Effects of the fin width variation on the performance of 16 nm FinFETs with round fin corners and tapered fin shape | |
Singh et al. | 7-nm nanowire FET process variation modeling using industry standard BSIM-CMG model | |
Jena et al. | Fin shape dependence of electrostatics and variability in FinFETs | |
Kim et al. | The effect of contact boundary on bulk resistance in hexagonal shaped source/drain in FinFETs | |
CN112002642A (en) | FinFET device design method for resisting total dose radiation effect | |
Malheiro et al. | An analytical estimation model for the spreading resistance of Double-Gate FinFETs | |
Cheng et al. | Compact modeling of fin-width roughness induced FinFET device variability using the perturbation method | |
CN105005663B (en) | A kind of body connects current potential PD SOI MOSFET Two Dimensional Thresholding voltage analytic modell analytical models and its method for building up and threshold voltage computational methods | |
Kim et al. | Simple and accurate modeling of double-gate FinFET fin body variations | |
Lou et al. | Effects of fin sidewall angle on subthreshold characteristics of junctionless multigate transistors | |
Moroz | Transition from planar MOSFETs to FinFETs and its impact on design and variability | |
CN115906723A (en) | Circuit Simulation Method for Metal Work Function Fluctuation of Nanosheet Gate-Round Field-Effect Transistor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |