CN105408703A - Distributor for use in a vapor compression system - Google Patents
Distributor for use in a vapor compression system Download PDFInfo
- Publication number
- CN105408703A CN105408703A CN201380077235.4A CN201380077235A CN105408703A CN 105408703 A CN105408703 A CN 105408703A CN 201380077235 A CN201380077235 A CN 201380077235A CN 105408703 A CN105408703 A CN 105408703A
- Authority
- CN
- China
- Prior art keywords
- distributor
- capsule
- tube bank
- tube bundle
- opening
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000006835 compression Effects 0.000 title claims abstract description 29
- 238000007906 compression Methods 0.000 title claims abstract description 29
- 239000012530 fluid Substances 0.000 claims abstract description 52
- 239000002775 capsule Substances 0.000 claims description 37
- 238000000034 method Methods 0.000 claims description 19
- 238000009826 distribution Methods 0.000 abstract description 14
- 239000003507 refrigerant Substances 0.000 description 87
- 239000007788 liquid Substances 0.000 description 48
- 239000007921 spray Substances 0.000 description 11
- 230000008569 process Effects 0.000 description 10
- 238000012546 transfer Methods 0.000 description 9
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- 239000011552 falling film Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 239000012267 brine Substances 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 3
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000004378 air conditioning Methods 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000003595 mist Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000009736 wetting Methods 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 210000004262 dental pulp cavity Anatomy 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- 238000007430 reference method Methods 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/02—Evaporators
- F25B39/028—Evaporators having distributing means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/0206—Heat exchangers immersed in a large body of liquid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D3/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits
- F28D3/04—Distributing arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D5/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation
- F28D5/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation in which the evaporating medium flows in a continuous film or trickles freely over the conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2339/00—Details of evaporators; Details of condensers
- F25B2339/02—Details of evaporators
- F25B2339/024—Evaporators with refrigerant in a vessel in which is situated a heat exchanger
- F25B2339/0242—Evaporators with refrigerant in a vessel in which is situated a heat exchanger having tubular elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/0068—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
- F28D2021/0071—Evaporators
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
Abstract
Description
相关申请的交叉引用Cross References to Related Applications
本申请要求于2013年6月7日提交的名称为“蒸汽压缩系统”的第13/912634号美国非临时申请的优先权及权益。This application claims priority to and benefit of US Non-provisional Application No. 13/912634, filed June 7, 2013, entitled "Vapor Compression System."
背景技术Background technique
本申请总体涉及制冷、空调和冷冻液体系统中的蒸汽压缩系统。本申请更具体地涉及蒸汽压缩系统中的分配系统和方法。This application relates generally to vapor compression systems in refrigeration, air conditioning and refrigerated liquid systems. The present application relates more particularly to dispensing systems and methods in vapor compression systems.
在暖通空调系统中使用的常规冷冻液系统包括一个蒸发器,用以在系统的制冷剂与待冷却的其它液体之间进行热能传递。一种类型的蒸发器包括具有形成管束的多根管的壳体,待冷却的液体在管中循环。制冷剂被引导至与壳体内部的管束的外部或外侧表面相接触,导致待冷却液体与制冷剂之间发生热能传递。例如,在通常所谓的“降膜式”蒸发器中可以通过喷射或其它类似的技术将制冷剂沉积到管束的外侧表面上。在另一例子中,所述管束的外侧表面可以全部或部分地浸入通常所谓的“淹没式”蒸发器中的液体制冷剂中。在又一例子中,管束的一部分可以具有沉积在外侧表面上的制冷剂,并且所述管束的另一部分可以浸入通常被称为“混合降膜式”蒸发器中的液体制冷剂中。Conventional refrigerant fluid systems used in HVAC systems include an evaporator to transfer thermal energy between the system's refrigerant and other fluids to be cooled. One type of evaporator comprises a shell with a plurality of tubes forming a tube bundle through which the liquid to be cooled circulates. Refrigerant is brought into contact with the outer or outside surface of the tube bundle inside the shell, resulting in thermal energy transfer between the liquid to be cooled and the refrigerant. For example, in what is commonly referred to as a "falling film" evaporator, the refrigerant may be deposited onto the outside surfaces of the tube bundle by spraying or other similar techniques. In another example, the outside surface of the tube bundle may be fully or partially immersed in the liquid refrigerant in what is commonly called a "flooded" evaporator. In yet another example, a portion of a tube bundle may have refrigerant deposited on the outside surface, and another portion of the tube bundle may be immersed in liquid refrigerant in what is commonly referred to as a "hybrid falling film" evaporator.
由于与液体的热能传递,制冷剂被加热而转换为汽态,然后返回压缩机并且在此处蒸汽被压缩,以开始另一个制冷剂循环。冷却的液体可以被循环至遍布在整个建筑物中的多个热交换器。来自建筑物中的热空气经过所述热交换器,在所述热交换器处冷却的液体被加热,同时冷却建筑物的空气。由建筑物的空气加热的液体返回到蒸发器中,以重复该过程。Due to thermal energy transfer with the liquid, the refrigerant is heated to convert to a vapor state and then returns to the compressor where the vapor is compressed to start another refrigerant cycle. The cooled liquid can be circulated to multiple heat exchangers throughout the building. The hot air from the building passes through the heat exchanger where the cooled liquid is heated while cooling the building air. The liquid heated by the building's air returns to the evaporator to repeat the process.
发明内容Contents of the invention
本发明涉及一种用于蒸汽压缩系统中的分配器,包括配置成定位于具有管束的热交换器中的封壳(enclosure),所述管束具有在所述热交换器中的大体上水平延伸的多根管。在所述封壳的被定位成面对所述管束的一个端部中形成至少一个分配装置,所述至少一个分配装置被配置成将进入所述分配器中的流体施加至所述管束上。所述封壳具有约1/2:1至约10:1之间的长宽比。The present invention relates to a distributor for use in a vapor compression system comprising an enclosure configured to be positioned in a heat exchanger having a tube bundle having a substantially horizontal extension in said heat exchanger of multiple tubes. At least one distribution device is formed in one end of the enclosure positioned facing the tube bundle, the at least one distribution device being configured to apply fluid entering the distributor to the tube bundle. The capsule has an aspect ratio between about 1/2:1 and about 10:1.
本发明还涉及一种用于蒸汽压缩系统中的分配器,包括配置成定位于具有管束的热交换器中的封壳,所述管束包括在所述热交换器中的大体上水平延伸的多根管。在所述封壳的被定位成面对所述管束的一个端部中形成至少一个分配装置,所述至少一个分配装置被配置成将进入所述分配器中的流体施加至所述管束上。所述封壳具有约1/2:1至约10:1之间的长宽比。所述封壳的所述端部包括一个端部特征,并且所述至少一个分配装置包括形成于所述端部特征中的至少一个开口。所述至少一个开口被配置和被设置为在与所述系统中的分配器的操作相关的基本上整个流体压力范围内以约60度至约180度之间的喷射角分配流体。The present invention also relates to a distributor for use in a vapor compression system comprising an enclosure configured to be positioned in a heat exchanger having a tube bundle comprising a plurality of substantially horizontally extending tubes in said heat exchanger. root canal. At least one distribution device is formed in one end of the enclosure positioned facing the tube bundle, the at least one distribution device being configured to apply fluid entering the distributor to the tube bundle. The capsule has an aspect ratio between about 1/2:1 and about 10:1. The end of the enclosure includes an end feature, and the at least one distribution device includes at least one opening formed in the end feature. The at least one opening is configured and arranged to distribute fluid at a spray angle of between about 60 degrees and about 180 degrees over substantially the entire range of fluid pressures associated with operation of the dispenser in the system.
本发明另外还涉及一种在蒸汽压缩系统中分配流体的方法。所述方法包括提供被配置成定位于具有管束的热交换器中的封壳,所述管束包括在所述热交换器中的大体上水平延伸的多根管。所述方法包括在所述封壳的被定位成面对所述管束的一个端部中形成至少一个分配装置,所述至少一个分配装置被配置成将进入所述分配器中的流体施加至所述管束上。所述封壳具有约1/2:1至约10:1之间的长宽比。所述方法包括操作所述蒸汽压缩系统。The invention additionally relates to a method of distributing fluid in a vapor compression system. The method includes providing an enclosure configured to be positioned in a heat exchanger having a tube bundle including a plurality of tubes extending generally horizontally in the heat exchanger. The method includes forming at least one distribution device in one end of the enclosure positioned to face the tube bundle, the at least one distribution device configured to apply fluid entering the distributor to the above the tube bundle. The capsule has an aspect ratio between about 1/2:1 and about 10:1. The method includes operating the vapor compression system.
附图说明Description of drawings
图1示出了用于暖通空调系统的一个示例性实施方案。Figure 1 shows an exemplary embodiment for an HVAC system.
图2示出了一个示例性蒸汽压缩系统的等距视图。Figure 2 shows an isometric view of an exemplary vapor compression system.
图3和4示意性地示出了所述蒸汽压缩系统的示例性实施方案。Figures 3 and 4 schematically illustrate exemplary embodiments of the vapor compression system.
图5A示出了示例性蒸发器的分解的部分剖视图。Figure 5A shows an exploded partial cross-sectional view of an exemplary evaporator.
图5B示出了图5A中的蒸发器的俯视等距视图。Figure 5B shows a top isometric view of the evaporator in Figure 5A.
图5C示出了沿图5B中的线5-5截取的蒸发器的截面图。Figure 5C shows a cross-sectional view of the evaporator taken along line 5-5 in Figure 5B.
图6A示出了示例性蒸发器的俯视等距视图。Figure 6A shows a top isometric view of an exemplary evaporator.
图6B和6C示出了沿图6A中的线6-6截取的蒸发器的截面图。6B and 6C show cross-sectional views of the evaporator taken along line 6-6 in FIG. 6A.
图7示出了封壳的一个示例性实施方案的上部立体图。Figure 7 shows an upper perspective view of an exemplary embodiment of a capsule.
图8示出了图7中的封壳的平面图。FIG. 8 shows a plan view of the enclosure in FIG. 7 .
图9示出了沿图7中的线9-9截取的封壳的部分前视图。Figure 9 shows a partial front view of the enclosure taken along line 9-9 in Figure 7 .
图10示出了沿图9中的线10-10截取的封壳的截面图。FIG. 10 shows a cross-sectional view of the enclosure taken along line 10 - 10 in FIG. 9 .
图11示出了沿图9中的线10-10截取的一个示例性实施方案的封壳的截面图。FIG. 11 shows a cross-sectional view of the enclosure of an exemplary embodiment taken along line 10 - 10 in FIG. 9 .
图12示出了沿图9中的线10-10截取的另一示例性实施方案的封壳的截面图。FIG. 12 shows a cross-sectional view of another exemplary embodiment enclosure taken along line 10 - 10 in FIG. 9 .
图13示出了沿图9中的线10-10截取的另一示例性实施方案的封壳的截面图。FIG. 13 shows a cross-sectional view of another exemplary embodiment enclosure taken along line 10 - 10 in FIG. 9 .
图14示出了沿图9中的线10-10截取的又另一示例性实施方案的封壳的截面图。FIG. 14 shows a cross-sectional view of yet another exemplary embodiment enclosure taken along line 10 - 10 in FIG. 9 .
图15示出了封壳的一个示例性实施方案。Figure 15 shows an exemplary embodiment of a capsule.
具体实施方式detailed description
图1示出暖通空调(HVAC)系统10的一个示例性环境,所述系统10包括在典型商业设施的建筑物12中使用的冷冻液体系统。系统10可包含蒸汽压缩系统14,蒸汽压缩系统14可供应可用以冷却建筑物12的冷冻液体。系统10可包含:锅炉16,用以供应可用以对建筑物12加热的受热液体;以及使空气循环通过建筑物12的空气分配系统。所述空气分配系统还可包含空气返回管道18、空气供应管道20和空气处置器22。空气处置器22可包含热交换器,所述热交换器通过导管24连接到锅炉16和蒸汽压缩系统14。空气处置器22中的热交换器可依据系统10的操作模式,接收来自锅炉16的受热液体或者接收来自蒸汽压缩系统14的冷冻液体。所示的系统10在建筑物12的每一层上均具有独立的空气处置器,但应了解,在两个层或更多个层之间可共享一些组件。FIG. 1 illustrates one exemplary environment for a heating, ventilation and air conditioning (HVAC) system 10 including a chilled liquid system used in a building 12 of a typical commercial facility. System 10 may include a vapor compression system 14 that may supply refrigerated liquid that may be used to cool building 12 . System 10 may include a boiler 16 to supply heated liquid that may be used to heat building 12 , and an air distribution system that circulates air through building 12 . The air distribution system may also include an air return duct 18 , an air supply duct 20 and an air handler 22 . Air handler 22 may include a heat exchanger connected to boiler 16 and vapor compression system 14 by conduit 24 . The heat exchanger in air handler 22 may receive heated liquid from boiler 16 or chilled liquid from vapor compression system 14 depending on the mode of operation of system 10 . The system 10 is shown with separate air handlers on each floor of the building 12, although it is understood that some components may be shared between two or more floors.
图2和图3示出可用在HVAC系统——例如HVAC系统10——中的一个示例性蒸汽压缩系统14。蒸汽压缩系统14可使制冷剂循环经过由马达50驱动的压缩器32、冷凝器34、膨胀装置36以及液体冷冻器或蒸发器38。蒸汽压缩系统14还可包含控制面板40,该控制面板40可包含模/数(A/D)转换器42、微处理器44、非易失性存储器46以及接口板48。可用作蒸汽压缩系统14中的制冷剂的流体的一些实施例是基于氢氟烃(HFC)的制冷剂,例如R-410A、R-407、R-134a、氢氟烯烃(HFO)、例如氨气(NH3)的“天然”制冷剂、R-717、二氧化碳(CO2)、R-744或烃基制冷剂、水蒸汽或任一其它合适类型的制冷剂。在示例性实施方案中,蒸汽压缩系统14可使用以下每种类型器件中的一个或多个:VSD52、马达50、压缩器32、冷凝器34和/或蒸发器38中。2 and 3 illustrate an exemplary vapor compression system 14 that may be used in an HVAC system, such as HVAC system 10 . Vapor compression system 14 may circulate refrigerant through compressor 32 driven by motor 50 , condenser 34 , expansion device 36 , and liquid refrigerator or evaporator 38 . The vapor compression system 14 may also include a control panel 40 that may include an analog-to-digital (A/D) converter 42 , a microprocessor 44 , non-volatile memory 46 , and an interface board 48 . Some examples of fluids that may be used as refrigerants in the vapor compression system 14 are hydrofluorocarbon (HFC) based refrigerants such as R-410A, R-407, R-134a, hydrofluoroolefins (HFO), such as "Natural" refrigerants of ammonia (NH3), R-717, carbon dioxide (CO2), R-744 or hydrocarbon based refrigerants, water vapor or any other suitable type of refrigerant. In an exemplary embodiment, vapor compression system 14 may utilize one or more of each type of device: VSD 52 , motor 50 , compressor 32 , condenser 34 , and/or evaporator 38 .
与压缩器32一起使用的马达50可由变速传动器(VSD)52提供动力,也可以从交流(AC)或直流(DC)电源直接供电。如果使用VSD52,那么VSD52从AC电源接收具有特定的固定线电压和固定线频率的AC电力,且将具有可变电压和频率的电力提供到马达50。马达50可包含可由VSD提供动力或从AC或DC电源直接供电的任一类型的电动机。举例来说,马达50可为切换式磁阻电动机、感应电动机、电子换向永磁电动机或任一其它合适的马达类型。在替代示例性实施方案中,例如蒸气或燃气涡轮机或引擎等其它驱动机构以及相关联组件可用以驱动压缩器32。The motor 50 used with the compressor 32 can be powered by a variable speed drive (VSD) 52 or can be powered directly from an alternating current (AC) or direct current (DC) power source. If a VSD 52 is used, the VSD 52 receives AC power with a specific fixed line voltage and fixed line frequency from an AC power source and provides power with a variable voltage and frequency to the motor 50 . Motor 50 may comprise any type of electric motor that may be powered by a VSD or directly from an AC or DC power source. For example, motor 50 may be a switched reluctance motor, an induction motor, an electronically commutated permanent magnet motor, or any other suitable motor type. In alternative exemplary embodiments, other drive mechanisms such as steam or gas turbines or engines and associated components may be used to drive compressor 32 .
压缩器32对制冷剂蒸汽进行压缩并且通过排放管线将蒸汽递送到冷凝器34。压缩器32可为离心压缩器、螺旋压缩器、往复式压缩器、旋转压缩器、摆杆压缩器、涡旋式压缩器、涡轮压缩器,或任一其它合适的压缩器。由压缩器32递送到冷凝器34的制冷剂蒸汽将热传递到流体,例如水或空气。由于与流体发生热传递,因此制冷剂蒸汽在冷凝器34中冷凝为制冷剂液体。来自冷凝器34的液体制冷剂流过膨胀装置36到达蒸发器38。在图3所示的示例性实施方案中,冷凝器34是水冷却式的,且包含连接到冷却塔56的管束54。Compressor 32 compresses the refrigerant vapor and delivers the vapor to condenser 34 through a discharge line. Compressor 32 may be a centrifugal compressor, screw compressor, reciprocating compressor, rotary compressor, rocker compressor, scroll compressor, turbo compressor, or any other suitable compressor. Refrigerant vapor delivered by compressor 32 to condenser 34 transfers heat to a fluid, such as water or air. The refrigerant vapor condenses into a refrigerant liquid in condenser 34 due to heat transfer with the fluid. Liquid refrigerant from condenser 34 flows through expansion device 36 to evaporator 38 . In the exemplary embodiment shown in FIG. 3 , condenser 34 is water cooled and includes a tube bundle 54 connected to a cooling tower 56 .
递送到蒸发器38的液体制冷剂从另一流体吸收热,并且发生了相变而成为制冷剂蒸汽,所述另一流体与冷凝器34所用的流体类型可以相同也可以不同。在图3所示的示例性实施方案中,蒸发器38包含具有供应管线60S和返回管线60R的管束,其中供应管线60S和返回管线60R连接到冷却负荷62上。过程流体,例如水、乙二醇、氯化钙卤水、氯化钠卤水或任一其它合适的液体,经由返回管线60R进入蒸发器38并且经由供应管线60S退出蒸发器38。蒸发器38使管中的过程流体的温度降低。蒸发器38中的管束可包含多根管和多个管束。蒸汽制冷剂退出蒸发器38并且通过吸入管线返回到压缩器32,以完成循环。The liquid refrigerant delivered to the evaporator 38 absorbs heat from another fluid, which may or may not be the same type as the fluid used by the condenser 34 , and undergoes a phase change to a refrigerant vapor. In the exemplary embodiment shown in FIG. 3 , the evaporator 38 comprises a tube bundle having a supply line 60S and a return line 60R connected to a cooling load 62 . Process fluid, such as water, glycol, calcium chloride brine, sodium chloride brine, or any other suitable liquid, enters evaporator 38 via return line 60R and exits evaporator 38 via supply line 60S. The evaporator 38 reduces the temperature of the process fluid in the tube. The tube bundle in evaporator 38 may contain multiple tubes and multiple tube bundles. Vapor refrigerant exits evaporator 38 and returns to compressor 32 through the suction line to complete the cycle.
图4类似于图3,所示为具有中间回路64的制冷剂回路,中间回路64可安置在冷凝器34与膨胀装置36之间从而增加冷却容量、提高效率和性能。中间回路64具有入口管线68,入口管线68可以直接连接到冷凝器34或者可以与冷凝器34成流体连通。如图示,入口管线68包含位于中间容器70上游的膨胀装置66。在一个示例性实施方案中,中间容器70可为闪蒸罐,也称为闪蒸中间冷却器。在替代示例性实施方案中,中间容器70可被配置为热交换器或“表面经济器”。在闪蒸中间冷却器布置中,第一膨胀装置66用以降低从冷凝器34接收的液体的压力。在闪蒸中间冷却器中的膨胀过程期间,一部分液体蒸发。中间容器70可用以使蒸发的蒸汽与从冷凝器接收的液体分离。蒸发的液体可以由压缩器32通过管线74汲取到一个端口,这在介于吸入侧与排放侧之间的压力下进行或者在压缩的中间阶段进行。未蒸发的液体通过膨胀过程被冷却,且收集于中间容器70的底部,通过包括第二膨胀装置36的管线72,在底部的所述液体被回收再流动到蒸发器38。Figure 4 is similar to Figure 3 and shows a refrigerant circuit with an intermediate circuit 64 that may be placed between the condenser 34 and the expansion device 36 to increase cooling capacity, efficiency and performance. The intermediate circuit 64 has an inlet line 68 which may be directly connected to the condenser 34 or may be in fluid communication with the condenser 34 . As shown, inlet line 68 includes expansion device 66 upstream of intermediate vessel 70 . In an exemplary embodiment, intermediate vessel 70 may be a flash tank, also known as a flash intercooler. In an alternate exemplary embodiment, intermediate vessel 70 may be configured as a heat exchanger or "surface economizer." In a flash intercooler arrangement, the first expansion device 66 is used to reduce the pressure of the liquid received from the condenser 34 . During the expansion process in the flash intercooler, a portion of the liquid evaporates. An intermediate vessel 70 may be used to separate evaporated vapor from liquid received from the condenser. The vaporized liquid can be drawn by the compressor 32 to a port through line 74, either at a pressure between the suction side and the discharge side or at an intermediate stage of compression. The unevaporated liquid is cooled by the expansion process and collected at the bottom of the intermediate vessel 70 , through the line 72 comprising the second expansion device 36 , said liquid at the bottom is recovered and flows to the evaporator 38 .
如本领域技术人员已知,在“表面中间冷却器”布置中,实施过程稍微不同。中间回路64可以类似于上文描述的方式操作,不同的是中间回路64仅从冷凝器34接收制冷剂的一部分且其余制冷剂直接行进到膨胀装置36,而不是如图4所示从冷凝器34接收全部量的制冷剂。In a "surface intercooler" arrangement, as known to those skilled in the art, the implementation is slightly different. The intermediate circuit 64 may operate in a manner similar to that described above, except that the intermediate circuit 64 receives only a portion of the refrigerant from the condenser 34 and the remainder of the refrigerant travels directly to the expansion device 36 rather than from the condenser as shown in FIG. 4 . 34 receives the full amount of refrigerant.
图5A到图5C示出被配置为“混合降膜式”蒸发器的一个蒸发器的示例性实施方案。如图5A到图5C中所示,蒸发器138包含具有形成管束78的多根管的大体上圆柱形壳体76,管束78沿着壳体76的长度方向大体上水平地延伸。至少一个支撑件116可定位于壳体76内以支撑管束78中的所述多根管。合适的流体,例如水、乙烯、乙二醇或氯化钙卤水流过管束78的各个管。定位于管束78上方的分配器80从多个位置将制冷剂110分配、沉积或施加到管束78中的各管上。在一个示例性实施方案中,由分配器80沉积的制冷剂可以完全是液体制冷剂,但在另一示例性实施方案中,由分配器80沉积的制冷剂可包含液体制冷剂和蒸汽制冷剂。5A-5C illustrate an exemplary embodiment of an evaporator configured as a "hybrid falling film" evaporator. As shown in FIGS. 5A-5C , evaporator 138 includes a generally cylindrical shell 76 having a plurality of tubes forming a tube bundle 78 extending generally horizontally along the length of shell 76 . At least one support 116 may be positioned within housing 76 to support the plurality of tubes in tube bundle 78 . A suitable fluid, such as water, ethylene, glycol, or calcium chloride brine flows through the individual tubes of tube bundle 78 . Distributor 80 positioned above tube bundle 78 distributes, deposits or applies refrigerant 110 to the individual tubes in tube bundle 78 from multiple locations. In one exemplary embodiment, the refrigerant deposited by the distributor 80 may be entirely liquid refrigerant, but in another exemplary embodiment, the refrigerant deposited by the distributor 80 may contain liquid refrigerant and vapor refrigerant .
在管束78的各管周围流动而不改变状态的液体制冷剂收集于壳体76的下部部分中。所收集的液体制冷剂可形成液体制冷剂的池或贮集区82。从分配器80的沉积位置可包含相对于管束78的纵向位置或横向位置的任意组合。在另一示例性实施方案中,从分配器80的沉积位置不限于沉积到管束78的上部各管的沉积位置。分配器80可包含由制冷剂的分散源来供料的多个喷嘴。在一个示例性实施方案中,分散源是一根连接到制冷剂源(例如冷凝器34)的管。喷嘴包含喷射喷嘴,但也包含可以将制冷剂导引或引导到管的表面上的机械加工的开口。喷嘴可以按照预定模式(例如喷射流模式)来施加制冷剂,使得管束78的上排的管被覆盖。管束78各管可被布置来促进制冷剂以如下形式的流动,所述制冷剂的形式可以是围绕管表面的膜、聚结而形成液滴的液体制冷剂,或在一些实例中,位于管表面底部的液体制冷剂的帘或幕。所形成的幕促进管表面的润湿,这增强了在管束78的各管内流动的流体与在管束78的各管的表面周围流动的制冷剂之间的热传递效率。Liquid refrigerant flowing around the tubes of tube bundle 78 without changing state collects in the lower portion of shell 76 . The collected liquid refrigerant may form a pool or reservoir 82 of liquid refrigerant. The deposition position of the slave distributor 80 may comprise any combination of longitudinal or transverse positions relative to the tube bundle 78 . In another exemplary embodiment, the deposition locations from the distributor 80 are not limited to deposition locations to the upper tubes of the tube bundle 78 . Distributor 80 may comprise a plurality of nozzles fed by a dispersed source of refrigerant. In an exemplary embodiment, the dispersion source is a tube connected to a refrigerant source (eg, condenser 34). Nozzles include spray nozzles, but also machined openings that can direct or direct refrigerant onto the surface of the tube. The nozzles may apply refrigerant in a predetermined pattern, such as a spray pattern, such that the upper row of tubes of the tube bundle 78 is covered. The tubes of tube bundle 78 may be arranged to facilitate the flow of refrigerant in the form of a film around the surface of the tubes, a liquid refrigerant coalescing to form droplets, or, in some examples, located in the tubes. A curtain or curtain of liquid refrigerant at the bottom of a surface. The curtain formed promotes wetting of the tube surfaces, which enhances the efficiency of heat transfer between the fluid flowing within the individual tubes of the tube bundle 78 and the refrigerant flowing around the surfaces of the individual tubes of the tube bundle 78 .
在液体制冷剂的池82中,管束140可浸入其中或至少部分浸入其中,以提供制冷剂与过程流体之间的额外热能传递,从而蒸发液体制冷剂的池82。在示例性实施方案中,管束78可至少部分地定位于管束140上方(即,至少部分地重叠)。在一个示例性实施方案中,蒸发器138包括一个双通系统,其中待冷却的过程流体首先在管束140的管内流动,且随后被引导以在与管束140中的流动相反的方向上在管束78的各管内流动。在所述双通系统的第二通路中,在管束78中流动的流体的温度降低,因此需要与在管束78的表面上流动的制冷剂之间发生较少量的热传递,以获得具有希望温度的过程流体。In the pool 82 of liquid refrigerant, the tube bundle 140 may be submerged or at least partially submerged therein to provide additional thermal energy transfer between the refrigerant and the process fluid, thereby evaporating the pool 82 of liquid refrigerant. In an exemplary embodiment, tube bundle 78 may be positioned at least partially above (ie, at least partially overlap) tube bundle 140 . In an exemplary embodiment, evaporator 138 comprises a two-pass system in which the process fluid to be cooled first flows within the tubes of tube bundle 140 and is then directed to flow through tube bundle 78 in a direction opposite to the flow in tube bundle 140. flow in each tube. In the second pass of the two-pass system, the temperature of the fluid flowing in the tube bundle 78 is reduced and therefore a lesser amount of heat transfer needs to occur with the refrigerant flowing on the surface of the tube bundle 78 to obtain the desired temperature of the process fluid.
应了解,虽然前面描述了一个双通系统,其中第一通路与管束140相关联且第二通路与管束78相关联,但也设想了其它可能的布置。举例来说,蒸发器138可以包括一个单通系统,其中过程流体以同一方向流过管束140和管束78。或者,蒸发器138可包括一个三通系统,其中两个通路与管束140相关联而其余一个通路与管束78相关联,或其中一个通路与管束140相关联而其余两个通路与管束78相关联。此外,蒸发器138可包括一个交替式的双通系统,其中一个通路与管束78和管束140两者相关联,且第二通路也与管束78和管束140两者相关联。在一个示例性实施方案中,管束78至少部分地定位于管束140上方,使管束78与管束140之间存在分离的间隙。在又一示例性实施方案中,罩86覆于管束78上,其中罩86朝向所述间隙延伸且终止于所述间隙附近。总之,本发明设想了具有任何通路数目的系统,其中每一通路可与管78和管束140之一或两者相关联。It should be appreciated that while the foregoing describes a two-pass system in which a first pass is associated with tube bundle 140 and a second pass is associated with tube bundle 78 , other possible arrangements are contemplated. For example, evaporator 138 may comprise a single pass system in which process fluid flows through tube bank 140 and tube bank 78 in the same direction. Alternatively, evaporator 138 may comprise a three-way system in which two passages are associated with tube bundle 140 and the remaining one is associated with tube bundle 78, or in which one passage is associated with tube bundle 140 and the remaining two passages are associated with tube bundle 78 . Additionally, evaporator 138 may include an alternating two-pass system in which one pass is associated with both tube bundle 78 and tube bundle 140 and a second pass is also associated with both tube bundle 78 and tube bundle 140 . In an exemplary embodiment, tube bundle 78 is positioned at least partially above tube bundle 140 such that there is a separation gap between tube bundle 78 and tube bundle 140 . In yet another exemplary embodiment, a shroud 86 overlies the tube bundle 78, wherein the shroud 86 extends toward the gap and terminates adjacent the gap. In general, the present invention contemplates systems having any number of passages, where each passage may be associated with either or both tubes 78 and tube bundles 140 .
封壳或罩86定位于管束78上方以大体上阻挡交叉流动发生,交叉流动即蒸汽制冷剂或液体和蒸汽制冷剂106在管束78的各管之间的横向流动。罩86定位于管束78的管上方并且横向界定了管束78的各管。罩86包含定位于壳体76的上部部分附近的上部端部88。分配器80可定位在罩86与管束78之间。在又一示例性实施方案中,分配器80可定位于罩86附近但在罩86外部,使得分配器80不在罩86与管束78之间。然而,即使分配器80不在罩86与管束78之间,分配器80的喷嘴也仍被配置以将制冷剂引导或施加到管的表面上。罩86的上部端部88经配置以大体上防止所施加的制冷剂110和部分蒸发的制冷剂(也就是液体和/或蒸汽制冷剂106)的流直接流动到出口104。而是,所施加的制冷剂110和制冷剂106受罩86的限制,且更具体来说,被迫在壁92之间向下行进,之后制冷剂才可经由罩86中的开放端部94退出。蒸汽制冷剂96在罩86周围的流动还涉及所蒸发的制冷剂从液体制冷剂的池82流出。Enclosure or shroud 86 is positioned over tube bundle 78 to substantially block cross flow, ie, lateral flow of vapor refrigerant or liquid and vapor refrigerant 106 between the tubes of tube bundle 78 , from occurring. The shroud 86 is positioned over the tubes of the tube bundle 78 and laterally bounds the tubes of the tube bundle 78 . Cover 86 includes an upper end 88 positioned adjacent an upper portion of housing 76 . Distributor 80 may be positioned between shroud 86 and tube bundle 78 . In yet another exemplary embodiment, the distributor 80 may be positioned near the shroud 86 but outside of the shroud 86 such that the distributor 80 is not between the shroud 86 and the tube bundle 78 . However, even though distributor 80 is not between shroud 86 and tube bundle 78, the nozzles of distributor 80 are still configured to direct or apply refrigerant onto the surfaces of the tubes. The upper end 88 of the shroud 86 is configured to substantially prevent the flow of applied refrigerant 110 and partially evaporated refrigerant (ie, liquid and/or vapor refrigerant 106 ) from flowing directly to the outlet 104 . Instead, the applied refrigerant 110 and refrigerant 106 are confined by the shroud 86 and, more specifically, forced to travel downward between the walls 92 before the refrigerant can pass through the open end 94 in the shroud 86 quit. The flow of vapor refrigerant 96 around the shroud 86 also involves the flow of evaporated refrigerant from the pool 82 of liquid refrigerant.
应了解,至少上文标示的相对性术语关于本公开文本中的其它示例性实施方案是非限制性的。举例来说,罩86可相对于先前论述的其它蒸发器组件而旋转,也就是说,包含壁92的罩86不限于垂直定向。在罩86围绕大体上平行于管束78的各管的轴线进行了充分旋转后,可以认为罩86不再是“定位于”管束78的各管“上方”也不再是“横向界定”管束78的各管。类似地,罩86的“上部”端部88可以不再位于壳体76的“上部部分”附近,并且其它示例性实施方案不限于罩与壳体之间的此种布置。在示例性实施方案中,罩86在覆盖住管束78之后便结束,但在另一示例性实施方案中,罩86在覆盖住管束78之后仍进一步延伸。It should be understood that at least the relative terms identified above are non-limiting with respect to the other exemplary embodiments in this disclosure. For example, the shroud 86 may be rotatable relative to the other evaporator components previously discussed, that is, the shroud 86 including the wall 92 is not limited to a vertical orientation. After the shroud 86 has been sufficiently rotated about an axis generally parallel to the tubes of the tube bundle 78, the shroud 86 may be considered to no longer be "positioned over" the tubes of the tube bundle 78 nor to "laterally bound" the tube bundle 78. of each tube. Similarly, the "upper" end 88 of the shroud 86 may no longer be located adjacent the "upper portion" of the housing 76, and other exemplary embodiments are not limited to such an arrangement between the shroud and the housing. In the exemplary embodiment, cover 86 ends after covering tube bundle 78 , but in another exemplary embodiment, cover 86 extends further after covering tube bundle 78 .
在罩86迫使制冷剂106在壁92之间向下行进穿过开放端部94之后,蒸汽制冷剂的流动方向突然改变,之后在壳体76与壁92之间的空间内从壳体76的下部部分行进到壳体76的上部部分。结合重力效应,流动方向的突然改变导致所有挟带的制冷剂液滴中的一部分与液体制冷剂82或壳体76碰撞,进而使得这些液滴从蒸汽制冷剂96的流中移除。而且,沿着罩86的长度方向在壁92之间行进的制冷剂雾聚结为较大的液滴,这些较大的液滴更容易通过重力被分离,或者维持在充分靠近管束78的地方或与管束78接触,以允许通过与管束的热传递来使制冷剂雾蒸发。由于液滴的大小增加,通过重力进行液体分离的效率改善,从而允许具有增大的向上速率的蒸汽制冷剂96流动通过在壁92与壳体76之间的空间的蒸发器。蒸汽制冷剂96无论是从开放端部94流动还是从液体制冷剂的池82流动,均流过一对延伸部98,所述延伸部98在上部端部88附近从壁92突出且进入通道100。蒸汽制冷剂96通过狭槽102进入通道100,狭槽102是延伸部98的端部与壳体76之间的空间,之后蒸汽制冷剂96在出口104处退出蒸发器138。在另一示例性实施方案中,蒸汽制冷剂96可通过形成于延伸部98中的开口或孔而不是狭槽102进入通道100。在又一示例性实施方案中,狭槽102可由罩86与壳体76之间的空间形成,也就是说,罩86不包含延伸部98。After the cover 86 forces the refrigerant 106 to travel down between the walls 92 through the open end 94, the direction of flow of the vapor refrigerant changes abruptly, and then in the space between the housing 76 and the wall 92 from the The lower portion goes to the upper portion of the housing 76 . Combined with gravitational effects, the sudden change in flow direction causes some of all entrained refrigerant droplets to collide with liquid refrigerant 82 or shell 76 , causing these droplets to be removed from the flow of vapor refrigerant 96 . Also, the refrigerant mist traveling along the length of the shroud 86 between the walls 92 coalesces into larger droplets that are more easily separated by gravity or maintained in close proximity to the tube bundle 78 Or in contact with the tube bundle 78 to allow evaporation of the refrigerant mist by heat transfer with the tube bundle. The efficiency of liquid separation by gravity improves due to the increased droplet size, allowing vapor refrigerant 96 to flow with an increased upward velocity through the evaporator in the space between wall 92 and housing 76 . Vapor refrigerant 96 , whether flowing from open end 94 or from pool 82 of liquid refrigerant, flows through a pair of extensions 98 that protrude from wall 92 near upper end 88 and enter channel 100 . Vapor refrigerant 96 enters channel 100 through slot 102 , which is the space between the end of extension 98 and housing 76 , before vapor refrigerant 96 exits evaporator 138 at outlet 104 . In another exemplary embodiment, vapor refrigerant 96 may enter channel 100 through an opening or hole formed in extension 98 instead of slot 102 . In yet another exemplary embodiment, slot 102 may be formed by the space between cover 86 and housing 76 , that is, cover 86 does not include extension 98 .
换句话说,一旦制冷剂106从罩86退出,蒸汽制冷剂96便沿着规定的通路从壳体76的下部部分流动到壳体76的上部部分。在示例性实施方案中,所述通路在到达出口104之前在罩86与壳体76的表面之间可以大体上对称。在示例性实施方案中,在蒸发器出口附近设置有多个挡板(例如延伸部98),用以阻挡住蒸汽制冷剂96到压缩器入口的直接路径。In other words, once the refrigerant 106 exits the cover 86 , the vapor refrigerant 96 flows along a prescribed path from the lower portion of the housing 76 to the upper portion of the housing 76 . In an exemplary embodiment, the passageway may be substantially symmetrical between the cover 86 and the surface of the housing 76 before reaching the outlet 104 . In the exemplary embodiment, a plurality of baffles, such as extensions 98 , are positioned near the evaporator outlet to block the direct path of vapor refrigerant 96 to the compressor inlet.
在一个示例性实施方案中,罩86包含大体上平行的相对的壁92。在另一示例性实施方案中,各壁92可以大体上垂直地延伸且终止于开放端部94,开放端部94的位置大体上与上部端部88相对。上部端部88和壁92被接近地定位于管束78的各管附近,其中壁92朝向壳体76的下部部分延伸,以大体上横向界定管束78的各管。在示例性实施方案中,壁92可与管束78中的各管间隔开约0.02英寸(0.5mm)到约0.8英寸(20mm)之间。在又一示例性实施方案中,壁92可与管束78中的各管间隔开约0.1英寸(3mm)到约0.2英寸(5mm)之间。然而,上部端部88与管束78的管之间的间距可显著大于0.2英寸(5mm),以便提供足够间距来将分配器80定位于管与罩的上部端部之间。在示例性实施方案中,其中罩86的各壁92大体上平行且壳体76为圆柱形,壁92也可以围绕壳体的中心垂直对称平面对称布置,所述平面将空间上分立的壁92二等分。在其它示例性实施方案中,壁92无需垂直延伸经过管束78的下部管,壁92也无需为平面的,因为壁92可为弯曲的或具有其它非平面形状。无论具体构造如何,罩86均被配置为在壁92的界限内使制冷剂106流经罩86的开放端部94。In an exemplary embodiment, the shroud 86 includes generally parallel opposing walls 92 . In another exemplary embodiment, each wall 92 may extend generally vertically and terminate in an open end 94 located generally opposite the upper end 88 . Upper end 88 and wall 92 are positioned proximately adjacent the tubes of tube bundle 78 , with wall 92 extending toward the lower portion of housing 76 to generally laterally bound the tubes of tube bundle 78 . In an exemplary embodiment, wall 92 may be spaced from each tube in tube bundle 78 by between about 0.02 inches (0.5 mm) and about 0.8 inches (20 mm). In yet another exemplary embodiment, wall 92 may be spaced from each tube in tube bundle 78 by between about 0.1 inches (3 mm) and about 0.2 inches (5 mm). However, the spacing between upper end 88 and the tubes of tube bundle 78 may be significantly greater than 0.2 inches (5 mm) in order to provide sufficient spacing to position distributor 80 between the tubes and the upper end of the shroud. In an exemplary embodiment in which the walls 92 of the cover 86 are generally parallel and the housing 76 is cylindrical, the walls 92 may also be arranged symmetrically about a central vertical symmetry plane of the housing that separates the spatially separated walls 92. bisect. In other exemplary embodiments, wall 92 need not extend perpendicularly through the lower tubes of tube bundle 78, nor need wall 92 be planar, as wall 92 may be curved or have other non-planar shapes. Regardless of the specific configuration, the shroud 86 is configured to flow refrigerant 106 through the open end 94 of the shroud 86 within the confines of the walls 92 .
图6A到图6C所示为被配置为“降膜式”蒸发器128的蒸发器的示例性实施方案。如图6A到图6C所示,蒸发器128类似于图5A到5C所示的蒸发器138,不同的是蒸发器128在收集于壳体的下部部分中的制冷剂池82中不包含管束140。在示例性实施方案中,罩86在覆盖住管束78之后便结束,但在另一示例性实施方案中,罩86在覆盖住管束78之后仍进一步朝向制冷剂池82延伸。在又一示例性实施方案中,罩86在所述罩不完全覆盖住管束时结束,也就是大体上覆盖住管束时结束。An exemplary embodiment of an evaporator configured as a "falling film" evaporator 128 is shown in FIGS. 6A-6C . As shown in FIGS. 6A-6C , the evaporator 128 is similar to the evaporator 138 shown in FIGS. 5A-5C except that the evaporator 128 does not contain a tube bundle 140 in the refrigerant sump 82 collected in the lower portion of the shell. . In the exemplary embodiment, the shroud 86 ends after covering the tube bundle 78 , but in another exemplary embodiment, the shroud 86 extends further toward the refrigerant sump 82 after covering the tube bundle 78 . In yet another exemplary embodiment, the cover 86 ends when the cover does not completely cover the tube bundle, ie substantially covers the tube bundle.
如图6B和图6C所示,可使用泵84来将液体制冷剂池82从壳体76的下部部分经由管线114再循环到分配器80。如图6B中进一步所示,管线114可包含调节装置112,调节装置112可与一冷凝器(未图示)成流体连通。在另一示例性实施方案中,可采用喷射器(未图示)使用来自冷凝器34的加压制冷剂从壳体76的下部部分汲取液体制冷剂82,所述冷凝器34是借助于伯努利效应进行操作的。所述喷射器组合了调节装置112和泵84的功能。As shown in FIGS. 6B and 6C , pump 84 may be used to recirculate liquid refrigerant pool 82 from the lower portion of housing 76 to distributor 80 via line 114 . As further shown in FIG. 6B , line 114 may include regulating device 112 which may be in fluid communication with a condenser (not shown). In another exemplary embodiment, an ejector (not shown) may be employed to draw liquid refrigerant 82 from the lower portion of shell 76 using pressurized refrigerant from condenser 34 which is The effort effect operates. The injector combines the functions of the regulating device 112 and the pump 84 .
在示例性实施方案中,管或管束的一个布置可由垂直且水平对准的多个均匀间隔的管加以界定,从而形成可大体上为矩形的轮廓。然而,也可以使用堆叠布置的管束,其中各管既不垂直对准也不水平对准,并且也可以采取并不均匀间隔开的布置的管束。In an exemplary embodiment, an arrangement of tubes or tube bundles may be defined by a plurality of evenly spaced tubes aligned vertically and horizontally, forming an outline that may be generally rectangular. However, it is also possible to use tube bundles in a stacked arrangement, in which the individual tubes are aligned neither vertically nor horizontally, and also in a non-uniformly spaced arrangement.
在另一示例性实施方案中,还设想了不同的管束构造。举例来说,在管束中可使用翅片管(未图示),例如沿着管束的最上面的水平排或最上面的部分。除了使用翅片管的可能性外,还可采用针对池沸腾应用——例如在“淹没式”蒸发器中——的更有效操作而开发的管。另外或与翅片管相结合,还可将多孔涂层涂覆到管束的各管的外表面。In another exemplary embodiment, different tube bundle configurations are also contemplated. For example, finned tubes (not shown) may be used in a tube bundle, such as along the uppermost horizontal row or uppermost portion of the tube bundle. In addition to the possibility of using finned tubes, tubes developed for more efficient operation in pool boiling applications, such as in "flooded" evaporators, can also be used. Additionally or in combination with finned tubes, a porous coating may also be applied to the outer surfaces of the individual tubes of the tube bundle.
在又一示例性实施方案中,蒸发器壳体的横截面轮廓可为非圆形的。In yet another exemplary embodiment, the cross-sectional profile of the evaporator housing may be non-circular.
在示例性实施方案中,罩的一部分可部分地延伸到壳体出口中。In an exemplary embodiment, a portion of the shroud may extend partially into the housing outlet.
另外,可将系统14的膨胀装置的膨胀功能纳入到分配器80中。在一个示例性实施方案中,可采用两个膨胀装置。一个膨胀装置图示为位于分配器80的喷射喷嘴中。另一膨胀装置(例如,膨胀装置36)可在定位于蒸发器内的喷射喷嘴所提供的膨胀之前,向制冷剂提供初步的部分膨胀。在示例性实施方案中,可通过蒸发器中的液体制冷剂82的液位来控制另一膨胀装置,即非喷射喷嘴膨胀装置,以考虑例如蒸发和冷凝压力以及部分冷却负荷等操作条件的变化。在替代示例性实施方案中,可通过在冷凝器中的液体制冷剂的液位来控制膨胀装置,或者在又一示例性实施方案中,通过“闪蒸经济器”容器中的液体制冷剂的液位来控制膨胀装置。在一个示例性实施方案中,大部分膨胀可发生在喷嘴中,从而提供较大的压力差,同时允许喷嘴具有减小的尺寸,因此减小了喷嘴的尺寸和成本。Additionally, the expansion functionality of the expansion device of system 14 may be incorporated into distributor 80 . In an exemplary embodiment, two expansion devices may be employed. An expansion device is shown in the spray nozzle of the dispenser 80 . Another expansion device, such as expansion device 36, may provide an initial partial expansion to the refrigerant prior to expansion provided by injection nozzles positioned within the evaporator. In an exemplary embodiment, another expansion device, a non-injection nozzle expansion device, may be controlled by the level of liquid refrigerant 82 in the evaporator to account for changes in operating conditions such as evaporating and condensing pressures and partial cooling load . In an alternative exemplary embodiment, the expansion device may be controlled by the level of liquid refrigerant in the condenser, or in yet another exemplary embodiment, by the level of liquid refrigerant in a "flash economizer" vessel. Liquid level to control the expansion device. In an exemplary embodiment, most of the expansion can occur in the nozzle, providing a larger pressure differential while allowing the nozzle to have a reduced size, thereby reducing nozzle size and cost.
本申请参照其它的公开文本,包括例如包含于申请人于2010年9月3日提交的发明名称为“VAPORCOMPRESSIONSYSTEM”、第12/875748号美国非临时发明专利申请中的分配器,该申请通过引用方式被整体纳入本文。This application refers to other publications including, for example, the dispenser contained in applicant's U.S. Nonprovisional Patent Application No. 12/875,748, filed September 3, 2010, entitled "VAPOR COMPRESSION SYSTEM," which is incorporated by reference method is incorporated into this paper as a whole.
图7示出了分配器142的示例性实施方案,该分配器142被配置为以类似于先前例如图6B所示的方式将进入所述分配器142的流体施加至管束。分配器142包括一个封壳144,该封壳具有定位成面对管束(例如图6B)的一个端部148以及朝向远离所述管束的一个相对端部150。分配器142还包括形成于端部150中并且在末端(terminus)152与相对末端154之间延伸的一个入口156。端部148包括至少一个分配装置146或多个分配装置146可操作性地与之相关联的一个端部特征158。在一个实施方案中,分配装置146包括形成于端部148的端部特征158中的一个开口160(图9)。由于此布置,进入封壳144的入口156中的流体206(其可以包括蒸汽和液体的两相混合物)被沿着所述封壳144的长度方向分配,并通过分配装置146作为分配流体208离开封壳144。由于该新颖性结构的封壳144,改善了沿封壳144的长度的分配流体208的流动,即,被引导为沿所述封壳的长度更均匀地流动。FIG. 7 illustrates an exemplary embodiment of a distributor 142 configured to apply fluid entering the distributor 142 to a tube bundle in a manner similar to that previously shown, for example, in FIG. 6B . The distributor 142 includes an enclosure 144 having one end 148 positioned facing the tube bundle (eg, FIG. 6B ) and an opposite end 150 facing away from the tube bundle. The dispenser 142 also includes an inlet 156 formed in the end 150 and extending between a terminus 152 and an opposite end 154 . End 148 includes an end feature 158 to which at least one dispensing device 146 or a plurality of dispensing devices 146 are operatively associated. In one embodiment, dispensing device 146 includes an opening 160 formed in end feature 158 of end 148 (FIG. 9). Due to this arrangement, the fluid 206 entering the inlet 156 of the enclosure 144 , which may comprise a two-phase mixture of vapor and liquid, is distributed along the length of the enclosure 144 and exits through the distribution device 146 as distribution fluid 208 Encapsulation 144 . Due to the novel configuration of the capsule 144, the flow of the dispensing fluid 208 along the length of the capsule 144 is improved, ie directed to flow more evenly along the length of said capsule.
应该理解的是,可以在单个管束中使用一个、两个或更多个分配器142。在一个实施方案中,两个或更多个分配器可以具有针对分配流体208的重叠的喷射角166(图11)。在一个实施方案中,管束可以被分成具有单独的分配器的多个区域,例如竖向分隔的区域。例如,对于被分割成竖向分隔的区域的大管束,可以在每个区域之间设置一个或多个分配器,以提供对所述管束的管的改善的、多层润湿。It should be understood that one, two or more distributors 142 may be used in a single bundle. In one embodiment, two or more dispensers may have overlapping spray angles 166 ( FIG. 11 ) for the dispensed fluid 208 . In one embodiment, the tube bundle may be divided into multiple zones with individual distributors, for example vertically separated zones. For example, for a large tube bundle divided into vertically separated regions, one or more distributors may be provided between each region to provide improved, multi-layer wetting of the tubes of the bundle.
尽管封壳144在图7-10中被示为例如通过焊接构成的多片装配的结构,但是其可以是挤压成型的,具有整体或单片构造。Although the enclosure 144 is shown in FIGS. 7-10 as a multi-piece assembled structure constructed, for example, by welding, it may be extruded, having a unitary or single-piece construction.
图10示出了沿图9中的线10-10截取的通过端部148的端部特征158中形成的开口160的截面。端部148延伸至相对的封壳部分168、170。如图10所示,封壳部分168、170彼此平行,并具有相对于彼此的对称面180。如图10中进一步所示,封壳具有高度176和宽度178。术语“封壳的长宽比”是指高度176除以其宽度178。封壳的长宽比可以在约1/2:1和约10:1之间,约1/2:1和约8:1之间,约2:1和约6:1之间,约2:1和约4:1之间,约2:1和约3:1之间,约3:1和约8:1之间,约4:1和约6:1之间,约2:1,约3:1,约4:1或其任意子组合。通过合适尺寸的长宽比,结合开口160的尺寸和间隔,穿过所述封壳的开口160的流体流可被优化,即,使得在所述封壳的长度上在与本公开文本中的分配器的操作相关联的基本上整个流体压力范围内更加均匀。10 shows a section through opening 160 formed in end feature 158 of end 148 taken along line 10 - 10 in FIG. 9 . End portion 148 extends to opposing enclosure portions 168 , 170 . As shown in FIG. 10, the enclosure portions 168, 170 are parallel to each other and have a plane of symmetry 180 relative to each other. As further shown in FIG. 10 , the enclosure has a height 176 and a width 178 . The term "aspect ratio of the enclosure" refers to the height 176 divided by its width 178 . The aspect ratio of the capsule may be between about 1/2:1 and about 10:1, between about 1/2:1 and about 8:1, between about 2:1 and about 6:1, about 2:1 and about Between 4:1, between about 2:1 and about 3:1, between about 3:1 and about 8:1, between about 4:1 and about 6:1, about 2:1, about 3:1, about 4:1 or any subcombination thereof. By appropriately sizing the aspect ratio, in combination with the size and spacing of the openings 160, the fluid flow through the openings 160 of the enclosure can be optimized such that the length of the enclosure is comparable to that of the present disclosure. The operation of the dispenser is associated with greater uniformity over substantially the entire fluid pressure range.
例如,如图8-10共同所示,入口156具有在长度200的约1/6至1/3之间的长度194。入口156大体上位于相对的端部部分196、198中间。在一个实施方案中,形成于端部148的端部特征158中的相邻开口160沿长度200相互隔开大体上相同的间隔164。在另一个实施方案中,在与入口156相连的至少一部分相邻开口160之间的间隔164可以大于与端部部分196相连的至少一部分相邻开口160之间的间隔202,和/或可以大于与端部部分198相连的至少一部分相邻开口160之间的间隔204,用于促进流体沿封壳144的长度200更均匀地流动穿过集体开口160。在一个实施方案中,与端部部分196相连的至少一部分相邻开口160之间的间隔202可以相对于与端部部分198相连的至少一部分相邻开口160之间的间隔204大体上平均地间隔开。在一个实施方案中,开口160包括大体上均匀的宽度162。在一个实施方案中,开口160的切口端部可以是“直角方形的”或者大体上矩形的,尽管在另外的实施方案中,所述切口端部可以是曲线或者曲线与直线的组合,具有与图11-14中分别所示出的端部特征158、258、358、458类似的方式,如在下面将会进一步详细讨论的。在另外的实施方案中,开口160可以具有变化的宽度。因此,应该理解,开口160的尺寸对应于从开口160的切口端部至封壳的端部特征158的远切点184(图11)的距离186(也称为高度),以及宽度162的组合(图10)。也就是说,如果开口160的宽度162基本上彼此相等,且如果开口的高度或距离186也基本上相等,则开口160的尺寸将会被认为是基本上相等。在一个实施方案中,其中开口160的宽度162相互不同,开口的高度或距离186可以相互不相等,但开口160的尺寸可以基本上相互相等,只要其结果是沿所述封壳的长度200(图8)上有大体上均匀的流体流。在一个实施方案中,所述开口160中的至少两个基本上彼此相等或基本上大小均等。For example, as shown collectively in FIGS. 8-10 , the inlet 156 has a length 194 that is between about 1/6 and 1/3 of the length 200 . The inlet 156 is located generally intermediate the opposing end portions 196 , 198 . In one embodiment, adjacent openings 160 formed in end feature 158 of end 148 are spaced apart from one another by substantially the same interval 164 along length 200 . In another embodiment, the spacing 164 between at least some of the adjacent openings 160 connected to the inlet 156 may be greater than the spacing 202 between at least some of the adjacent openings 160 connected to the end portion 196, and/or may be greater than The spacing 204 between at least a portion of adjacent openings 160 connected to the end portion 198 serves to facilitate more uniform flow of fluid through the collective openings 160 along the length 200 of the enclosure 144 . In one embodiment, the spacing 202 between at least some of the adjacent openings 160 connected to the end portion 196 can be substantially evenly spaced relative to the spacing 204 between at least some of the adjacent openings 160 connected to the end portion 198. open. In one embodiment, opening 160 includes a generally uniform width 162 . In one embodiment, the cutout end of opening 160 may be "square" or generally rectangular, although in other embodiments the cutout end may be curved or a combination of curved and straight, having the same shape as End features 158 , 258 , 358 , 458 respectively shown in FIGS. 11-14 are similar in manner, as will be discussed in further detail below. In other embodiments, the opening 160 may have a varying width. Accordingly, it should be understood that the size of the opening 160 corresponds to a combination of the distance 186 (also referred to as the height) from the cutout end of the opening 160 to the point of distal tangency 184 ( FIG. 11 ) of the end feature 158 of the enclosure, and the width 162 (Figure 10). That is, if the widths 162 of the openings 160 are substantially equal to one another, and if the heights or distances 186 of the openings are also substantially equal, the sizes of the openings 160 will be considered substantially equal. In one embodiment, where the widths 162 of the openings 160 differ from one another, the heights or distances 186 of the openings may not be equal to one another, but the dimensions of the openings 160 may be substantially equal to one another as long as the resulting length 200 ( Figure 8) has a substantially uniform fluid flow. In one embodiment, at least two of the openings 160 are substantially equal to each other or substantially equal in size.
尽管在图10中封壳部分168、170被示为大体平行的,但是封壳部分168可以包括一个角偏移172,和/或封壳部分170可以包括一个角偏移174。因此,封壳部分168、170可以每个都从相互平行偏移在0至约45度之间或者其任意子组合,形成“V”形。在一个实施方案中,如果希望的话,角偏移172和/或角偏移174可以沿所述封壳的长度变化。Although enclosure portions 168 , 170 are shown generally parallel in FIG. 10 , enclosure portion 168 may include an angular offset 172 and/or enclosure portion 170 may include an angular offset 174 . Accordingly, the enclosure portions 168, 170 may each be offset from parallel by between 0 and about 45 degrees, or any subcombination thereof, forming a "V" shape. In one embodiment, angular offset 172 and/or angular offset 174 may vary along the length of the enclosure, if desired.
图11是图10中的区域11的放大图,示出了封壳144的示例性端部特征158的进一步细节。如图11中进一步所示,特征158限定了一个曲线或半球形轮廓,其具有半径或有效半径或径向距离189并延伸至相对的封壳部分168、170。在一个实施方案中,半径或有效半径或径向距离189可以包括一个或多个具有不同曲率半径的曲线。有效半径或半径或径向距离189从中心点或与大体上垂直于所述相对的封壳部分168、170的参考线182重合的重合点181向外延伸。如图10所示,封壳部分168、170互相平行,并具有相互对称的对称面180,并且在一个实施方案中,对称面180与参考线182重合。在一个实施方案中,重合点181并不位于封壳144的中心。在一个实施方案中,封壳不具有对称面。开口160包括与开口160的切口端部相关联的边缘161、163,边缘161关联并紧靠封壳部分168,边缘163关联并紧靠封壳部分170。如图11中进一步所示,参考线183大体上垂直于相对的封壳部分168、170,并延伸经过边缘161、163。参考线182平行于参考线183。端部148的端部特征158的相对于封壳部分168、170的远侧部分187包括与参考线185重合的远切点184,该参考线185与参考线182、183互相平行。开口160的边缘161、163到端部特征158的远侧部分187的切点184之间的间距或有效间距,如沿参考线185所测量的,产生了距离186。延伸经过重合点181的参考线182与远切点184之间的间距,如沿所述参考线185测量的,产生了距离188。距离188大于距离186。也就是说,与远侧相切部(例如端部特征158的切点184(距离188))相关的半径或有效半径或径向距离189,大于与远侧相切部(例如远切点184(距离186))相关的边缘161、163之间的有效间距或间距。因此,流过开口160的分配流体的喷射角166被限制在约60度至约180度之间,约90度至约180度之间,约120度至约180度之间,约150度至约180度之间,约160度至约180度之间,约160度至约170度之间,约160度至约165度之间,约160度,约165度和约170度,所述喷射角166在与所述蒸汽压缩系统的分配器的操作相关的基本上整个流体压力范围内保持相对恒定。FIG. 11 is an enlarged view of area 11 in FIG. 10 showing further details of exemplary end features 158 of enclosure 144 . As further shown in FIG. 11 , feature 158 defines a curvilinear or hemispherical profile having a radius or effective radius or radial distance 189 and extending to opposing enclosure portions 168 , 170 . In one embodiment, the radius or effective radius or radial distance 189 may comprise one or more curves having different radii of curvature. An effective radius or radius or radial distance 189 extends outwardly from a central point or coincident point 181 coincident with a reference line 182 generally perpendicular to the opposing enclosure portions 168 , 170 . As shown in FIG. 10 , capsule portions 168 , 170 are parallel to each other and have a plane of symmetry 180 that is symmetric to each other and, in one embodiment, plane of symmetry 180 coincides with reference line 182 . In one embodiment, coincidence point 181 is not located in the center of enclosure 144 . In one embodiment, the capsule has no plane of symmetry. The opening 160 includes edges 161 , 163 associated with the cutout ends of the opening 160 , the edge 161 being associated with and abutting the enclosure portion 168 , and the edge 163 being associated with and abutting the enclosure portion 170 . As further shown in FIG. 11 , reference line 183 is generally perpendicular to opposing enclosure portions 168 , 170 and extends past edges 161 , 163 . Reference line 182 is parallel to reference line 183 . A distal portion 187 of the end feature 158 of the end 148 relative to the capsule portions 168, 170 includes a distal tangent point 184 coincident with a reference line 185, which is mutually parallel to the reference lines 182, 183. The spacing or effective spacing between edges 161 , 163 of opening 160 to point of tangency 184 of distal portion 187 of end feature 158 , as measured along reference line 185 , yields distance 186 . The spacing between the reference line 182 extending through the coincident point 181 and the point of tangency 184 , as measured along said reference line 185 , yields a distance 188 . Distance 188 is greater than distance 186 . That is, the radius or effective radius or radial distance 189 associated with the distal tangent (e.g., tangent point 184 (distance 188) of end feature 158) is greater than that associated with the distal tangent (e.g., distal tangent point 184). (distance 186 )) the effective spacing or spacing between the associated edges 161 , 163 . Accordingly, the spray angle 166 of the dispensing fluid flowing through the opening 160 is limited to between about 60 degrees and about 180 degrees, between about 90 degrees and about 180 degrees, between about 120 degrees and about 180 degrees, between about 150 degrees and about 180 degrees. Between about 180 degrees, between about 160 and about 180 degrees, between about 160 and about 170 degrees, between about 160 and about 165 degrees, about 160 degrees, about 165 degrees and about 170 degrees, the spray Angle 166 remains relatively constant over substantially the entire range of fluid pressures associated with operation of the distributor of the vapor compression system.
图12是类似于图10的区域11的一个区域的放大图,其示出了封壳144的一个示例性端部特征258的更多细节。如图12进一步所示,特征258限定了一个由封壳的线性区段构成的直角方形或矩形轮廓,其具有有效半径或有效径向距离289,并延伸至相对的封壳部分168、170。有效半径或有效径向距离289从中心点或与大体上垂直于所述相对的封壳部分168、170的参考线282重合的重合点281向外延伸。在一个实施方案中,重合点281并不位于封壳144的中心。在一个实施方案中,封壳不具有对称面。开口260包括与开口260的切口端部相关联的边缘261、263,边缘261关联并紧靠封壳部分168,边缘263关联并紧靠封壳部分170。如图12中进一步所示,参考线283大体上垂直于相对的封壳部分168、170,并延伸经过边缘261、263。参考线282平行于参考线283。端部148的端部特征258的相对于封壳部分168、170的远侧部分287包括与参考线285重合的远切点284,该参考线285与参考线282、283互相平行。开口260的边缘261、263到端部特征258的远侧部分287的切点284之间的间距或有效间距,如沿参考线285测量的,产生了距离286。延伸经过重合点281的参考线282与远切点284之间的间距,如沿所述参考线285测量的,产生了距离288。距离288大于距离286。也就是说,与远侧相切部(例如端部特征258的切点284(距离288))相关的有效半径或有效径向距离289,大于与远侧相切部(例如切点284(距离286))相关的边缘161、163之间的有效间距或间距。因此,流过开口260的分配流体的喷射角166(图11)被限制在约60度至约180度之间,约90度至约180度之间,约120度至约180度之间,约150度至约180度之间,约160度至约180度之间,约160度至约170度之间,约160度至约165度之间,约160度,约165度和约170度,所述喷射角166在与所述蒸汽压缩系统的分配器的操作相关的基本上整个流体压力范围内保持相对恒定。FIG. 12 is an enlarged view of an area similar to area 11 of FIG. 10 showing more detail of an exemplary end feature 258 of enclosure 144 . As further shown in FIG. 12 , feature 258 defines a rectangular or rectangular profile formed of linear segments of the enclosure having an effective radius or effective radial distance 289 and extending to opposing enclosure portions 168 , 170 . An effective radius or effective radial distance 289 extends outwardly from a central point or coincident point 281 coincident with a reference line 282 generally perpendicular to the opposing enclosure portions 168 , 170 . In one embodiment, coincidence point 281 is not located in the center of enclosure 144 . In one embodiment, the capsule has no plane of symmetry. The opening 260 includes edges 261 , 263 associated with the cutout ends of the opening 260 , the edge 261 being associated with and abutting against the enclosure portion 168 , and the edge 263 being associated with and abutting against the enclosure portion 170 . As further shown in FIG. 12 , reference line 283 is generally perpendicular to opposing enclosure portions 168 , 170 and extends past edges 261 , 263 . Reference line 282 is parallel to reference line 283 . A distal portion 287 of end feature 258 of end 148 relative to capsule portions 168, 170 includes a distal tangent point 284 coincident with reference line 285, which is mutually parallel to reference lines 282, 283. The spacing or effective spacing between edges 261 , 263 of opening 260 to point of tangency 284 of distal portion 287 of end feature 258 , as measured along reference line 285 , yields distance 286 . The spacing between the reference line 282 extending through the coincidence point 281 and the point of tangency 284 , as measured along said reference line 285 , yields a distance 288 . Distance 288 is greater than distance 286 . That is, the effective radius or effective radial distance 289 associated with the distal tangent (e.g., tangent 284 (distance 288) of end feature 258) is greater than the effective radius or effective radial distance 289 associated with the distal tangent (e.g., tangent 284 (distance 288)). 286)) the effective distance or distance between the relevant edges 161, 163. Accordingly, the spray angle 166 (FIG. 11) of the dispensing fluid flowing through the opening 260 is limited to between about 60 degrees and about 180 degrees, between about 90 degrees and about 180 degrees, between about 120 degrees and about 180 degrees, About 150 degrees to about 180 degrees, about 160 degrees to about 180 degrees, about 160 degrees to about 170 degrees, about 160 degrees to about 165 degrees, about 160 degrees, about 165 degrees and about 170 degrees , the injection angle 166 remains relatively constant over substantially the entire range of fluid pressures associated with operation of the distributor of the vapor compression system.
图13是类似于图10的区域11的一个区域的放大图,其示出了封壳144的一个示例性端部特征358的更多细节。如图13进一步所示,端部特征358限定了一个由封壳的线性区段构成的“V”形轮廓,其具有有效半径或有效径向距离389,并延伸至相对的封壳部分168、170。有效半径或有效径向距离389从中心点或与大体上垂直于所述相对的封壳部分168、170的参考线382重合的重合点381向外延伸。在一个实施方案中,重合点381并不位于封壳144的中心。在一个实施方案中,封壳不具有对称面。开口360包括与开口360的切口端部相关联的边缘361、363,边缘361关联并紧靠封壳部分168,边缘363关联并紧靠封壳部分170。如图13中进一步所示,参考线383大体上垂直于相对的封壳部分168、170,并延伸经过边缘361、363。参考线382平行于参考线383。端部148的端部特征358的相对于封壳部分168、170的远侧部分387包括与参考线385重合的远切点384,该参考线385与参考线382、383互相平行。开口360的边缘361、363到端部特征358的远侧部分387的切点384之间的间距或有效间距,如沿参考线385测量的,产生了距离386。延伸经过重合点381的参考线382与远切点384之间的间距,如沿所述参考线385测量的,产生了距离388。距离388大于距离386。也就是说,与远侧相切部(例如端部特征358的切点384(距离388))相关的有效半径或有效径向距离389,大于与远侧相切部(例如远切点384(距离386))相关的边缘361、363之间的有效间距或间距。因此,流过开口360的分配流体的喷射角166(图11)被限制在约60度至约180度之间,约90度至约180度之间,约120度至约180度之间,约150度至约180度之间,约160度至约180度之间,约160度至约170度之间,约160度至约165度之间,约160度,约165度和约170度,所述喷射角166在与所述蒸汽压缩系统的分配器的操作相关的基本上整个流体压力范围内保持相对恒定。FIG. 13 is an enlarged view of an area similar to area 11 of FIG. 10 showing more detail of an exemplary end feature 358 of enclosure 144 . As further shown in FIG. 13 , end feature 358 defines a "V"-shaped profile formed by linear segments of the enclosure having an effective radius or effective radial distance 389 and extending to opposing enclosure portions 168, 170. An effective radius or effective radial distance 389 extends outwardly from a central point or coincident point 381 coincident with a reference line 382 generally perpendicular to the opposing enclosure portions 168 , 170 . In one embodiment, coincidence point 381 is not located in the center of enclosure 144 . In one embodiment, the capsule has no plane of symmetry. The opening 360 includes edges 361 , 363 associated with the cutout ends of the opening 360 , the edge 361 being associated with and abutting against the enclosure portion 168 , and the edge 363 being associated with and abutting against the enclosure portion 170 . As further shown in FIG. 13 , reference line 383 is generally perpendicular to opposing enclosure portions 168 , 170 and extends past edges 361 , 363 . Reference line 382 is parallel to reference line 383 . A distal portion 387 of the end feature 358 of the end 148 with respect to the capsule portions 168, 170 includes a distal tangent point 384 coincident with a reference line 385 that is mutually parallel to the reference lines 382, 383. The spacing or effective spacing between edges 361 , 363 of opening 360 to point of tangency 384 of distal portion 387 of end feature 358 , as measured along reference line 385 , yields distance 386 . The spacing between the reference line 382 extending through the coincident point 381 and the point of tangency 384 , as measured along said reference line 385 , yields a distance 388 . Distance 388 is greater than distance 386 . That is, the effective radius or effective radial distance 389 associated with a distal tangency (e.g., tangent point 384 (distance 388) of end feature 358) is greater than that associated with a distal tangency (e.g., distal tangency point 384 (distance 388)). The distance 386)) is the effective distance or distance between the associated edges 361, 363. Accordingly, the spray angle 166 (FIG. 11) of the dispensing fluid flowing through the opening 360 is limited to between about 60 degrees and about 180 degrees, between about 90 degrees and about 180 degrees, between about 120 degrees and about 180 degrees, About 150 degrees to about 180 degrees, about 160 degrees to about 180 degrees, about 160 degrees to about 170 degrees, about 160 degrees to about 165 degrees, about 160 degrees, about 165 degrees and about 170 degrees , the injection angle 166 remains relatively constant over substantially the entire range of fluid pressures associated with operation of the distributor of the vapor compression system.
图14是类似于图10的区域11的一个区域的放大图,其示出了封壳144的示例性端部特征458的更多细节。如图14进一步所示,端部特征458限定了一个由封壳的线性区段和弯曲区段的组合构成的下部为“D”形的轮廓,其具有有效半径或有效径向距离489,并延伸至相对的封壳部分168、170。在一个实施方案中,可以使用不同布置或轮廓的曲线区段及线性区段。有效半径或有效径向距离489从中心点或与大体上垂直于所述相对的封壳部分168、170的参考线482重合的重合点481向外延伸。在一个实施方案中,重合点481并不位于封壳144的中心点。在一个实施方案中,封壳不具有对称面。开口460包括与开口460的切口端部相关联的边缘461、463,边缘461关联并紧靠封壳部分168,边缘463关联并紧靠封壳部分170。如图13中进一步所示,参考线483大体上垂直于相对的封壳部分168、170,并延伸经过边缘461、463。参考线482平行于参考线483。端部148的端部特征458相对于封壳部分168、170的远侧部分487包括远切点484,该远切点484与参考线485重合,该参考线485与参考线482、483相互平行。开口460的边缘461、463到端部特征458的远侧部分487的切点484之间的间距或有效间距,如沿参考线485测量的,产生了距离486。延伸经过重合点481的参考线482与远切点484之间的间距,如沿所述参考线485测量的,产生了距离488。距离488大于距离486。也就是说,与远侧相切部(例如端部特征458的切点484(距离488))相关的有效半径或有效径向距离489,大于与远侧相切部(例如远切点484(距离486))相关的边缘461、463之间的有效间距或间距。因此,流过开口460的分配流体的喷射角166(图11)被限制在约60度至约180度之间,约90度至约180度之间,约120度至约180度之间,约150度至约180度之间,约160度至约180度之间,约160度至约170度之间,约160度至约165度之间,约160度,约165度和约170度,所述喷射角166在与蒸汽压缩系统的分配器的操作相关的基本上整个流体压力范围内保持相对恒定。FIG. 14 is an enlarged view of an area similar to area 11 of FIG. 10 showing more detail of exemplary end features 458 of enclosure 144 . As further shown in FIG. 14, end feature 458 defines a lower "D"-shaped profile formed from a combination of linear and curved sections of the enclosure, having an effective radius or effective radial distance 489, and Extends to opposing enclosure portions 168 , 170 . In one embodiment, different arrangements or profiles of curvilinear and linear segments may be used. An effective radius or effective radial distance 489 extends outwardly from a central point or coincident point 481 coincident with a reference line 482 generally perpendicular to the opposing enclosure portions 168 , 170 . In one embodiment, coincidence point 481 is not located at the center point of enclosure 144 . In one embodiment, the capsule has no plane of symmetry. The opening 460 includes edges 461 , 463 associated with the cutout ends of the opening 460 , the edge 461 being associated with and abutting against the enclosure portion 168 , and the edge 463 being associated with and abutting against the enclosure portion 170 . As further shown in FIG. 13 , reference line 483 is generally perpendicular to opposing enclosure portions 168 , 170 and extends past edges 461 , 463 . Reference line 482 is parallel to reference line 483 . The end feature 458 of the end portion 148 includes a distal tangent point 484 with respect to the distal portion 487 of the capsule portions 168, 170, which coincides with a reference line 485, which is parallel to the reference lines 482, 483. . The spacing or effective spacing between edges 461 , 463 of opening 460 to point of tangency 484 of distal portion 487 of end feature 458 , as measured along reference line 485 , yields distance 486 . The spacing between the reference line 482 extending through the coincident point 481 and the point of abstangent 484 , as measured along said reference line 485 , yields a distance 488 . Distance 488 is greater than distance 486 . That is, the effective radius or effective radial distance 489 associated with a distal tangency (e.g., tangent point 484 (distance 488) of end feature 458) is greater than that associated with a distal tangency (e.g., distal tangency point 484 (distance 488)). The distance 486)) is the effective distance or distance between the associated edges 461, 463. Accordingly, the spray angle 166 (FIG. 11) of the dispensing fluid flowing through the opening 460 is limited to between about 60 degrees and about 180 degrees, between about 90 degrees and about 180 degrees, between about 120 degrees and about 180 degrees, About 150 degrees to about 180 degrees, about 160 degrees to about 180 degrees, about 160 degrees to about 170 degrees, about 160 degrees to about 165 degrees, about 160 degrees, about 165 degrees and about 170 degrees , the injection angle 166 remains relatively constant over substantially the entire range of fluid pressures associated with the operation of the distributor of the vapor compression system.
应该理解,与相应的距离186、286、386、486相关的线183、283、383、483并不限于延伸经过相应开口160、260、360、460的每一个相应边缘161和163、261和263、361和363、461和463。例如,在一个实施方案中,开口160的边缘161和163可相对于线183偏移,以使线183代表对应的边缘161、163之间的平均距离186。然而,线183、283、383、483和到相应切点184、284、384、484的对应的相应距离186、286、386、486小于在线182、282、382、482之间的对应的相应距离188、288、388、488和到相应切点184、284、384、484的对应的相应距离188、288、388、488,以确保分配流体流的一致的受控的喷射角166(图11),为了上面已经描述的目的。It should be understood that the lines 183 , 283 , 383 , 483 associated with the respective distances 186 , 286 , 386 , 486 are not limited to extending through each respective edge 161 and 163 , 261 and 263 of the respective opening 160 , 260 , 360 , 460 , 361 and 363, 461 and 463. For example, in one embodiment, edges 161 and 163 of opening 160 may be offset relative to line 183 such that line 183 represents an average distance 186 between corresponding edges 161 , 163 . However, the lines 183, 283, 383, 483 and the corresponding respective distances 186, 286, 386, 486 to the respective points of tangency 184, 284, 384, 484 are smaller than the corresponding respective distances between the lines 182, 282, 382, 482 188, 288, 388, 488 and corresponding respective distances 188, 288, 388, 488 to respective tangent points 184, 284, 384, 484 to ensure a consistent controlled spray angle 166 of the dispensed fluid stream (FIG. 11) , for the purposes already described above.
图15示出了分配器142的一个示例性实施方案,与线性轴线190不同,该分配器142具有一个弯曲轴线192,与具有直线或线性轴线的分配器(例如与具有不同结构开口160(图8)相结合)相比,该分配器142对于一些管束布置可以提供改善的液体分配。Fig. 15 shows an exemplary embodiment of a distributor 142 having a curved axis 192 as opposed to a linear axis 190, which is different from a distributor having a straight or linear axis (for example, having a differently configured opening 160 (Fig. 8) in combination), the distributor 142 may provide improved liquid distribution for some tube bundle arrangements.
尽管仅示出和描述了本发明的一些特征和实施方案,但是本领域技术人员可想到许多修改和变化(例如,在各种元件的大小、尺寸、结构、形状和比例方面、以及参数值(例如温度、压力等)、安装布置、材料使用、颜色、定向等方面的变化),而在本质上不偏离权利要求所述的主题的新颖性教导和优点。任何过程或方法步骤的顺序或序列可根据替代实施方案而改变或者重排。因此,应理解的是,所附权利要求书旨在覆盖所有这种落在本发明真实主旨内的修改和改变。此外,为了提供示例性实施方案的简要说明,也许没有描述实际实施方案的所有特征(即,那些与实施本发明的目前所预期的最佳模式无关的特征,或那些与充分公开所要求保护的本发明无关的特征)。应该理解,在任何实际实施方案的开发过程中,如在任何工程或设计项目中一样,可做出大量的具体实施决策。如此的开发工作可能是复杂和费时的,但对于受益于本公开内容的普通技术人员来说,仍然是设计、加工和生产的常规任务,而无需过度的实验。While only some features and embodiments of the present invention have been shown and described, many modifications and changes (for example, in size, dimension, structure, shape and proportion of various elements, and parameter values ( such as temperature, pressure, etc.), mounting arrangement, material usage, color, orientation, etc.), without materially departing from the novel teachings and advantages of the claimed subject matter. The order or sequence of any process or method steps may be varied or rearranged according to alternative embodiments. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention. Furthermore, in an effort to provide a concise description of exemplary embodiments, all features of an actual embodiment (i.e., those not related to the best mode presently contemplated for carrying out the invention, or those not related to adequate disclosure of the claimed invention) may not be described. features irrelevant to the invention). It should be appreciated that in the development of any actual implementation, as in any engineering or design project, numerous implementation-specific decisions may be made. Such a development effort might be complex and time consuming, but would nonetheless be a routine task of design, fabrication, and manufacture without undue experimentation for those of ordinary skill having the benefit of this disclosure.
Claims (20)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/912,634 US10209013B2 (en) | 2010-09-03 | 2013-06-07 | Vapor compression system |
US13/912,634 | 2013-06-07 | ||
PCT/US2013/067373 WO2014197002A1 (en) | 2013-06-07 | 2013-10-30 | Distributor for use in a vapor compression system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105408703A true CN105408703A (en) | 2016-03-16 |
CN105408703B CN105408703B (en) | 2017-09-01 |
Family
ID=49585580
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201380077235.4A Active CN105408703B (en) | 2013-06-07 | 2013-10-30 | vapor compression system |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP3004755B1 (en) |
JP (1) | JP6246341B2 (en) |
KR (1) | KR101924344B1 (en) |
CN (1) | CN105408703B (en) |
TW (1) | TWI586926B (en) |
WO (1) | WO2014197002A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110822879A (en) * | 2019-11-27 | 2020-02-21 | 江苏天舒电器有限公司 | Drying and dehumidifying method based on non-azeotropic mixed working medium heat pump system |
WO2021221105A1 (en) * | 2020-05-01 | 2021-11-04 | 三菱重工サーマルシステムズ株式会社 | Evaporator |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11029094B2 (en) * | 2018-12-19 | 2021-06-08 | Daikin Applied Americas Inc. | Heat exchanger |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6868695B1 (en) * | 2004-04-13 | 2005-03-22 | American Standard International Inc. | Flow distributor and baffle system for a falling film evaporator |
CN101050899A (en) * | 2007-05-10 | 2007-10-10 | 上海交通大学 | Refrigerant distributor of compression refrigeration falling-film evaporator |
CN101482346A (en) * | 2008-01-09 | 2009-07-15 | 德尔菲技术公司 | Distributor tube subassembly |
WO2009089503A2 (en) * | 2008-01-11 | 2009-07-16 | Johnson Controls Technology Company | Vapor compression system |
CN101922882A (en) * | 2010-09-13 | 2010-12-22 | 三花丹佛斯(杭州)微通道换热器有限公司 | Refrigerant conduit and heat exchanger with same |
US20110056664A1 (en) * | 2009-09-08 | 2011-03-10 | Johnson Controls Technology Company | Vapor compression system |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1064815A (en) * | 1973-10-23 | 1979-10-23 | Baltimore Aircoil Company | Water distribution system for heat exchangers |
JPS5119062U (en) * | 1974-07-30 | 1976-02-12 | ||
JPS6031795Y2 (en) * | 1979-12-18 | 1985-09-24 | 株式会社クボタ | rotating water sprinkler |
JPS5766629U (en) * | 1980-10-08 | 1982-04-21 | ||
JPS5826955A (en) * | 1981-08-11 | 1983-02-17 | Nankinodai Onsen Tochi:Kk | Water heater |
JP2010515006A (en) * | 2006-12-21 | 2010-05-06 | ジョンソン コントロールズ テクノロジー カンパニー | Flowing film evaporator |
US10209013B2 (en) * | 2010-09-03 | 2019-02-19 | Johnson Controls Technology Company | Vapor compression system |
US9513039B2 (en) * | 2012-04-23 | 2016-12-06 | Daikin Applied Americas Inc. | Heat exchanger |
-
2013
- 2013-10-30 CN CN201380077235.4A patent/CN105408703B/en active Active
- 2013-10-30 JP JP2016518312A patent/JP6246341B2/en active Active
- 2013-10-30 WO PCT/US2013/067373 patent/WO2014197002A1/en active Application Filing
- 2013-10-30 EP EP13792126.8A patent/EP3004755B1/en active Active
- 2013-10-30 KR KR1020167000277A patent/KR101924344B1/en active Active
- 2013-11-12 TW TW102141060A patent/TWI586926B/en active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6868695B1 (en) * | 2004-04-13 | 2005-03-22 | American Standard International Inc. | Flow distributor and baffle system for a falling film evaporator |
CN101050899A (en) * | 2007-05-10 | 2007-10-10 | 上海交通大学 | Refrigerant distributor of compression refrigeration falling-film evaporator |
CN101482346A (en) * | 2008-01-09 | 2009-07-15 | 德尔菲技术公司 | Distributor tube subassembly |
WO2009089503A2 (en) * | 2008-01-11 | 2009-07-16 | Johnson Controls Technology Company | Vapor compression system |
CN101903714A (en) * | 2008-01-11 | 2010-12-01 | 江森自控科技公司 | vapor compression system |
US20110056664A1 (en) * | 2009-09-08 | 2011-03-10 | Johnson Controls Technology Company | Vapor compression system |
CN103069244A (en) * | 2010-09-03 | 2013-04-24 | 江森自控科技公司 | Vapor compression system |
CN101922882A (en) * | 2010-09-13 | 2010-12-22 | 三花丹佛斯(杭州)微通道换热器有限公司 | Refrigerant conduit and heat exchanger with same |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110822879A (en) * | 2019-11-27 | 2020-02-21 | 江苏天舒电器有限公司 | Drying and dehumidifying method based on non-azeotropic mixed working medium heat pump system |
CN110822879B (en) * | 2019-11-27 | 2021-01-26 | 江苏天舒电器有限公司 | Drying and dehumidifying method based on non-azeotropic mixed working medium heat pump system |
WO2021221105A1 (en) * | 2020-05-01 | 2021-11-04 | 三菱重工サーマルシステムズ株式会社 | Evaporator |
JP2021175922A (en) * | 2020-05-01 | 2021-11-04 | 三菱重工サーマルシステムズ株式会社 | Evaporator |
KR20220159448A (en) | 2020-05-01 | 2022-12-02 | 미츠비시 쥬코 서멀 시스템즈 가부시키가이샤 | evaporator |
Also Published As
Publication number | Publication date |
---|---|
TW201447198A (en) | 2014-12-16 |
WO2014197002A1 (en) | 2014-12-11 |
JP6246341B2 (en) | 2017-12-13 |
KR20160017069A (en) | 2016-02-15 |
JP2016520792A (en) | 2016-07-14 |
KR101924344B1 (en) | 2018-12-03 |
EP3004755A1 (en) | 2016-04-13 |
TWI586926B (en) | 2017-06-11 |
EP3004755B1 (en) | 2020-03-25 |
CN105408703B (en) | 2017-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101932893B (en) | Heat exchanger | |
US10209013B2 (en) | Vapor compression system | |
TW201211479A (en) | Vapor compression system | |
CN105408703B (en) | vapor compression system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20230309 Address after: Wisconsin Patentee after: Johnson Controls Tyco intellectual property holdings limited liability partnership Address before: Michigan USA Patentee before: JOHNSON CONTROLS TECHNOLOGY Co. |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20250205 Address after: Switzerland Rhine falls Neuhausen Patentee after: TYCO FIRE & SECURITY GmbH Country or region after: Switzerland Address before: Wisconsin Patentee before: Johnson Controls Tyco intellectual property holdings limited liability partnership Country or region before: U.S.A. |
|
TR01 | Transfer of patent right |