CN105406034A - Three-dimensional porous graphene-supported carbon-coated lithium sulfide cathode material as well as preparation method and application thereof - Google Patents
Three-dimensional porous graphene-supported carbon-coated lithium sulfide cathode material as well as preparation method and application thereof Download PDFInfo
- Publication number
- CN105406034A CN105406034A CN201510705408.3A CN201510705408A CN105406034A CN 105406034 A CN105406034 A CN 105406034A CN 201510705408 A CN201510705408 A CN 201510705408A CN 105406034 A CN105406034 A CN 105406034A
- Authority
- CN
- China
- Prior art keywords
- dimensional porous
- porous graphene
- solution
- preparation
- graphene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 124
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 54
- GLNWILHOFOBOFD-UHFFFAOYSA-N lithium sulfide Chemical compound [Li+].[Li+].[S-2] GLNWILHOFOBOFD-UHFFFAOYSA-N 0.000 title claims abstract description 50
- 238000002360 preparation method Methods 0.000 title claims abstract description 21
- 239000010406 cathode material Substances 0.000 title description 14
- 229910021389 graphene Inorganic materials 0.000 claims abstract description 69
- 239000000463 material Substances 0.000 claims abstract description 16
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 11
- INHCSSUBVCNVSK-UHFFFAOYSA-L lithium sulfate Inorganic materials [Li+].[Li+].[O-]S([O-])(=O)=O INHCSSUBVCNVSK-UHFFFAOYSA-L 0.000 claims abstract description 11
- RBTVSNLYYIMMKS-UHFFFAOYSA-N tert-butyl 3-aminoazetidine-1-carboxylate;hydrochloride Chemical compound Cl.CC(C)(C)OC(=O)N1CC(N)C1 RBTVSNLYYIMMKS-UHFFFAOYSA-N 0.000 claims abstract description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 9
- 230000001681 protective effect Effects 0.000 claims abstract description 8
- 238000003756 stirring Methods 0.000 claims abstract description 8
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 7
- 238000011065 in-situ storage Methods 0.000 claims description 14
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 claims description 12
- 230000015572 biosynthetic process Effects 0.000 claims description 8
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 6
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 4
- 238000004108 freeze drying Methods 0.000 claims description 4
- 239000008103 glucose Substances 0.000 claims description 4
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 4
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 4
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 4
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 claims description 2
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 claims description 2
- 229920002472 Starch Polymers 0.000 claims description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims description 2
- 229930006000 Sucrose Natural products 0.000 claims description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 2
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 claims description 2
- 239000008107 starch Substances 0.000 claims description 2
- 235000019698 starch Nutrition 0.000 claims description 2
- 239000005720 sucrose Substances 0.000 claims description 2
- 229930003231 vitamin Natural products 0.000 claims description 2
- 239000011782 vitamin Substances 0.000 claims description 2
- 229940088594 vitamin Drugs 0.000 claims description 2
- 235000013343 vitamin Nutrition 0.000 claims description 2
- 238000013019 agitation Methods 0.000 claims 1
- 150000003722 vitamin derivatives Chemical class 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 18
- 239000007774 positive electrode material Substances 0.000 abstract description 12
- 230000008569 process Effects 0.000 abstract description 12
- 238000002791 soaking Methods 0.000 abstract description 11
- 239000002243 precursor Substances 0.000 abstract description 9
- 239000011248 coating agent Substances 0.000 abstract description 4
- 238000000576 coating method Methods 0.000 abstract description 4
- 238000001035 drying Methods 0.000 abstract description 4
- 238000003760 magnetic stirring Methods 0.000 abstract description 4
- 239000002002 slurry Substances 0.000 abstract description 3
- 238000011031 large-scale manufacturing process Methods 0.000 abstract description 2
- 229910018091 Li 2 S Inorganic materials 0.000 description 19
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 12
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 12
- 229910001416 lithium ion Inorganic materials 0.000 description 12
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 10
- 229910052744 lithium Inorganic materials 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- JDZCKJOXGCMJGS-UHFFFAOYSA-N [Li].[S] Chemical compound [Li].[S] JDZCKJOXGCMJGS-UHFFFAOYSA-N 0.000 description 7
- 238000003786 synthesis reaction Methods 0.000 description 7
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 6
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 6
- 229910052786 argon Inorganic materials 0.000 description 6
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 5
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 5
- 238000001354 calcination Methods 0.000 description 5
- 238000007710 freezing Methods 0.000 description 5
- 230000008014 freezing Effects 0.000 description 5
- 229920001021 polysulfide Polymers 0.000 description 5
- 239000005077 polysulfide Substances 0.000 description 5
- 150000008117 polysulfides Polymers 0.000 description 5
- -1 ternary Chemical compound 0.000 description 5
- XPDWGBQVDMORPB-UHFFFAOYSA-N Fluoroform Chemical compound FC(F)F XPDWGBQVDMORPB-UHFFFAOYSA-N 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229910013553 LiNO Inorganic materials 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 239000011135 tin Substances 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 238000009777 vacuum freeze-drying Methods 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000002484 cyclic voltammetry Methods 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- RKGLUDFWIKNKMX-UHFFFAOYSA-L dilithium;sulfate;hydrate Chemical compound [Li+].[Li+].O.[O-]S([O-])(=O)=O RKGLUDFWIKNKMX-UHFFFAOYSA-L 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 229910002102 lithium manganese oxide Inorganic materials 0.000 description 2
- 229910003002 lithium salt Inorganic materials 0.000 description 2
- VLXXBCXTUVRROQ-UHFFFAOYSA-N lithium;oxido-oxo-(oxomanganiooxy)manganese Chemical compound [Li+].[O-][Mn](=O)O[Mn]=O VLXXBCXTUVRROQ-UHFFFAOYSA-N 0.000 description 2
- 239000012982 microporous membrane Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229940124530 sulfonamide Drugs 0.000 description 2
- 238000002411 thermogravimetry Methods 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 125000006091 1,3-dioxolane group Chemical group 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000001994 activation Methods 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 150000001722 carbon compounds Chemical class 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000005036 potential barrier Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/581—Chalcogenides or intercalation compounds thereof
- H01M4/5815—Sulfides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/628—Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明公开了一种三维多孔石墨烯负载碳包覆硫化锂正极材料及其制备方法和应用,该制备方法包括:将氧化石墨烯分散在水中磁力搅拌,然后加入还原剂并搅拌溶解,得到褐色的溶液;将溶液置于120℃-200℃下水热反应4-12h,得到柱状三维多孔石墨烯的溶液;向柱状三维多孔石墨烯的溶液中加入硫酸锂以及碳源,形成柱状三维多孔石墨烯的浸泡液;将浸泡液冷冻干燥,得到前驱体;将前驱体在保护气氛下800-1000℃下煅烧2-12h,得到三维多孔石墨烯负载碳包覆硫化锂材料。本发明制备的材料可直接切片制备电池正极,省去浆料制备、涂覆、烘干的步骤,工艺更简单,适合规模化生产,并具有优良的电学性能。
The invention discloses a three-dimensional porous graphene-loaded carbon-coated lithium sulfide positive electrode material and its preparation method and application. The preparation method comprises: dispersing graphene oxide in water with magnetic stirring, then adding a reducing agent and stirring to dissolve to obtain brown solution; place the solution at 120°C-200°C for hydrothermal reaction for 4-12h to obtain a solution of columnar three-dimensional porous graphene; add lithium sulfate and carbon source to the solution of columnar three-dimensional porous graphene to form columnar three-dimensional porous graphene The soaking solution; the soaking solution is freeze-dried to obtain a precursor; the precursor is calcined at 800-1000° C. for 2-12 hours under a protective atmosphere to obtain a three-dimensional porous graphene-supported carbon-coated lithium sulfide material. The material prepared by the invention can be directly sliced to prepare the positive electrode of the battery, the steps of slurry preparation, coating and drying are omitted, the process is simpler, the method is suitable for large-scale production, and has excellent electrical properties.
Description
技术领域technical field
本发明涉及锂硫电池材料领域,具体涉及一种三维多孔石墨烯负载碳包覆硫化锂正极材料及其制备方法和应用。The invention relates to the field of lithium-sulfur battery materials, in particular to a three-dimensional porous graphene-supported carbon-coated lithium sulfide positive electrode material and a preparation method and application thereof.
背景技术Background technique
环境问题和能源危机是人类社会当今所面临的两大挑战,开发清洁可再生新能源已成为当今社会的迫切需求。目前广泛应用的以嵌入型含锂过渡金属氧化物基(锰酸锂、钴酸锂、三元、磷酸铁锂、层状富锂锰酸锂)材料为正极的锂离子二次电池,由于其理论容量的限制(目前材料体系的能量密度难以突破250Wh/kg的能量密度瓶颈),已无法满足目前对于更高能量密度电源的要求。因此,研究开发能量高效转换与存储的新能源技术已成为国家能源发展战略的重大需求。Environmental issues and energy crisis are two major challenges facing human society today, and the development of clean and renewable new energy has become an urgent need of today's society. Lithium-ion secondary batteries that are currently widely used with embedded lithium-containing transition metal oxide-based (lithium manganese oxide, lithium cobalt oxide, ternary, lithium iron phosphate, layered lithium-rich lithium manganese oxide) materials as positive electrodes, due to their The limitation of theoretical capacity (the energy density of the current material system is difficult to break through the energy density bottleneck of 250Wh/kg), has been unable to meet the current requirements for higher energy density power supplies. Therefore, the research and development of new energy technologies for efficient energy conversion and storage has become a major demand for national energy development strategies.
锂硫电池由于其高理论容量成为下一代高能量密度二次电池的研究热点。与传统的锂离子电池相比,锂硫电池理论比容量达到1675mAh/g,比能量达到2600wh/Kg,并且具有储量丰富、价格低廉和环境友好的优点,满足电动汽车对动力电池的要求,是最具有应用前景的锂离子电池正极材料之一。Lithium-sulfur batteries have become a research hotspot for next-generation high-energy-density secondary batteries due to their high theoretical capacity. Compared with the traditional lithium-ion battery, the theoretical specific capacity of the lithium-sulfur battery reaches 1675mAh/g, and the specific energy reaches 2600wh/Kg. It also has the advantages of abundant storage, low price and environmental friendliness, which meets the requirements of electric vehicles for power batteries. One of the most promising cathode materials for lithium-ion batteries.
但是硫作为正极材料投入到实际应用还存在一些亟待解决的问题,首先单质硫是绝缘体,在室温下硫的电导率仅为5*10-30S/cm,这导致活性物质的利用率低;其次锂硫电池充在循环过程中存在穿梭效应,充放电过程中产生的多种中间产物多硫化锂(Li2Sn,2<n≤8)易溶于电解液中,并且会穿过隔膜迁移到负极,与锂负极反应导致活性物质被消耗,甚至会形成不溶的Li2S2或者Li2S,沉积在Li电极的表面,严重影响电极性能;此外当S8放电生成Li2S时,由于二者的密度不同,会伴随着约76%的体积膨胀,容易破坏多孔导电网络的结构稳定性,降低电极材料的循环稳定性;更重要的是,锂硫电池以金属锂作为负极,在充放电过程中,金属锂容易产生枝晶,刺穿隔膜导致短路引起爆炸,存在安全问题。However, there are still some problems to be solved when sulfur is put into practical application as a positive electrode material. First, elemental sulfur is an insulator, and the conductivity of sulfur at room temperature is only 5*10 -30 S/cm, which leads to low utilization of active materials; Secondly, lithium-sulfur batteries have a shuttle effect during charging and discharging, and various intermediate products lithium polysulfide (Li 2 S n , 2<n≤8) produced during charging and discharging are easily soluble in the electrolyte and will pass through the separator. Migrating to the negative electrode, reacting with the lithium negative electrode leads to the consumption of active materials, and even forms insoluble Li 2 S 2 or Li 2 S, which is deposited on the surface of the Li electrode, seriously affecting the performance of the electrode; in addition, when S 8 is discharged to generate Li 2 S , due to the difference in density between the two, it will be accompanied by a volume expansion of about 76%, which will easily destroy the structural stability of the porous conductive network and reduce the cycle stability of the electrode material; more importantly, the lithium-sulfur battery uses metal lithium as the negative electrode. During the charge and discharge process, metal lithium is prone to produce dendrites, which can pierce the separator and cause a short circuit to cause an explosion, which poses a safety problem.
而硫化锂能使用硅(Si)、锡(Sn)等非锂材料作为负极,更加安全;同时,Li2S充电生成S时,体积减小,导电网络保持完整;而且Li2S作为正极材料,其比容量也高达1166mAh/g,所以引起了广泛的研究。但是Li2S作为正极材料也面临着一些问题,Li2S也是电绝缘的,电池循环过程中也面临着多硫化物的溶解以及穿梭效应。目前针对Li2S材料的改性研究最常见的是采用球磨方法将Li2S分散在导电网络中,减小Li2S粒径,同时导电网络修饰在Li2S颗粒表面,从而提高电化学性能。虽然以上方法能够在一定程度上改善锂硫电池的电化学性能,但是放电比容量以及循环性等电化学性能离商业化还有一段距离,尚需改善。而且硫化锂容易与水反应,直接对硫化锂进行改性需要在保护气氛下进行,操作麻烦。Lithium sulfide can use non-lithium materials such as silicon (Si) and tin (Sn) as the negative electrode, which is safer; at the same time, when Li 2 S is charged to generate S, the volume is reduced and the conductive network remains intact; and Li 2 S is used as the positive electrode material , and its specific capacity is as high as 1166mAh/g, so it has attracted extensive research. However, Li 2 S also faces some problems as a positive electrode material. Li 2 S is also electrically insulating, and it also faces the dissolution of polysulfides and the shuttle effect during the battery cycle. At present, the most common research on the modification of Li 2 S materials is to use ball milling method to disperse Li 2 S in the conductive network to reduce the particle size of Li 2 S, and at the same time, the conductive network is modified on the surface of Li 2 S particles, thereby improving the electrochemical performance. performance. Although the above methods can improve the electrochemical performance of lithium-sulfur batteries to a certain extent, the electrochemical performance such as discharge specific capacity and cycle performance is still far from commercialization and needs to be improved. Moreover, lithium sulfide is easy to react with water, and the direct modification of lithium sulfide needs to be carried out under a protective atmosphere, which is cumbersome to operate.
发明内容Contents of the invention
本发明提供一种三维多孔石墨烯负载碳包覆硫化锂正极材料及其制备方法和应用,以湿化学方法制备三维多孔石墨烯负载碳包覆硫酸锂的前驱体,然后在高温下原位合成三维多孔石墨烯负载碳包覆硫化锂正极材料,将材料直接切片作为电池的正极,省去浆料制备、涂覆、烘干的步骤,减少了工艺流程。The invention provides a three-dimensional porous graphene-supported carbon-coated lithium sulfide positive electrode material and its preparation method and application. The precursor of three-dimensional porous graphene-supported carbon-coated lithium sulfate is prepared by a wet chemical method, and then synthesized in situ at high temperature The three-dimensional porous graphene-loaded carbon-coated lithium sulfide cathode material is directly sliced as the cathode of the battery, eliminating the steps of slurry preparation, coating, and drying, and reducing the process flow.
一种原位合成三维多孔石墨烯负载碳包覆硫化锂正极材料的制备方法,包括以下步骤:A preparation method for in-situ synthesis of three-dimensional porous graphene-loaded carbon-coated lithium sulfide cathode material, comprising the following steps:
(1)将氧化石墨烯分散在水中磁力搅拌,并超声形成均一稳定的溶液,得到氧化石墨烯溶液,然后加入还原剂并搅拌溶解,得到褐色的溶液;(1) Dispersing graphene oxide in water with magnetic stirring, and ultrasonically forming a uniform and stable solution to obtain a graphene oxide solution, then adding a reducing agent and stirring to dissolve to obtain a brown solution;
(2)将步骤(1)所得褐色的溶液转移到高压反应釜中,将高压反应釜密闭后置于120℃-200℃下水热反应4-12h,然后降温,得到柱状三维多孔石墨烯的溶液;(2) Transfer the brown solution obtained in step (1) to an autoclave, seal the autoclave and place it at 120°C-200°C for hydrothermal reaction for 4-12h, then lower the temperature to obtain a columnar three-dimensional porous graphene solution ;
(3)向步骤(2)所得的柱状三维多孔石墨烯的溶液中加入硫酸锂以及碳源,搅拌溶解后将柱状三维多孔石墨烯浸泡其中,形成柱状三维多孔石墨烯的浸泡液;(3) adding lithium sulfate and carbon source to the solution of the columnar three-dimensional porous graphene obtained in step (2), soaking the columnar three-dimensional porous graphene after stirring and dissolving, forming the soaking solution of columnar three-dimensional porous graphene;
(4)将柱状三维多孔石墨烯的浸泡液冷冻干燥,得到前驱体;(4) freeze-drying the soaking solution of columnar three-dimensional porous graphene to obtain a precursor;
(5)将步骤(4)所得前驱体在保护气氛下800-1000℃下煅烧2-12h,得到三维多孔石墨烯负载碳包覆硫化锂材料。(5) Calcining the precursor obtained in step (4) at 800-1000° C. for 2-12 hours under a protective atmosphere to obtain a three-dimensional porous graphene-supported carbon-coated lithium sulfide material.
步骤(1)中,作为优选,所述的氧化石墨烯溶液中氧化石墨烯浓度为1-5mg/mL,所述的还原剂为硫脲、柠檬酸、维生素等中的一种或两种以上,所述的褐色的溶液中还原剂的浓度为1-20mg/mL,进一步优选,1-10mg/mL。In step (1), as a preference, the graphene oxide concentration in the graphene oxide solution is 1-5 mg/mL, and the reducing agent is one or two or more of thiourea, citric acid, vitamins, etc. , the concentration of the reducing agent in the brown solution is 1-20 mg/mL, more preferably, 1-10 mg/mL.
步骤(2)中,水热反应生成柱状三维多孔石墨烯的温度在120℃-200℃,水热时间在4-12h。作为优选,于170℃-190℃下水热反应8-12h。进一步优选,于180℃下水热反应10h。In step (2), the temperature for forming columnar three-dimensional porous graphene by hydrothermal reaction is 120°C-200°C, and the hydrothermal time is 4-12h. Preferably, the hydrothermal reaction is carried out at 170°C-190°C for 8-12h. More preferably, the hydrothermal reaction is carried out at 180° C. for 10 h.
步骤(3)中,作为优选,所述的硫酸锂是Li2SO4或者是Li2SO4·H2O,所述的碳源为葡萄糖、蔗糖、麦芽糖、可溶性淀粉、聚乙烯吡咯烷酮等含碳化合物中的一种或两种以上,所述的柱状三维多孔石墨烯的浸泡液中硫酸锂的浓度在50-200mg/mL(进一步优选50-100mg/mL),碳源的浓度在50-600mg/mL(进一步优选100-400mg/mL)。In step (3), preferably, the lithium sulfate is Li 2 SO 4 or Li 2 SO 4 ·H 2 O, and the carbon source is glucose, sucrose, maltose, soluble starch, polyvinylpyrrolidone, etc. One or more than two kinds of carbon compounds, the concentration of lithium sulfate in the soaking solution of the columnar three-dimensional porous graphene is 50-200mg/mL (more preferably 50-100mg/mL), and the concentration of carbon source is 50-200mg/mL. 600mg/mL (further preferably 100-400mg/mL).
步骤(4)中,作为优选,所述的冷冻干燥中的冷冻方式为液氮冷冻或者电冰箱冷冻,所述的冷冻干燥中的干燥方式为真空冷冻干燥。In step (4), preferably, the freezing method in the freeze-drying is liquid nitrogen freezing or refrigerator freezing, and the drying method in the freeze-drying is vacuum freeze-drying.
步骤(5)中,在氮气或者氩气保护下,煅烧温度为800-1000℃,煅烧时间为2-12h。作为优选,在保护气氛下800-1000℃下煅烧2-6h。进一步优选,在保护气氛下900℃下煅烧2h。In step (5), under the protection of nitrogen or argon, the calcination temperature is 800-1000°C, and the calcination time is 2-12h. Preferably, it is calcined at 800-1000° C. for 2-6 hours under a protective atmosphere. More preferably, it is calcined at 900° C. for 2 hours under a protective atmosphere.
所述的制备方法制备的三维多孔石墨烯负载碳包覆硫化锂正极材料,所述的三维多孔石墨烯碳包覆硫化锂正极材料中,硫化锂含量(质量百分比)在30%-75%,石墨烯以及碳含量(质量百分比)在25%-70%。三维多孔石墨烯负载碳包覆硫化锂正极材料,可直接切成片作为电池正极,组装电池。The three-dimensional porous graphene-supported carbon-coated lithium sulfide positive electrode material prepared by the preparation method, in the three-dimensional porous graphene carbon-coated lithium sulfide positive electrode material, the lithium sulfide content (mass percentage) is 30%-75%, Graphene and carbon content (mass percentage) are between 25% and 70%. The three-dimensional porous graphene-supported carbon-coated lithium sulfide cathode material can be directly cut into slices as the battery cathode and assembled into the battery.
电池正极的制备是将三维多孔石墨烯负载碳包覆硫化锂正极材料切片,隔膜采用的是聚丙烯微孔膜(Cellgard2300),电解液是以1mol/L双(三氟甲烷)磺酰胺锂盐(LiTFSI)为溶质,溶剂是体积比为1:1的1,3-二氧戊环(DOL)与乙二醇二甲醚(DME),并加入1.0-5.0wt%的LiNO3,负极使用的是锂、硅、石墨、锡等,电池的装配过程全都在充满氩气并且水氧含量低于0.1ppm的手套箱中完成。The preparation of the positive electrode of the battery is to slice the three-dimensional porous graphene-loaded carbon-coated lithium sulfide positive electrode material. (LiTFSI) is the solute, the solvent is 1,3-dioxolane (DOL) and ethylene glycol dimethyl ether (DME) with a volume ratio of 1:1, and 1.0-5.0wt% LiNO 3 is added, and the negative electrode is used Lithium, silicon, graphite, tin, etc. are the most important, and the battery assembly process is all completed in a glove box filled with argon and with a water and oxygen content of less than 0.1ppm.
装配好的锂离子电池放置24h后进行恒电流充放电测试,首次充放电电压为1.5V~4V,随后的充放电电压为1.5V~3V,在25±2℃环境中循环测量锂离子电池正极的容量、充放电循环性能及倍率特性。After the assembled lithium-ion battery is placed for 24 hours, a constant current charge-discharge test is carried out. The first charge-discharge voltage is 1.5V-4V, and the subsequent charge-discharge voltage is 1.5V-3V. The positive electrode of the lithium-ion battery is cyclically measured in an environment of 25±2°C. Capacity, charge-discharge cycle performance and rate characteristics.
与现有技术相比,本发明具有如下优点:Compared with prior art, the present invention has following advantage:
本发明采用石墨烯、硫酸锂和碳源为原料高温反应生成三维多孔石墨烯负载碳包覆硫化锂正极材料,与直接采用商业化硫化锂相比,成本低廉,将材料直接切片制备成电池正极,省去浆料制备、涂覆、烘干的步骤,制备工艺简单,适合规模化生产。三维多孔石墨烯为硫酸锂和碳源的反应提供反应位点,同时三维多孔石墨烯作为导电网络提高材料的导电性能,原位生成碳包覆硫化锂的结构可以提高硫化锂电极的导电性,同时可以降低电化学反应过程中多硫化物的溶解,抑制穿梭效应,保持包覆结构的稳定性,从而提高电池容量和循环寿命。利用本发明原位合成三维多孔石墨烯负载碳包覆硫化锂正极材料适用于高能量密度储能器件。The invention adopts graphene, lithium sulfate and carbon source as raw materials to generate three-dimensional porous graphene-loaded carbon-coated lithium sulfide positive electrode material at high temperature. Compared with the direct use of commercial lithium sulfide, the cost is low, and the material is directly sliced into a battery positive electrode. , the steps of slurry preparation, coating and drying are omitted, the preparation process is simple, and it is suitable for large-scale production. Three-dimensional porous graphene provides reaction sites for the reaction between lithium sulfate and carbon source. At the same time, three-dimensional porous graphene acts as a conductive network to improve the conductivity of the material. The in-situ generation of carbon-coated lithium sulfide structure can improve the conductivity of lithium sulfide electrodes. At the same time, it can reduce the dissolution of polysulfides during the electrochemical reaction, inhibit the shuttle effect, and maintain the stability of the coating structure, thereby improving the battery capacity and cycle life. The in-situ synthesis of the three-dimensional porous graphene-loaded carbon-coated lithium sulfide cathode material is suitable for high-energy-density energy storage devices.
附图说明Description of drawings
图1为实施例1原位合成三维多孔石墨烯负载碳包覆硫化锂正极材料的过程示意图;1 is a schematic diagram of the process of in-situ synthesis of three-dimensional porous graphene-loaded carbon-coated lithium sulfide cathode material in Example 1;
图2为实施例1制备的三维多孔石墨烯负载碳包覆硫化锂正极材料的XRD图谱;Fig. 2 is the XRD spectrum of the three-dimensional porous graphene-loaded carbon-coated lithium sulfide cathode material prepared in Example 1;
图3为实施例1原位合成三维多孔石墨烯负载碳包覆硫化锂正极材料不同放大倍数的SEM照片,其中,图3中(a)为低倍下的SEM形貌,图3中(b)为高倍下的SEM形貌;Fig. 3 is the SEM photograph of different magnifications of the in-situ synthesis of three-dimensional porous graphene-loaded carbon-coated lithium sulfide cathode material in Example 1, wherein (a) in Fig. 3 is the SEM morphology at low magnification, and (b) in Fig. 3 ) is the SEM morphology under high magnification;
图4为采用实施例1的三维多孔石墨烯负载碳包覆硫化锂正极材料制备电池的循环伏安曲线;Fig. 4 is the cyclic voltammetry curve of the battery prepared by adopting the three-dimensional porous graphene-loaded carbon-coated lithium sulfide cathode material of Example 1;
图5为采用实施例1的三维多孔石墨烯负载碳包覆硫化锂正极材料制备的电池在1C下的循环性能。Figure 5 is the cycle performance of the battery prepared by using the three-dimensional porous graphene-supported carbon-coated lithium sulfide cathode material of Example 1 at 1C.
具体实施方式detailed description
下面结合实施例和附图来详细说明本发明,但本发明并不仅局限于此。The present invention will be described in detail below in conjunction with the embodiments and drawings, but the present invention is not limited thereto.
实施例1Example 1
(1)将氧化石墨烯分散在140g去离子水中磁力搅拌,并超声1h形成均一稳定的溶液,氧化石墨烯溶液中氧化石墨烯的浓度为2mg/ml,然后加入还原剂硫脲并搅拌溶解,得到褐色的溶液,褐色的溶液中还原剂硫脲的浓度为1.5mg/mL;(1) Disperse graphene oxide in 140g deionized water with magnetic stirring, and ultrasonically 1h to form a uniform and stable solution, the concentration of graphene oxide in the graphene oxide solution is 2mg/ml, then add reducing agent thiourea and stir to dissolve, Obtain a brown solution, the concentration of reducing agent thiourea in the brown solution is 1.5mg/mL;
(2)将上述所得褐色的溶液转移到高压反应釜中,将高压反应釜密闭后置于180℃下保温10h,然后待高压反应釜温度降至室温25℃,得到柱状三维多孔石墨烯的溶液;(2) Transfer the brown solution obtained above to an autoclave, seal the autoclave and place it at 180° C. for 10 hours, then wait for the temperature of the autoclave to drop to room temperature 25° C. to obtain a columnar three-dimensional porous graphene solution ;
(3)向所得的柱状三维多孔石墨烯的溶液中加入一水硫酸锂以及葡萄糖,搅拌溶解后将柱状三维多孔石墨烯浸泡其中,形成柱状三维多孔石墨烯的浸泡液,柱状三维多孔石墨烯的浸泡液中一水硫酸锂的浓度在70mg/mL,碳源葡萄糖的浓度在280mg/mL;(3) add lithium sulfate monohydrate and glucose in the solution of the columnar three-dimensional porous graphene of gained, after stirring and dissolving, columnar three-dimensional porous graphene is soaked wherein, form the soaking liquid of columnar three-dimensional porous graphene, the columnar three-dimensional porous graphene The concentration of lithium sulfate monohydrate in the soaking solution is 70mg/mL, and the concentration of carbon source glucose is 280mg/mL;
(4)将充分浸泡后的柱状三维多孔石墨烯用液氮冷冻,然后真空冷冻干燥,得到前驱体;(4) freezing the fully soaked columnar three-dimensional porous graphene with liquid nitrogen, and then vacuum freeze-drying to obtain a precursor;
(5)将前驱体在氩气保护气氛下900℃下煅烧2h,反应得到三维多孔石墨烯负载碳包覆硫化锂材料;(5) Calcining the precursor at 900°C for 2 hours under an argon protective atmosphere to obtain a three-dimensional porous graphene-supported carbon-coated lithium sulfide material;
(6)将三维多孔石墨烯负载碳包覆硫化锂材料切片作为电池的正极,以金属锂片作为电池负极组装成锂离子电池,隔膜采用的是聚丙烯微孔膜(Cellgard2300),电解液是以1mol/L双(三氟甲烷)磺酰胺锂盐(LiTFSI)为溶质,体积比为1:1的1,3-二氧戊环(DOL)与乙二醇二甲醚(DME)为溶剂,并加入1.0wt%的LiNO3,电池装配过程全都在充满氩气并且水氧含量低于0.1ppm的手套箱中完成。(6) The three-dimensional porous graphene-loaded carbon-coated lithium sulfide material slice is used as the positive electrode of the battery, and the metal lithium sheet is used as the negative electrode of the battery to assemble a lithium-ion battery. What the separator uses is a polypropylene microporous membrane (Cellgard2300), and the electrolyte is With 1mol/L bis(trifluoromethane)sulfonamide lithium salt (LiTFSI) as the solute, 1,3-dioxolane (DOL) and ethylene glycol dimethyl ether (DME) at a volume ratio of 1:1 as the solvent , and adding 1.0wt% LiNO 3 , the battery assembly process was all completed in a glove box filled with argon and with a water and oxygen content below 0.1ppm.
原位合成三维石墨烯负载碳包覆硫化锂正极材料及其电池的制备的过程如图1示意图所示。The process of in-situ synthesis of three-dimensional graphene-supported carbon-coated lithium sulfide cathode material and its battery is shown in Figure 1.
原位合成三维石墨烯负载碳包覆硫化锂正极材料通过X射线光电子谱(X-rayphotoelectronspectroscopy)测试,如图2所示,为本实施例制备原位合成三维多孔石墨烯负载碳包覆硫化锂正极材料的XRD图谱。根据图2可知,本实施例制备的原位合成的原位合成三维多孔石墨烯负载碳包覆硫化锂材料生成了硫化锂(JCPDSCardNo.04-0664)标准相。所得到的最终产物的SEM图片如图3a、3b所示,图3a为产物低倍下的形貌,从图中可以看到,三维多孔石墨烯的厚度比单纯的三维多孔石墨烯有所增加,图3b是样品高倍下的SEM形貌,可以看到石墨烯上负载着一些颗粒,这是碳包覆的硫化锂,说明石墨烯的增厚是负载碳包覆的硫化锂所导致的。根据热重,可以计算出硫化锂的含量大概在40%,石墨烯以及碳含量在60%。In-situ synthesis of three-dimensional graphene-supported carbon-coated lithium sulfide positive electrode material is tested by X-ray photoelectron spectroscopy (X-rayphotoelectronspectroscopy), as shown in Figure 2, for the preparation of in-situ synthesized three-dimensional porous graphene-loaded carbon-coated lithium sulfide for this example XRD patterns of cathode materials. According to Fig. 2, it can be known that the in situ synthesized in situ synthesized three-dimensional porous graphene-supported carbon-coated lithium sulfide material prepared in this example generates a standard phase of lithium sulfide (JCPDS Card No. 04-0664). The SEM pictures of the obtained final product are shown in Figures 3a and 3b. Figure 3a is the morphology of the product at a low magnification. It can be seen from the figure that the thickness of the three-dimensional porous graphene is increased compared with that of the simple three-dimensional porous graphene. , Figure 3b is the SEM morphology of the sample under high magnification. It can be seen that there are some particles loaded on the graphene, which are carbon-coated lithium sulfide, indicating that the thickening of graphene is caused by the carbon-coated lithium sulfide. According to the thermogravimetry, it can be calculated that the content of lithium sulfide is about 40%, and the content of graphene and carbon is 60%.
装配好的锂离子电池放置24h后进行恒电流充放电测试,首次充放电电压为1.5V~4V,随后的充放电电压为1.5V~3V,在25±2℃环境中循环测量锂离子电池正极的容量、充放电循环性能及倍率特性。After the assembled lithium-ion battery is placed for 24 hours, a constant current charge-discharge test is carried out. The first charge-discharge voltage is 1.5V-4V, and the subsequent charge-discharge voltage is 1.5V-3V. The positive electrode of the lithium-ion battery is cyclically measured in an environment of 25±2°C. Capacity, charge-discharge cycle performance and rate characteristics.
组装成锂离子电池后,进行各种电化学性能测试。图4是循环伏安图,第一次充电,首先充电到4V,这是由于硫化锂转化为多硫化物的过程中需要克服势垒,在随后的过程中,充放电电压为1.5V到3V,是典型的锂硫电池充放电曲线。在充电过程中,在2.4V附近出现一个氧化峰,对应为Li2S2或Li2S氧化为多硫化物Li2Sn的过程,在放电过程中,在2.3V和2.0V处有两个还原峰,分别对应硫转化为长链的Li2Sn(4≤n≤8)以及从Li2Sn(4≤n≤8)还原为短链的Li2S2或Li2S的过程。图5所示的为本例实施制备的电池在1C下的循环性能图,第一个循环为充电到4V的活化过程,在电流密度为1C下电池的首次放电容量为510mAh/g,经过100次循环后放电容量维持在414mAh/g,保持率为81%,显示出了较好的循环性能,且库伦效率保持在95%以上。After being assembled into a lithium-ion battery, various electrochemical performance tests were performed. Figure 4 is a cyclic voltammogram, the first charge, first charge to 4V, this is due to the need to overcome the potential barrier in the process of converting lithium sulfide into polysulfide, in the subsequent process, the charge and discharge voltage is 1.5V to 3V , is a typical lithium-sulfur battery charge-discharge curve. During charging, an oxidation peak appears near 2.4V, corresponding to the oxidation process of Li 2 S 2 or Li 2 S to polysulfide Li 2 S n . During discharging, there are two peaks at 2.3V and 2.0V. two reduction peaks, corresponding to the conversion of sulfur to long-chain Li 2 S n (4≤n≤8) and the reduction from Li 2 S n (4≤n≤8) to short-chain Li 2 S 2 or Li 2 S process. Figure 5 shows the cycle performance diagram of the battery prepared in this example at 1C. The first cycle is the activation process of charging to 4V. The first discharge capacity of the battery is 510mAh/g at a current density of 1C. After 100 After the second cycle, the discharge capacity was maintained at 414mAh/g, and the retention rate was 81%, which showed good cycle performance, and the Coulombic efficiency remained above 95%.
实施例2Example 2
(1)将氧化石墨烯分散在140g去离子水中磁力搅拌,并超声1h形成均一稳定的溶液,氧化石墨烯溶液中氧化石墨烯的浓度为3mg/ml,然后加入还原剂硫脲并搅拌溶解,得到褐色的溶液,褐色的溶液中还原剂硫脲的浓度为5mg/mL;(1) Disperse graphene oxide in 140g deionized water with magnetic stirring, and ultrasonically 1h to form a uniform and stable solution, the concentration of graphene oxide in the graphene oxide solution is 3mg/ml, then add reducing agent thiourea and stir to dissolve, Obtain a brown solution, and the concentration of reducing agent thiourea in the brown solution is 5 mg/mL;
(2)将上述所得褐色的溶液转移到高压反应釜中,将高压反应釜密闭后置于180℃下保温10h,然后待高压反应釜温度降至室温25℃,得到柱状三维多孔石墨烯的溶液;(2) Transfer the brown solution obtained above to an autoclave, seal the autoclave and place it at 180° C. for 10 hours, then wait for the temperature of the autoclave to drop to room temperature 25° C. to obtain a columnar three-dimensional porous graphene solution ;
(3)向所得的柱状三维多孔石墨烯以及溶液中加入硫酸锂以及数均分子量为58000的聚乙烯吡咯烷酮,并将柱状三维多孔石墨烯浸泡其中,得到柱状三维多孔石墨烯的浸泡液,柱状三维多孔石墨烯的浸泡液中硫酸锂的浓度在50mg/mL,碳源聚乙烯吡咯烷酮的浓度在200mg/mL;(3) Add lithium sulfate and polyvinylpyrrolidone with a number average molecular weight of 58,000 to the obtained columnar three-dimensional porous graphene and the solution, and soak the columnar three-dimensional porous graphene to obtain the soaking solution of columnar three-dimensional porous graphene, columnar three-dimensional porous graphene The concentration of lithium sulfate in the soaking solution of porous graphene is 50mg/mL, and the concentration of carbon source polyvinylpyrrolidone is 200mg/mL;
(4)将柱状三维多孔石墨烯的浸泡液用液氮冷冻,然后真空冷冻干燥,得到前驱体;(4) freezing the soaking solution of columnar three-dimensional porous graphene with liquid nitrogen, and then vacuum freeze-drying to obtain a precursor;
(5)将前驱体在氩气保护气氛下900℃下煅烧2h,反应得到三维多孔石墨烯负载碳包覆硫化锂材料;(5) Calcining the precursor at 900°C for 2 hours under an argon protective atmosphere to obtain a three-dimensional porous graphene-supported carbon-coated lithium sulfide material;
(6)将三维石墨烯负载碳包覆硫化锂正极材料切片作为电池的正极,以金属锂片作为电池负极组装成锂离子电池,隔膜采用的是聚丙烯微孔膜(Cellgard2300),电解液是以将1mol/L双(三氟甲烷)磺酰胺锂盐(LiTFSI)为溶质,体积比为1:1的1,3-二氧戊环(DOL)与乙二醇二甲醚(DME)为溶剂,并加入1.0wt%的LiNO3,电池装配过程全都在充满氩气并且水氧含量低于0.1ppm的手套箱中完成。(6) The three-dimensional graphene-loaded carbon-coated lithium sulfide positive electrode material slice is used as the positive electrode of the battery, and the metal lithium sheet is used as the negative electrode of the battery to assemble a lithium-ion battery. What the separator uses is a polypropylene microporous membrane (Cellgard2300), and the electrolyte is With 1mol/L bis(trifluoromethane)sulfonamide lithium salt (LiTFSI) as the solute, 1,3-dioxolane (DOL) and ethylene glycol dimethyl ether (DME) with a volume ratio of 1:1 are Solvent, and 1.0wt% LiNO 3 was added, and the battery assembly process was all completed in a glove box filled with argon and the water and oxygen content was lower than 0.1ppm.
原位合成三维石墨烯负载碳包覆硫化锂正极材料通过X射线光电子谱(X-rayphotoelectronspectroscopy)测试,可以确定原位合成三维石墨烯负载碳包覆硫化锂材料生成了硫化锂。根据热重,可以计算出硫化锂的含量大概在35%,碳含量在65%。In-situ synthesis of three-dimensional graphene-supported carbon-coated lithium sulfide cathode material Through X-ray photoelectron spectroscopy (X-ray photoelectronspectroscopy) test, it can be confirmed that the in-situ synthesized three-dimensional graphene-supported carbon-coated lithium sulfide material generates lithium sulfide. According to the thermogravimetry, it can be calculated that the lithium sulfide content is about 35%, and the carbon content is 65%.
装配好的锂离子电池放置24h后进行恒电流充放电测试,首次充放电电压为1.5V~4V,随后的充放电电压为1.5V~3V,在25±2℃环境中循环测量锂离子电池正极的容量、充放电循环性能及倍率特性。电池在电流密度为1C时首次放电容量为680mAh/g,在100次循环后的放电容量为450mAh/g,性能良好。After the assembled lithium-ion battery is placed for 24 hours, a constant current charge-discharge test is carried out. The first charge-discharge voltage is 1.5V-4V, and the subsequent charge-discharge voltage is 1.5V-3V. The positive electrode of the lithium-ion battery is cyclically measured in an environment of 25±2°C. Capacity, charge-discharge cycle performance and rate characteristics. The initial discharge capacity of the battery is 680mAh/g when the current density is 1C, and the discharge capacity after 100 cycles is 450mAh/g, showing good performance.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510705408.3A CN105406034A (en) | 2015-10-27 | 2015-10-27 | Three-dimensional porous graphene-supported carbon-coated lithium sulfide cathode material as well as preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510705408.3A CN105406034A (en) | 2015-10-27 | 2015-10-27 | Three-dimensional porous graphene-supported carbon-coated lithium sulfide cathode material as well as preparation method and application thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105406034A true CN105406034A (en) | 2016-03-16 |
Family
ID=55471397
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510705408.3A Pending CN105406034A (en) | 2015-10-27 | 2015-10-27 | Three-dimensional porous graphene-supported carbon-coated lithium sulfide cathode material as well as preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105406034A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105869903A (en) * | 2016-05-25 | 2016-08-17 | 全球能源互联网研究院 | Preparation method of graphene |
CN106129455A (en) * | 2016-08-30 | 2016-11-16 | 上海大学 | Lithium-sulfur cell |
CN106328946A (en) * | 2016-09-05 | 2017-01-11 | 长春劲能科技集团股份有限公司 | Method for preparing nano-micro carbon-sulfur composite by in-situ carbon coating of sulfur |
CN106654192A (en) * | 2016-08-13 | 2017-05-10 | 华南理工大学 | Tin sulfide/graphene sodium ion battery composite cathode material and preparation method thereof |
CN106848250A (en) * | 2017-03-15 | 2017-06-13 | 清华大学深圳研究生院 | A kind of carbon sulfur materials of high sulfur content and preparation method thereof |
CN107403916A (en) * | 2017-07-14 | 2017-11-28 | 贵州鼎玺烯材高科技有限公司 | A kind of positive material for lithium-sulfur battery with the more lithium sulfides of graphene conductive network constraint |
CN108584927A (en) * | 2018-05-24 | 2018-09-28 | 浙江农业商贸职业学院 | A kind of preparation method of porous graphene powder for automotive alloys material |
CN110137462A (en) * | 2019-05-10 | 2019-08-16 | 浙江大学 | Preparation method for aluminium/lithium sulphide battery vulcanization lithium/carbon composite material |
CN110350175A (en) * | 2019-07-11 | 2019-10-18 | 安徽师范大学 | A kind of composite material of the graphene-supported sulphur of porous carbon@, preparation method and applications |
CN111628166A (en) * | 2020-06-04 | 2020-09-04 | 合肥工业大学 | Three-dimensional lithium sulfide electrode for lithium-sulfur battery and preparation method thereof |
CN112909248A (en) * | 2021-02-20 | 2021-06-04 | 电子科技大学 | Li based on 3D printing2S positive electrode material and preparation method thereof |
CN114300655A (en) * | 2021-12-31 | 2022-04-08 | 杭州电子科技大学 | Lithium sulfide electrode based on titanium oxide nanotube and preparation method thereof |
CN114497499A (en) * | 2022-01-26 | 2022-05-13 | 中汽创智科技有限公司 | Lithium sulfide/carbon composite material with multilevel structure and preparation method and application thereof |
CN116354339A (en) * | 2023-03-16 | 2023-06-30 | 闪速优科(深圳)新材料有限公司 | Preparation method of graphene curved carbon lithium sulfur battery positive electrode material |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103187570A (en) * | 2011-12-28 | 2013-07-03 | 清华大学 | Preparation method for sulfur-graphene composite |
-
2015
- 2015-10-27 CN CN201510705408.3A patent/CN105406034A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103187570A (en) * | 2011-12-28 | 2013-07-03 | 清华大学 | Preparation method for sulfur-graphene composite |
Non-Patent Citations (1)
Title |
---|
D.H. WANG ET AL: ""Rational in-situ construction of three-dimensional reduced grapheme oxide supported Li2S/C composite as enhanced cathode for rechargeable lithiumesulfur batteries"", 《JOURNAL OF POWER SOURCES》 * |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105869903A (en) * | 2016-05-25 | 2016-08-17 | 全球能源互联网研究院 | Preparation method of graphene |
CN106654192A (en) * | 2016-08-13 | 2017-05-10 | 华南理工大学 | Tin sulfide/graphene sodium ion battery composite cathode material and preparation method thereof |
CN106654192B (en) * | 2016-08-13 | 2020-02-18 | 华南理工大学 | A kind of tin sulfide/graphene sodium ion battery composite negative electrode material and preparation method thereof |
CN106129455A (en) * | 2016-08-30 | 2016-11-16 | 上海大学 | Lithium-sulfur cell |
CN106328946A (en) * | 2016-09-05 | 2017-01-11 | 长春劲能科技集团股份有限公司 | Method for preparing nano-micro carbon-sulfur composite by in-situ carbon coating of sulfur |
CN106328946B (en) * | 2016-09-05 | 2019-04-12 | 长春劲能科技集团股份有限公司 | A kind of method that original position carbon coating sulphur prepares nano-micro structure carbon sulphur composite material |
CN106848250B (en) * | 2017-03-15 | 2020-05-22 | 清华大学深圳国际研究生院 | Carbon-sulfur material with high sulfur content and preparation method thereof |
CN106848250A (en) * | 2017-03-15 | 2017-06-13 | 清华大学深圳研究生院 | A kind of carbon sulfur materials of high sulfur content and preparation method thereof |
CN107403916A (en) * | 2017-07-14 | 2017-11-28 | 贵州鼎玺烯材高科技有限公司 | A kind of positive material for lithium-sulfur battery with the more lithium sulfides of graphene conductive network constraint |
CN107403916B (en) * | 2017-07-14 | 2019-09-10 | 贵州鼎玺烯材高科技有限公司 | A kind of positive material for lithium-sulfur battery with the more lithium sulfides of graphene conductive network constraint |
CN108584927A (en) * | 2018-05-24 | 2018-09-28 | 浙江农业商贸职业学院 | A kind of preparation method of porous graphene powder for automotive alloys material |
CN110137462A (en) * | 2019-05-10 | 2019-08-16 | 浙江大学 | Preparation method for aluminium/lithium sulphide battery vulcanization lithium/carbon composite material |
CN110350175A (en) * | 2019-07-11 | 2019-10-18 | 安徽师范大学 | A kind of composite material of the graphene-supported sulphur of porous carbon@, preparation method and applications |
CN111628166A (en) * | 2020-06-04 | 2020-09-04 | 合肥工业大学 | Three-dimensional lithium sulfide electrode for lithium-sulfur battery and preparation method thereof |
CN111628166B (en) * | 2020-06-04 | 2021-09-28 | 合肥工业大学 | Three-dimensional lithium sulfide electrode for lithium-sulfur battery and preparation method thereof |
CN112909248A (en) * | 2021-02-20 | 2021-06-04 | 电子科技大学 | Li based on 3D printing2S positive electrode material and preparation method thereof |
CN112909248B (en) * | 2021-02-20 | 2022-03-15 | 电子科技大学 | Li based on 3D printing2S positive electrode material and preparation method thereof |
CN114300655A (en) * | 2021-12-31 | 2022-04-08 | 杭州电子科技大学 | Lithium sulfide electrode based on titanium oxide nanotube and preparation method thereof |
CN114497499A (en) * | 2022-01-26 | 2022-05-13 | 中汽创智科技有限公司 | Lithium sulfide/carbon composite material with multilevel structure and preparation method and application thereof |
CN114497499B (en) * | 2022-01-26 | 2023-11-21 | 中汽创智科技有限公司 | Multi-stage structure lithium sulfide/carbon composite material and preparation method and application thereof |
CN116354339A (en) * | 2023-03-16 | 2023-06-30 | 闪速优科(深圳)新材料有限公司 | Preparation method of graphene curved carbon lithium sulfur battery positive electrode material |
WO2024187725A1 (en) * | 2023-03-16 | 2024-09-19 | 李海波 | Preparation method for graphene curvature carbon lithium-sulfur battery positive electrode material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105406034A (en) | Three-dimensional porous graphene-supported carbon-coated lithium sulfide cathode material as well as preparation method and application thereof | |
Jin et al. | Electrochemical performance of lithium/sulfur batteries using perfluorinated ionomer electrolyte with lithium sulfonyl dicyanomethide functional groups as functional separator | |
CN103117414B (en) | A kind of negative pole lithium titanate battery electrolyte, lithium ion battery and preparation method thereof | |
CN104538207B (en) | TiNb2O7The preparation method of/carbon nano tube compound material and using the material as the lithium-ion capacitor of negative pole | |
CN106784629A (en) | A kind of lithium metal battery cathode interface method of modifying | |
CN105633360B (en) | Amorphous state ferroso-ferric oxide/graphene aerogel composite, preparation method and applications | |
CN104157909B (en) | A kind of preparation method of lithium-sulfur cell membrane electrode | |
Chen et al. | Searching for electrode materials with high electrochemical reactivity | |
CN104733695A (en) | Carbon/sulfur composite material for lithium-sulfur battery cathode as well as preparation method and application | |
CN105118972A (en) | Metal hydroxide coated carbon and sulfur lithium-sulfur battery positive electrode material, and preparation method and application thereof | |
CN105720236A (en) | A kind of nickel foam self-supporting sheet-like Ni3P/C composite material for negative electrode of sodium ion battery and preparation method thereof | |
CN106887575B (en) | Zinc cobaltate/graphene composite negative electrode material, preparation method thereof and lithium ion battery | |
CN108767263A (en) | A kind of preparation method and application of modified metal cathode of lithium copper foil current collector | |
CN113937260A (en) | Lithium titanate/lithium ion conductor/carbon composite material and preparation method and application | |
CN107069001A (en) | A kind of cellular zinc sulfide/carbon composite negative pole material and preparation method thereof | |
CN106946789B (en) | two-dimensional porous metal cobalt complex and preparation method and application thereof | |
CN105226244A (en) | Three-dimensional porous silicon-nano silver composite material and preparation thereof and the application as lithium ion battery negative material | |
CN106927508A (en) | A kind of cellular nano structure MnO2The preparation method of lithium ion battery anode material | |
CN104183836B (en) | A kind of cathode composite material for lithium-sulfur battery | |
CN103413940B (en) | A kind of synthetic method of positive material nano lithium manganese phosphate of lithium ion battery | |
CN103682352A (en) | Lithium ion secondary battery, positive electrode material of battery, and preparation method of material | |
CN102786048B (en) | Method for preparing conductive additive for lithium ion batteries | |
CN113387385B (en) | Preparation method and application of two-dimensional amorphous molybdenum-based oxide composite material with oxygen-rich vacancy defects | |
CN104993131B (en) | A kind of lithium ion battery negative material NiS/Ni and preparation method thereof | |
CN103094581A (en) | A kind of electric energy storage material and its synthesis method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20160316 |