[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN105449017B - 一种用于实现InGaAs光吸收波长扩展的材料结构 - Google Patents

一种用于实现InGaAs光吸收波长扩展的材料结构 Download PDF

Info

Publication number
CN105449017B
CN105449017B CN201510947270.8A CN201510947270A CN105449017B CN 105449017 B CN105449017 B CN 105449017B CN 201510947270 A CN201510947270 A CN 201510947270A CN 105449017 B CN105449017 B CN 105449017B
Authority
CN
China
Prior art keywords
layer
quantum well
thickness
barrier layer
well layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510947270.8A
Other languages
English (en)
Other versions
CN105449017A (zh
Inventor
马英杰
张永刚
顾溢
陈星佑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Microsystem and Information Technology of CAS
Original Assignee
Shanghai Institute of Microsystem and Information Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Microsystem and Information Technology of CAS filed Critical Shanghai Institute of Microsystem and Information Technology of CAS
Priority to CN201510947270.8A priority Critical patent/CN105449017B/zh
Publication of CN105449017A publication Critical patent/CN105449017A/zh
Application granted granted Critical
Publication of CN105449017B publication Critical patent/CN105449017B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明涉及一种用于实现InGaAs光吸收波长扩展的材料结构,在InP衬底上采用周期性InxGa1‑xAs多量子阱耦合超晶格结构,每个超晶格周期包含有一个量子阱层和一个势垒层,采用厚度为a的InxGa1‑xAs、0.53<x≤1作为量子阱层,厚度为b的InyGa1‑yAs、0≤y<0.53作为势垒层。本发明的材料结构可以在保证较高材料质量的情况下,根据需要方便地将InGaAs光吸收长波截止波长延伸到1.7‑3.0μm之间,特别适合于扩展InGaAs探测器的光响应波长,同时具有其它广泛的应用前景。

Description

一种用于实现InGaAs光吸收波长扩展的材料结构
技术领域
本发明属于半导体光电信息材料与器件领域,特别涉及一种用于实现InGaAs光吸收波长扩展的材料结构。
背景技术
InxGa1-xAs三元合金是最重要的III-V族化合物半导体光电子材料之一。它是由InAs和GaAs两种直接带隙半导体材料合金而成,也具有直接带隙,因而具有高的光学吸收系数和内量子效率。其中以与InP衬底晶格匹配的In0.53Ga0.47As材料制备工艺最为成熟,应用也最为广泛。通过优化分子束外延(MBE)、金属有机化学气相沉积(MOCVD)等生长工艺,可以在InP(001)衬底上生长出与衬底晶格近乎完美匹配的In0.53Ga0.47As材料。其缺陷面密度可低至104/cm2,结晶质量高,发光质量好。本征跃迁光吸收长波限约为1.7μm,吸收系数>104cm-1。在光电转换方面得到了重要应用。基于InP衬底的In0.53Ga0.47As探测器对于1550nm光波长的室温探测率高达1012cm·Hz1/2/W,且具有良好的空间抗辐照特性,因而在高速光纤通讯、近红外光谱学测量、航天遥感成像等领域得到了广泛应用。
然而In0.53Ga0.47As探测器的光响应长波限也仅能达到1.7μm,无法对包含有丰富信息的1.7-3μm近红外波段产生光吸收。该波段包含了自然界中许多物质的特征吸收谱线,如冰云、矿产、陆地、云层的特征吸收峰在2.10-2.35μm波段,而CO、N2O、CH4等气体的特征吸收峰在2.3-2.4μm波段。同时该波段还包含有高透过率大气窗口,如1.4-1.9μm,2.0~2.5μm。因而该波段的光探测在航空航天对地扫描成像,探测植物含水量及云、雪或地质制图等领域有重要的应用需求。通过提升In组分,可以在InP衬底上制备出与衬底晶格失配的异变或者赝配InxGa1-xAs(0.53<x≤1)材料,实现对1.7-2.6μm波段的光吸收和响应。然而晶格失配导致材料的结晶缺陷密度大大增加,器件性能大幅降低。该波段的其它探测材料主要有窄禁带的InAs、InSb、PbSe等,均是利用本征带间跃迁产生光吸收。在应用于光探测时也都分别存在应用限制,如InAs、InSb在该波段的光探测率低,PbSe响应速度慢,InAs暗电流大需制冷工作等。
因此有必要开发针对该波段的新型光吸收材料,使其在具有高光吸收系数和量子效率的同时,具有高的材料结晶质量,进而获得更长的载流子寿命和输运特性,提高该波段的光探测性能。量子结构的量子限制效应、电子态耦合效应、声子瓶颈效应等新物理特性为开发新的光吸收材料和光吸收机制,调控材料光学性能开辟了一个新的途径,在实际应用方面也十分具有吸引力。
发明内容
本发明所要解决的技术问题是提供一种用于实现InGaAs光吸收波长扩展的材料结构,该材料结构可以在保证较高材料质量的情况下,根据需要方便地将InGaAs光吸收长波截止波长延伸到1.7-3.0μm之间,特别适合于扩展InGaAs探测器的光响应波长,同时具有其它广泛的应用前景。
本发明的一种用于实现InGaAs光吸收波长扩展的材料结构,是在InP衬底上采用周期性InxGa1-xAs多量子阱耦合超晶格结构,每个超晶格周期包含有一个量子阱层和一个势垒层,采用厚度为a的InxGa1-xAs、0.53<x≤1作为量子阱层,厚度为b的InyGa1-yAs、0≤y<0.53作为势垒层。
所述多量子阱超晶格层间具有电子和空穴的量子态耦合,产生扩展于整个结构的新的载流子微带,通过电子和空穴的微带间跃迁产生光吸收。
所述量子阱层的厚度a为1-10nm。
所述势垒层的厚度b为1-10nm。
材料的光吸收长波截止波长可根据应用需求通过改变量子阱和势垒的In组分、改变阱层和垒层的层厚、或改变势阱和势垒的结构来进行调控:所述材料在室温下的光吸收长波截止波长可调范围为1.7-3μm。
在所述材料的量子阱和势垒层之间采用应变补偿生长机制:量子阱为面内压应变,势垒层为面内张应变,量子阱层和势垒层之间的应变相互补偿。
量子阱层可以是由一层固定In组分的InxGa1-xAs材料组成,也可以是由多个不同In组分InxGa1-xAs的势阱亚层组合而成。势垒层可以是由一层固定In组分的InyGa1-yAs材料组成,也可以是由多个不同In组分InyGa1-yAs的势垒亚层组合而成。
本发明确定了一种将InGaAs材料光吸收长波截止波长扩展至大于1.7μm的材料外延结构,主要包括:
(1)材料的设计思路
为实现长波截止波长大于1.7μm的光吸收,要求材料的能态间跃迁对应能量差小于0.73eV,可采用的常规跃迁机制有:
i、利用具有禁带宽度小于0.73eV的半导体体材料的带间本征跃迁光吸收;
ii、利用半导体量子结构的价带或者导带内的子带间跃迁光吸收;
iii、利用体材料内杂质、缺陷等局域能级到导带或价带连续带的跃迁光吸收。
而对于跃迁吸收而言,其对某一波长光吸收的强弱(即光吸收系数)主要取决于跃迁能级的能态密度和跃迁振子强度。通常而言,基态能态密度大,基态间跃迁的跃迁振子强度高,因而可以实现较高的光吸收系数和较好的光探测应用。而子带间跃迁、局域能级到连续带间的跃迁的态密度和跃迁振子都远低于体材料的基态带间跃迁,因而吸收系数也低数个量级,无法实现较好的光探测应用。因此需要在跃迁能量小于0.73eV的前提下,寻找具有高光吸收系数,高量子效率和高结晶质量的新型材料结构或者新跃迁机制。
微带理论是指在周期性的全同量子结构中,若量子结构间距足够小,使得相邻量子结构中的局域化载流子波函数得以产生明显的相互作用,则会出现类似于体材料中能级共有化效应的量子化能级去局域化,而形成扩展于整个量子结构中的具有一定展宽的新的能带结构,即载流子的微带。微带具有远高于体材料的能态密度和增强的带间跃迁振子强度,因此导带电子微带和价带空穴微带间的跃迁光吸收可以产生远高于体材料的光吸收系数。
在InP、InGaAs材料体系内利用微带跃迁机制可以实现波长超过1.7μm的强光吸收。其一方面好处在于该材料体系生长工艺成熟,便于以较低的成本进行大批量生产。另一方面,周期性量子结构的引入有利于抑制缺陷积累,提高材料总体结晶质量。在InP衬底上,通过生长周期性InxGa1-xAs量子阱形成超晶格结构可以产生载流子微带。采用高In组分InxGa1-xAs(0.53<x≤1)作为量子阱,而采用低In组分InyGa1-yAs材料(0≤y<0.53)作为势垒层。相邻量子阱内的电子和空穴量子化能级分别耦合形成导带微带和价带微带。In组分大于或小于0.53时分别会引入面内压应变和张应变,因而需要考虑量子阱和势垒层之间的应变补偿。利用量子阱超晶格每个周期内的总压应变抵消总张应变,可以保持多层高结晶质量生长而不发生应变弛豫。
(2)材料的生长结构
基于以上设计思路,本发明在InP/InGaAs材料体系内,给出一种包含高In组分InxGa1-xAs(0.53<x≤1)压应变量子阱层和低In组分InyGa1-yAs材料(0≤y<0.53)张应变势垒层的InGaAs应变补偿型多量子阱超晶格材料。相邻量子阱具有强电子态耦合,并在超晶格内分别形成电子和空穴的微带。其微带间跃迁产生的光吸收波长最长可以扩展到约3μm。材料结构如附图1所示。根据In组分x、y值的不同,和量子阱势垒层厚a、b的不同,可以将材料的光吸收截止波长扩展到1.7-3.0μm之间。
具体而言,衬底采用InP(001)衬底。在衬底上外延厚度为c(nm)的InP或者In0.53Ga0.47As缓冲层。在缓冲层上外延2N个周期的量子阱结构。每个周期内包含一层高In组分InxGa1-xAs量子阱,其中0.53<x≤1,厚度为a(nm);一层低In组分InyGa1-yAs势垒材料,其中0≤y<0.53,厚度为b(nm)。其中,高In组分的InxGa1-xAs量子阱层可以采用一层固定In组分材料,也可以采用包含多个不同In组分的亚层组合结构。低In组分的InyGa1-yAs势垒层可以采用一层固定In组分材料,也可以采用包含多个不同In组分的亚层组合结构。量子阱层的厚度a一般在1-10nm之间,以确保量子限制效应。势垒层的厚度b一般也应在1-10nm之间,以保证层间电子态耦合强度。层厚a、b和组分x、y一般应近似满足关系以保证应变补偿度,抑制应变弛豫。
有益效果
(1)本发明采用微带跃迁产生光吸收的新机制,在的InP/InGaAs材料体系内,利用耦合量子阱超晶格产生微带跃迁光吸收,实现光吸收波长的扩展。
(2)本发明微带态密度大,微带间跃迁振子强度高,光吸收系数大,实用价值高,可以实现高性能光吸收或者光探测。
(3)本发明采用InxGa1-xAs/InyGa1-yAs量子阱结构,仅通过改变In组分、层厚和亚层结构即可自由地将量子阱超晶格的光吸收长波截止波长扩展至1.7~3.0μm之间。生长过程中不涉及额外的元素种类,生长可靠性高,控制便利。
(4)本发明采用量子阱压应变、势垒张应变的应变补偿机制,抑制应变弛豫,提高材料结晶质量,易于实现大厚度高质量超晶格的生长,实现高光学吸收系数。
(5)本发明所涉及的InP/InGaAs材料的制备工艺已经十分成熟,所制备单层材料晶体质量高,有利于提高量子阱超晶格材料的可靠性。同时,高产量和大面积均匀性也有利于材料的器件应用。
附图说明
图1为本发明器件的材料外延结构示意图;
图2为长波吸收截止波长为2.1μm的InAs/In0.3Ga0.7As多量子阱超晶格的材料结构示意图;
图3的左图和右图分别为对应于图2中材料结构的实空间沿生长方向的微带能带结构图和倒空间(k)的微带色散关系图;
图4为长波吸收截止波长为2.5μm的In0.3Ga0.7As/InAs/In0.4Ga0.6As多量子阱超晶格的材料结构示意图;
图5的左图和右图分别为对应于图4中材料结构的实空间沿生长方向的微带能带结构图和倒空间(k)的微带色散关系图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
光吸收长波截止波长为2.1μm的InGaAs应变补偿型量子阱超晶格结构的生长:
本实施例目的是获得光吸收长波截止波长为2.1μm的InGaAs应变补偿型量子阱超晶格材料结构。本实施例所示量子阱、势垒层均采用固定In组分InGaAs单层材料,均不包含亚层结构。每个超晶格周期内包含一层3nm厚的InAs压应变量子阱,一层6nm厚的In0.3Ga0.7As张应变势垒。材料整体应变补偿度接近于100%。具体的材料结构如图2所示。其结构由下至上依次包含以下材料:
材料1:半绝缘InP(001)衬底。
材料2:非掺杂InP缓冲层,厚度200nm。
材料3:200个周期的非掺杂InAs/In0.3Ga0.7As多量子阱超晶格层。
其中,材料3由下至上第一个周期的第一层为厚度为3nm的InAs。第200个周期的第二层为厚度6nm的In0.3Ga0.7As。材料3总厚度为1800nm。
材料制备通过常规分子束外延方法实现。该材料的具体分子束外延生长过程如下:
(1)通过预备生长确定在InP(001)衬底上生长完全弛豫的InAs、In0.3Ga0.7As单层薄膜的束源炉温度、衬底温度等生长条件;
(2)在对Epi-Ready InP(001)衬底(半绝缘)进行氧化物脱附处理后,依次生长材料2至材料3,其中每层的厚度、组分均如上所述。
(3)材料3生长完毕后结束生长,在保护气氛下降衬底温度和源炉温度,取出外延材料进行必要的测试。
所获得的InAs/In0.3Ga0.7As应变补偿型多量子阱超晶格材料沿生长方向的能带如图3左图所示。其k空间的微带色散关系如图3右图所示。对应的基态微带跃迁能量为0.583eV,光吸收长波截止波长为2126nm。
实施例2
光吸收长波截止波长为2.5μm的InGaAs应变补偿型量子阱超晶格结构的生长:
本实施例目的是获得光吸收长波截止波长为2.5μm的InGaAs应变补偿型量子阱超晶格材料结构。本实施例所示量子阱采用固定In组分InGaAs单层材料,不包含亚层结构。势垒层采用非对称势垒结构,包含2个不同In组分的InGaAs亚层结构。每个超晶格周期包含三层材料:压应变量子阱为一层厚为1.53nm的InAs,量子阱一侧为一层2nm厚的In0.3Ga0.7As张应变势垒,另一侧为一层2nm厚的In0.4Ga0.6As张应变势垒。材料整体应变补偿度接近于100%。具体的材料结构如图4所示。其结构由下至上依次包含以下材料:
材料1:半绝缘InP(001)衬底。
材料2:非掺杂InP缓冲层,厚度200nm。
材料3:200个周期的非掺杂In0.3Ga0.7As/InAs/In0.4Ga0.6As多量子阱超晶格层。
其中,材料3由下至上第一个周期的第一层为2nm厚的In0.4Ga0.6As。第200个周期的第三层为厚度2nm的In0.3Ga0.7As。材料3总厚度为1106nm。
材料制备通过常规分子束外延方法实现。该材料的具体分子束外延生长过程如下:
(4)通过预备生长确定在InP(001)衬底上生长完全弛豫的InAs、In0.4Ga0.6As及In0.3Ga0.7As单层薄膜的束源炉温度、衬底温度等生长条件;
(5)在对Epi-Ready InP(001)衬底(半绝缘)进行氧化物脱附处理后,依次生长材料2至材料3,其中每层的厚度、组分均如上所述。
(6)材料3生长完毕后结束生长,在保护气氛下降衬底温度和源炉温度,取出外延材料进行必要的测试。
所获得的In0.3Ga0.7As/InAs/In0.4Ga0.6As应变补偿型多量子阱超晶格材料沿生长方向的能带如图5左图所示。其k空间的微带色散关系如图5右图所示。对应的基态微带跃迁能量为0.502eV,光吸收长波截止波长为2470nm。

Claims (5)

1.一种用于实现InGaAs光吸收波长扩展的材料结构,其特征在于:在InP衬底上采用周期性InxGa1-xAs多量子阱耦合超晶格结构,每个超晶格周期包含有一个量子阱层和一个势垒层,采用厚度为a的InxGa1-xAs、0.53<x≤1作为量子阱层,厚度为b的InyGa1-yAs、0≤y<0.53作为势垒层;在所述材料的量子阱层和势垒层之间采用应变补偿生长机制:量子阱层为面内压应变,势垒层为面内张应变,量子阱层和势垒层之间的应变相互补偿;量子阱层的厚度a、组分x和势垒层的厚度b、组分y的关系满足
2.根据权利要求1所述的一种用于实现InGaAs光吸收波长扩展的材料结构,其特征在于:所述量子阱层的厚度a为1-10nm。
3.根据权利要求1所述的一种用于实现InGaAs光吸收波长扩展的材料结构,其特征在于:所述势垒层的厚度b为1-10nm。
4.根据权利要求1所述的一种用于实现InGaAs光吸收波长扩展的材料结构,其特征在于:所述材料在室温下的光吸收长波截止波长可调范围为1.7-3μm。
5.根据权利要求1所述的一种用于实现InGaAs光吸收波长扩展的材料结构,其特征在于:量子阱层由一层固定In组分的InxGa1-xAs材料组成或由多个不同In组分InxGa1-xAs的势阱亚层组合而成;势垒层由一层固定In组分的InyGa1-yAs材料组成或由多个不同In组分InyGa1-yAs的势垒亚层组合而成;其中,量子阱层、势垒层包含亚层时,平均组分与亚层总厚度的关系满足
CN201510947270.8A 2015-12-16 2015-12-16 一种用于实现InGaAs光吸收波长扩展的材料结构 Active CN105449017B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510947270.8A CN105449017B (zh) 2015-12-16 2015-12-16 一种用于实现InGaAs光吸收波长扩展的材料结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510947270.8A CN105449017B (zh) 2015-12-16 2015-12-16 一种用于实现InGaAs光吸收波长扩展的材料结构

Publications (2)

Publication Number Publication Date
CN105449017A CN105449017A (zh) 2016-03-30
CN105449017B true CN105449017B (zh) 2017-11-21

Family

ID=55558999

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510947270.8A Active CN105449017B (zh) 2015-12-16 2015-12-16 一种用于实现InGaAs光吸收波长扩展的材料结构

Country Status (1)

Country Link
CN (1) CN105449017B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5181086A (en) * 1990-05-17 1993-01-19 Mitsubishi Denki Kabushiki Kaisha Strained superlattice semiconductor structure
CN103077979A (zh) * 2013-01-07 2013-05-01 中国科学院上海微系统与信息技术研究所 一种GaAs衬底上扩展波长InGaAs探测器结构
CN103151418A (zh) * 2011-12-07 2013-06-12 有研半导体材料股份有限公司 双垒量子阱结构半导体红外光电探测器及其制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5181086A (en) * 1990-05-17 1993-01-19 Mitsubishi Denki Kabushiki Kaisha Strained superlattice semiconductor structure
CN103151418A (zh) * 2011-12-07 2013-06-12 有研半导体材料股份有限公司 双垒量子阱结构半导体红外光电探测器及其制造方法
CN103077979A (zh) * 2013-01-07 2013-05-01 中国科学院上海微系统与信息技术研究所 一种GaAs衬底上扩展波长InGaAs探测器结构

Also Published As

Publication number Publication date
CN105449017A (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
Wu et al. Quantum dot optoelectronic devices: lasers, photodetectors and solar cells
Soref Silicon‐based group IV heterostructures for optoelectronic applications
Lam et al. Submonolayer InGaAs/GaAs quantum dot solar cells
Lumb et al. Quantum wells and superlattices for III-V photovoltaics and photodetectors
Hubbard et al. Effect of vicinal substrates on the growth and device performance of quantum dot solar cells
Gershoni et al. Electronic energy levels in In x Ga 1− x As/InP strained-layer superlattices
US20130043459A1 (en) Long Wavelength Infrared Superlattice
Timofeev et al. Studying the morphology, structure and band diagram of thin GeSiSn films and their mid-infrared photoresponse
Mal et al. Calculation of band structure and optical gain of type-II GaSbBi/GaAs quantum wells using 14-band k· p Hamiltonian
Doyennette et al. GaN-based quantum dot infrared photodetector operating at 1.38 µm
Lu et al. InSb quantum dots for the mid-infrared spectral range grown on GaAs substrates using metamorphic InAs buffer layers
Vyskočil et al. GaAsSb/InAs/(In) GaAs type II quantum dots for solar cell applications
US20130043458A1 (en) Long Wavelength Infrared Superlattice
US20110272672A1 (en) Long Wavelength Infrared Superlattice
CN105449017B (zh) 一种用于实现InGaAs光吸收波长扩展的材料结构
Bhusal et al. Band structure and absorption properties of GaAs 1− x N x∕ InAs 1− y N y short period superlattices strained to InP (001)
Jdidi et al. A multi-color quantum well photodetector for mid-and long-wavelength infrared detection
JP2011071306A (ja) 光検知器及びその製造方法
Wendav et al. Photoluminescence from ultrathin Ge-rich multiple quantum wells observed up to room temperature: Experiments and modeling
Guo et al. First step to Si photonics: synthesis of quantum dot light‐emitters on GaP substrate by MBE
Chen et al. Introduction of optical imaging and sensing: materials, devices, and applications
Timofeev et al. Structural, optical and electrophysical properties of MBE-based multistacked GeSiSn quantum dots
Park et al. Metamorphic InGaAs/InAsPSb Quantum Well Light Emitting Diodes for Operation in the Short‐Wave Infrared Region
Zhai et al. Strain-compensated InP-based InGaAsInAlAs quantum cascade infrared detectors for 3-5μm atmospheric window
Park et al. Optoelectronic Applications of ZnO/ZnMgO Quantum well Lasers in the Blue and the UV Spectral Regions

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant