[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN105389517A - Method for hiding secret information in images - Google Patents

Method for hiding secret information in images Download PDF

Info

Publication number
CN105389517A
CN105389517A CN201510965256.0A CN201510965256A CN105389517A CN 105389517 A CN105389517 A CN 105389517A CN 201510965256 A CN201510965256 A CN 201510965256A CN 105389517 A CN105389517 A CN 105389517A
Authority
CN
China
Prior art keywords
carrier
secret information
sender
image
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510965256.0A
Other languages
Chinese (zh)
Other versions
CN105389517B (en
Inventor
杨世勇
孙森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xi'an Narong Electronic Communication Co Ltd
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201510965256.0A priority Critical patent/CN105389517B/en
Publication of CN105389517A publication Critical patent/CN105389517A/en
Application granted granted Critical
Publication of CN105389517B publication Critical patent/CN105389517B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • G06F21/602Providing cryptographic facilities or services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Computer Security & Cryptography (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Bioethics (AREA)
  • Image Processing (AREA)
  • Editing Of Facsimile Originals (AREA)

Abstract

本发明公开了一种利用图像进行秘密信息隐藏的方法,主要解决现有技术无法同时兼顾鲁棒性和安全性的问题。其实现步骤是:1)发送方利用共享密钥从载体图像库中选取载体图像进行块分割,并对每一块选择伪随机数产生器,获取候选隐藏载体的概率分布;2)发送方创建载体图像的特征矩阵;3)发送方获取最终的特征矩阵集合和密钥空间大小;4)发送方利用最终的特征矩阵集合和密钥空间大小将秘密信息隐藏到载体中;5)发送方将获取的嵌入秘密信息后的载体集合发送给接收方;6)接收方获取秘密信息。本发明在兼顾隐藏系统鲁棒性的同时提高了隐藏系统的安全性,可用于在图像内容发生改变时,实时改变秘密信息在图像中的隐藏位置。

The invention discloses a method for hiding secret information by using an image, which mainly solves the problem that the prior art cannot simultaneously take into account robustness and safety. The implementation steps are: 1) The sender uses the shared key to select the carrier image from the carrier image library for block segmentation, and selects a pseudo-random number generator for each block to obtain the probability distribution of candidate hidden carriers; 2) The sender creates carrier images Image feature matrix; 3) The sender obtains the final set of feature matrices and the size of the key space; 4) The sender uses the final set of feature matrices and the size of the key space to hide the secret information in the carrier; 5) The sender will obtain The carrier set embedded with secret information is sent to the receiver; 6) The receiver obtains the secret information. The invention improves the security of the concealment system while taking into account the robustness of the concealment system, and can be used to change the hiding position of secret information in the image in real time when the image content changes.

Description

利用图像进行秘密信息隐藏的方法A Method of Hiding Secret Information Using Images

技术领域technical field

本发明属于信息安全技术领域,特别涉及一种在图像中隐藏秘密的方法,可用于在图像内容发生改变时,实时改变秘密信息在图像中的隐藏位置。The invention belongs to the technical field of information security, in particular to a method for hiding secrets in images, which can be used to change the hidden position of secret information in the images in real time when the content of the images changes.

背景技术Background technique

国际国内有关图像秘密信息隐藏的科技文献有很多,在这些文献里,主要考虑空域的办法和变换域的办法。其中基于空域的隐藏技术主要是采用最低有效位LSB算法。发送方在发送信息前,用二进制秘密信息的比特位逐一替换载体图像像素的最低有效位,从而把秘密信息隐藏在载体图像中。空域信息隐藏技术的隐藏容量大,但是其难以抵抗滤波、压缩等攻击,所以这种方法不够鲁棒。There are many international and domestic scientific and technological documents on image secret information hiding. In these documents, the method of air domain and the method of transform domain are mainly considered. Among them, the concealment technology based on the airspace mainly adopts the least significant bit LSB algorithm. Before sending the information, the sender replaces the least significant bits of the pixels of the carrier image with the bits of the binary secret information one by one, thereby hiding the secret information in the carrier image. The hiding capacity of spatial information hiding technology is large, but it is difficult to resist attacks such as filtering and compression, so this method is not robust enough.

基于变换域的信息隐藏技术主要是采用不同的变换,把对像素数据的修改转移到对变换域系数的修改上。常用的变换包括:离散余弦变换DCT、离散小波变换DWT、离散傅立叶变换DFT。操作原理是,发送方在发送信息前,对载体图像进行分块,并选取合适的分块进行变换,例如,DCT,然后把秘密信息嵌入在变换后的系数当中。接着,把改变后的分块进行逆变换,得到包含秘密信息的载体。变换域信息隐藏技术的隐藏容量不高,但是具备强鲁棒性,能够有效抵抗滤波、压缩等攻击。The information hiding technology based on the transform domain mainly adopts different transformations, and transfers the modification of the pixel data to the modification of the coefficients of the transform domain. Commonly used transforms include: discrete cosine transform DCT, discrete wavelet transform DWT, discrete Fourier transform DFT. The operating principle is that before sending information, the sender divides the carrier image into blocks, selects appropriate blocks for transformation, for example, DCT, and then embeds the secret information into the transformed coefficients. Then, inverse transform the changed block to obtain the carrier containing the secret information. The hiding capacity of transform domain information hiding technology is not high, but it has strong robustness and can effectively resist attacks such as filtering and compression.

由以上描述可知,现有的隐藏办法主要考虑了隐藏的不可感知性和鲁棒性,未曾涉及安全性。这将会使攻击者可以通过攻破系统的安全性获取系统的密钥,进而获取隐藏的消息,此时系统的强鲁棒性也失去了其存在的意义。而且据最新研究资料表明,能够同时兼容鲁棒性以及安全性的确切方法尚未提出。It can be seen from the above description that the existing hiding methods mainly consider the imperceptibility and robustness of hiding, and have never involved security. This will allow the attacker to obtain the key of the system by breaking through the security of the system, and then obtain the hidden message. At this time, the strong robustness of the system also loses its meaning of existence. And according to the latest research data, the exact method that can be compatible with both robustness and security has not yet been proposed.

因此,在提高隐藏系统的鲁棒性的同时又可以兼顾到安全性,是现有技术急需解决的问题。Therefore, improving the robustness of the hidden system while taking into account the security is an urgent problem to be solved in the prior art.

发明内容Contents of the invention

本发明的目的在于针对上述已有技术存在的不足,提出一种利用图像进行秘密信息隐藏的方法。以在兼顾隐藏系统鲁棒性的同时,提高其安全性。The object of the present invention is to propose a method for hiding secret information by using images to address the shortcomings of the above-mentioned prior art. In order to improve its security while taking into account the robustness of the hidden system.

本发明的技术方案是这样实现的:Technical scheme of the present invention is realized like this:

一.技术原理:1. Technical principle:

为了解决信息隐藏技术中的安全性问题,本发明的关键技术是建立载体图像的特征矩阵集合A。In order to solve the security problem in the information hiding technology, the key technology of the present invention is to establish the feature matrix set A of the carrier image.

载体图像特征矩阵集合的建立是指用矩阵来描述载体数据的分布。载体数据的分布是指图像像素的分布或者图像分块的分布。通过与载体数据分布的均值进行比较,不断的对原始数据进行划分,使得高分布的数据在矩阵中占据较多的元素,相反,则占据较少的元素。这样只通过特征矩阵就可以很直接的显示出不同秘密信息在不同选择下与载体的对应关系。同时,特征矩阵中每一行中不为零的元素有且只有一个,并且不同矩阵中同一行中不为零的元素的位置相互正交。因此,特征矩阵集合A不仅使得载体的选择遵循其自身的分布而且能够置乱其与秘密信息之间的对应关系。隐藏系统的安全性可表示为:Security=I(A,k),其中I表示载体图像中的特征,k表示共享密钥。The establishment of carrier image feature matrix set refers to using matrix to describe the distribution of carrier data. The distribution of carrier data refers to the distribution of image pixels or the distribution of image blocks. By comparing with the mean value of the carrier data distribution, the original data is continuously divided, so that the highly distributed data occupies more elements in the matrix, on the contrary, it occupies fewer elements. In this way, only through the characteristic matrix, the corresponding relationship between different secret information and carriers under different selections can be directly displayed. At the same time, there is only one non-zero element in each row of the feature matrix, and the positions of non-zero elements in the same row in different matrices are orthogonal to each other. Therefore, the characteristic matrix set A not only makes the selection of the carrier follow its own distribution but also can scramble the corresponding relationship between it and the secret information. The security of the hidden system can be expressed as: Security=I(A,k), where I represents the feature in the cover image, and k represents the shared key.

为了实现隐藏系统的鲁棒性,在嵌入秘密信息时,根据载体内容获取可变化的嵌入深度α。In order to achieve the robustness of the hidden system, when embedding secret information, a variable embedding depth α is obtained according to the content of the carrier.

嵌入深度α主要是通过计算相应位置局部数据的方差来实现的。当局部数据的方差越大时,说明数据的变化越大,图像局部像素较为分散,能够嵌入较多的信息,相反则只能嵌入较少量的信息。隐藏系统的鲁棒性可表示为Robust=I(α,λ),其中,I表示载体图像中的特征,λ表示拉伸系数,用来控制整体的嵌入效果。The embedding depth α is mainly achieved by computing the variance of the local data at the corresponding location. When the variance of the local data is larger, it means that the data changes more, and the local pixels of the image are scattered, which can embed more information, on the contrary, only a small amount of information can be embedded. The robustness of the hidden system can be expressed as Robust=I(α,λ), where I represents the features in the carrier image, and λ represents the stretch coefficient, which is used to control the overall embedding effect.

二.符号和缩写2. Symbols and abbreviations

k为共享密钥;k is the shared key;

T为选取载体时的阈值;T is the threshold when selecting the carrier;

CS为候选隐藏载体集合;C S is the set of candidate hidden vectors;

n为候选隐藏载体集合的空间大小;n is the space size of the candidate hidden carrier set;

PC={p1,p2...,pi,...,pn}为载体的概率分布;P C ={p 1 ,p 2 ...,p i ,...,p n } is the probability distribution of the carrier;

A={A1,A2...,Aj,...,Am}为特征矩阵集合;A={A 1 ,A 2 ...,A j ,...,A m } is a feature matrix set;

|K|为密钥空间大小;|K| is the key space size;

m为秘密信息的空间大小;m is the space size of secret information;

δ是概率分布PC中元素的修改变量;δ is the modification variable of the elements in the probability distribution P C ;

A′={A1′,A2′,...,Aj′,...,Am′}为最终的特征矩阵集合;A'={A 1 ', A 2 ',...,A j ',...,A m '} is the final feature matrix set;

X=(x1,x2,...xj,...,xm)为秘密信息;X=(x 1 ,x 2 ,...x j ,...,x m ) is secret information;

为隐藏秘密信息xj的载体; is the carrier to hide the secret information x j ;

αj为载体的嵌入深度;α j is the carrier the embedding depth;

λ为拉伸系数;λ is the stretch coefficient;

sj为隐藏秘密信息xj后的载体;s j is the carrier after hiding the secret information x j ;

S={s1,s2,...,sj,...,sm}为嵌入秘密信息后的载体集合;S={s 1 ,s 2 ,...,s j ,...,s m } is the set of carriers embedded with secret information;

X′是从嵌入秘密信息后的载体集合S中估计出的秘密信息。X' is the secret information estimated from the carrier set S after embedding the secret information.

三.实现步骤:3. Implementation steps:

根据上述原理,本发明的实现步骤包括如下:According to above-mentioned principle, the realization step of the present invention comprises as follows:

(1)发送方利用共享密钥k从载体图像库中选取载体图像进行块分割,并对每一块选择伪随机数产生器,将密钥k作为初始种子,获取候选隐藏载体CS的概率分布PC={p1,p2...,pi,...,pn},pi是概率分布PC中的第i个元素,i=1,...,n,n是候选隐藏载体集合CS的空间大小;(1) The sender uses the shared key k to select the carrier image from the carrier image database for block segmentation, and selects a pseudo-random number generator for each block, and uses the key k as the initial seed to obtain the probability distribution of the candidate hidden carrier CS P C ={p 1 ,p 2 ...,p i ,...,p n }, p i is the i-th element in the probability distribution P C , i=1,...,n, n is The space size of the candidate hidden carrier set CS ;

(2)发送方创建载体图像的特征矩阵:(2) The sender creates the feature matrix of the carrier image:

(2a)发送方初始化特征矩阵集合A={A1,A2...,Aj,...,Am}和密钥空间大小|K|,将特征矩阵集合A中的每个矩阵都置为空,同时将密钥空间大小|K|置为零,执行(2b),其中Aj表示特征矩阵集合A中的第j个矩阵,j=1,...,m;(2a) The sender initializes the feature matrix set A={A 1 ,A 2 ...,A j ,...,A m } and the size of the key space |K|, and assigns each matrix in the feature matrix set A Set them all to be empty, and at the same time set the size of the key space |K| to zero, and execute (2b), where A j represents the jth matrix in the feature matrix set A, j=1,...,m;

(2b)发送方判断概率分布PC的元素是否全为零:若全为零则不改变特征矩阵集合A和密钥空间大小|K|,执行结束,得到最终的特征矩阵集合A′,该A′的空间数值大小等于秘密信息的空间数值大小m,A′中行的数值大小等于密钥空间数值大小|K|′,A′中列的数值大小等于候选隐藏载体集合CS的空间数值大小n;否则,执行(2c);(2b) The sender judges whether the elements of the probability distribution P C are all zeros: if they are all zeros, the feature matrix set A and the size of the key space |K| are not changed, and the execution ends, and the final feature matrix set A′ is obtained. The spatial numerical size of A' is equal to the spatial numerical size m of the secret information, the numerical size of the row in A' is equal to the key space numerical size |K|', and the numerical value of the column in A ' is equal to the spatial numerical size of the candidate hidden carrier set CS n; otherwise, execute (2c);

(2c)发送方对概率分布PC中的元素按照从大到小的顺序进行排列,即执行(2d),其中表示排序后PC中的第i个元素,σi表示的下标,i=1,...,n;(2c) The sender arranges the elements in the probability distribution PC in descending order, namely Execute (2d), where Indicates the i - th element in PC after sorting, and σ i represents The subscript of i=1,...,n;

(2d)发送方修改排序后概率分布PC的前m个元素,使其余元素不发生改变,执行(2e),其中是修改后的概率分布PC中的元素,m的数值大小与秘密信息的空间大小相同,并且1≤m<n,δ是概率分布PC中元素的修改变量;(2d) The sender modifies the first m elements of the sorted probability distribution P C such that The rest of the elements do not change, execute (2e), where is the element in the modified probability distribution P C , the value of m is the same as the size of the secret information space, and 1≤m<n, δ is the modified variable of the element in the probability distribution P C ;

(2e)返回(2b)重新判断修改后的概率分布PC,同时修改特征矩阵集合A中每个特征矩阵Aj,令Aj=Aj+δet,并将密钥空间增大为|K|=|K|+m,其中e表示单位行向量,t表示e中值为1的元素的坐标,t=((z+j)modm)+1,z,j=1,...,m;;(2e) Return to (2b) to re-judge the modified probability distribution P C , and at the same time modify each feature matrix A j in the feature matrix set A, so that A j =A j +δe t , and increase the key space to | K|=|K|+m, where e represents the unit row vector, t represents the coordinates of the element with a value of 1 in e, t=((z+j)modm)+1, z,j=1,... ,m;

(3)发送方获取最终的特征矩阵集合A′={A1′,A2′,...,Aj′,...,Am′}和密钥空间大小|K|′,其中Aj′表示最终的特征矩阵集合中A′的第j特征矩阵,|K|′表示最终的密钥空间大小,;(3) The sender obtains the final feature matrix set A′={A 1 ′,A 2 ′,...,A j ′,...,A m ′} and the size of the key space |K|′, where A j 'indicates the jth feature matrix of A' in the final set of feature matrices, |K|'indicates the size of the final key space;

(4)发送方利用最终的特征矩阵集合A′和密钥空间大小|K|′将秘密信息隐藏到载体中:(4) The sender uses the final feature matrix set A' and the size of the key space |K|' to hide the secret information in the carrier:

(4a)发送方利用秘密信息X=(x1,x2,...xj,...,xm)从特征矩阵集合A′中选取与秘密信息xj对应的矩阵Aj′,其中xj表示秘密信息X中的第j个元素,j=1,...,m;(4a) The sender uses the secret information X=(x 1 ,x 2 ,...x j ,...,x m ) to select the matrix A j ′ corresponding to the secret information x j from the feature matrix set A′, Where x j represents the jth element in the secret information X, j=1,...,m;

(4b)发送方利用Aj′和密钥k选取Aj′(k,i)≠0的元素所在列对应的载体作为隐藏秘密信息xj的载体,其中Aj′(k,i)表示矩阵Aj′中第k行第i列的元素,i=1,...,n,j=1,...,m,载体是候选隐藏载体集合CS中的一个元素, (4b) The sender uses A j ' and key k to select the carrier corresponding to the column where the element of A j '(k,i)≠0 is located As a carrier for hiding secret information x j , where A j ′(k,i) represents the element of row k and column i in matrix A j ′, i=1,...,n, j=1,... ,m, carrier is an element in the set of candidate hidden vectors CS,

(4c)发送方计算选定载体的方差定义秘密信息的嵌入深度αj,j=1,...,m;(4c) The sender calculates the selected bearer The variance of defines the embedding depth α j of secret information, j=1,...,m;

(4d)发送方利用嵌入深度αj,把秘密信息嵌入到相应的载体数据中,主要采用加性数据修改方式嵌入秘密信息,其中sj表示隐藏秘密信息xj后的载体;(4d) The sender uses the embedding depth α j to embed the secret information into the corresponding carrier data, mainly adopting the additive data modification method to embed the secret information, Where s j represents the carrier after hiding the secret information x j ;

(5)发送方将获取的嵌入秘密信息后的载体集合S={s1,s2,...,sj,...,sm}发送给接收方;(5) The sender sends the obtained carrier set S={s 1 ,s 2 ,...,s j ,...,s m } after embedding the secret information to the receiver;

(6)接收方获取秘密信息:(6) The receiver obtains the secret information:

(6a)接收方采用滤波方式估计出嵌入秘密信息后的载体集合S中的秘密信息X′;(6a) The receiver uses filtering to estimate the secret information X' in the carrier set S after embedding the secret information;

(6b)接收方根据估计出的秘密信息X′利用最终的特征矩阵集合A′,获取估计秘密信息X′与隐藏载体之间的对应关系;(6b) The receiver uses the final feature matrix set A' according to the estimated secret information X' to obtain the correspondence between the estimated secret information X' and the hidden carrier;

(6c)接收方根据获取的估计秘密信息X′与隐藏载体之间的对应关系,对估计秘密信息X′进行反排列获取真正的秘密信息X。(6c) According to the corresponding relationship between the acquired estimated secret information X' and the hidden carrier, the receiver reverses the estimated secret information X' to obtain the real secret information X.

本发明与现有技术相比具有以下优点:Compared with the prior art, the present invention has the following advantages:

第一,安全性高。First, high security.

在本发明中,嵌入的秘密信息的随机选取和载体的随机选取是独立、分别进行的,对于攻击者来说,若采用单一的模仿攻击,双向的随机选取显然比单向随机选取秘密信息或者单向选取载体的困难性更大,因而系统的安全性更高。In the present invention, the random selection of the embedded secret information and the random selection of the carrier are carried out independently and separately. For the attacker, if a single imitation attack is adopted, the two-way random selection is obviously better than the one-way random selection of the secret information or It is more difficult to select a carrier one-way, so the security of the system is higher.

第二,提升和扩展了应用范围Second, it improves and expands the scope of application

本发明通过特征矩阵置乱载体和秘密信息之间的对应关系实现在图像中进行秘密信息隐藏的办法,当载体和秘密信息其中之一发生变化时,二者之间的对应关系也发生变化。因此,在实际应用过程中,本发明不仅适用于单一图像的隐藏,而且也适用于多幅图像的隐藏,具有更多的可扩展性。The present invention implements a method of hiding secret information in an image by scrambling the corresponding relationship between the carrier and the secret information through the characteristic matrix. When one of the carrier and the secret information changes, the corresponding relationship between the two also changes. Therefore, in the actual application process, the present invention is not only applicable to the concealment of a single image, but also applicable to the concealment of multiple images, and has more scalability.

第三,兼容性好Third, good compatibility

本发明引入可变化的嵌入深度α控制秘密信息在图像中的嵌入,嵌入深度α会随着图像数据的改变而改变,从而使得秘密信息的嵌入也随图像数据的改变而改变,最终达到了鲁棒性和不可感知性的良好兼容。The present invention introduces a variable embedding depth α to control the embedding of secret information in the image. The embedding depth α will change with the change of image data, so that the embedding of secret information will also change with the change of image data, and finally achieves Good compatibility of stickiness and imperceptibility.

附图说明Description of drawings

图1为本发明的整体流程图;Fig. 1 is the overall flowchart of the present invention;

图2为本发明中发送方创建载体图像特征矩阵的子流程图;Fig. 2 is a sub-flow chart of creating a carrier image feature matrix by the sender in the present invention;

图3为本发明中发送方嵌入秘密信息的子流程图;Fig. 3 is a sub-flow chart of the sender embedding secret information in the present invention;

图4为本发明中接收方提取秘密信息的子流程图。Fig. 4 is a sub-flow chart of the receiving party extracting secret information in the present invention.

具体实施方式detailed description

下面通过附图和具体实施方式进一步说明本发明的实施方案。Embodiments of the present invention will be further described below with reference to the drawings and specific embodiments.

参照图1,本发明是实现步骤如下:With reference to Fig. 1, the present invention is that realization steps are as follows:

步骤1,发送方确定载体的概率分布。Step 1, the sender determines the probability distribution of the bearers.

(1a)发送方利用共享密钥k从载体图像库中选取载体图像;(1a) The sender uses the shared key k to select the carrier image from the carrier image library;

(1b)发送方把选取的载体图像分割成8×8的小块,并计算每个小块的模糊值;(1b) The sender divides the selected carrier image into small blocks of 8×8, and calculates the blur value of each small block;

(1b1)定义模糊集合隶属度如下:(1b1) Define the membership degree of fuzzy set as follows:

uu (( pp ,, qq )) == 11 11 ++ || dd (( pp ,, qq )) -- dd &prime;&prime; || // NN ,,

其中,d(p,q)是图像(p,q)处的像素值,d′是图像(p,q)处像素的归一化值,p,q=1,...,8,N为常数,其取值要保证u(p,q)的值域范围在0.5到1之间,即0.5≤u(d(p,q))≤1;Among them, d(p,q) is the pixel value at the image (p,q), d′ is the normalized value of the pixel at the image (p,q), p,q=1,...,8,N It is a constant, and its value should ensure that the value range of u(p,q) is between 0.5 and 1, that is, 0.5≤u(d(p,q))≤1;

(1b2)在模糊集合隶属度的基础上定义图像(p,q)位置处像素的模糊值如下:(1b2) Define the fuzzy value of the pixel at the position (p, q) of the image on the basis of the membership degree of the fuzzy set as follows:

H(p,q)=-(u(p,q))log2(u(p,q))-(1-u(p,q))log2(1-u(p,q)),H(p,q)=-(u(p,q))log 2 (u(p,q))-(1-u(p,q))log 2 (1-u(p,q)),

(1b3)根据图像(p,q)位置处像素的模糊值H(p,q)定义小块的模糊值如下:(1b3) Define the blur value of the small block according to the blur value H(p,q) of the pixel at the position (p,q) of the image as follows:

RR (( pp 00 ,, qq 00 )) == 11 aa &times;&times; aa &Sigma;&Sigma; kk == -- (( aa -- 11 )) // 22 (( aa -- 11 )) // 22 &Sigma;&Sigma; ll == -- (( aa -- 11 )) // 22 (( aa -- 11 )) // 22 Hh (( pp 00 ++ kk ,, qq 00 ++ ll )) ,,

其中,p0表示小块中心点的横坐标,q0表示小块中心点的纵坐标,a表示小块的长,a=8,k是控制小块中心点横坐标移动的变量,l是控制小块中心点纵坐标移动的变量, k = - ( a - 1 ) 2 , ... , ( a - 1 ) 2 , l = - ( a - 1 ) 2 , ... , ( a - 1 ) 2 , k &NotEqual; l ; Wherein, p 0 represents the abscissa of the small block center point, q 0 represents the ordinate of the small block center point, a represents the length of the small block, a=8, k is the variable that controls the movement of the small block center point abscissa, and l is The variable that controls the vertical coordinate movement of the center point of the small block, k = - ( a - 1 ) 2 , ... , ( a - 1 ) 2 , l = - ( a - 1 ) 2 , ... , ( a - 1 ) 2 , k &NotEqual; l ;

(1c)发送方将每一小块的模糊值与给定的阈值T进行比较:若模糊值大于或等于阈值T,则将该模糊值对应的小块加入到候选隐藏载体集合CS中;否则,丢弃,直到计算完所有的图像分块为止;(1c) The sender compares the fuzzy value of each small block with a given threshold T: if the fuzzy value is greater than or equal to the threshold T, then add the small block corresponding to the fuzzy value to the candidate hidden carrier set CS ; Otherwise, discard until all image blocks are calculated;

(1d)发送方对候选隐藏载体集合CS中每一小块选择伪随机数产生器,将密钥k作为初始种子,获取候选隐藏载体CS的概率分布PC={p1,p2...,pi,...,pn},pi是概率分布PC中的第i个元素,i=1,...,n,n是候选隐藏载体集合CS的空间大小。(1d) The sender selects a pseudo-random number generator for each small block in the candidate hidden carrier set CS, uses the key k as the initial seed, and obtains the probability distribution P C ={p 1 ,p 2 of the candidate hidden carrier CS ...,p i ,...,p n }, p i is the i-th element in the probability distribution P C , i=1,...,n, n is the space size of the candidate hidden carrier set C S .

步骤2,发送方创建载体的特征矩阵。Step 2, the sender creates the feature matrix of the carrier.

参照图2,本步骤的具体实现如下:Referring to Figure 2, the specific implementation of this step is as follows:

(2a)发送方初始化特征矩阵集合A={A1,A2...,Aj,...,Am}和密钥空间大小|K|,将特征矩阵集合A中的每个矩阵都置为空,同时将密钥空间大小|K|置为零,执行(2b),其中Aj表示特征矩阵集合A中的第j个矩阵,j=1,...,m;(2a) The sender initializes the feature matrix set A={A 1 ,A 2 ...,A j ,...,A m } and the size of the key space |K|, and assigns each matrix in the feature matrix set A Set them all to be empty, and at the same time set the size of the key space |K| to zero, and execute (2b), where A j represents the jth matrix in the feature matrix set A, j=1,...,m;

(2b)发送方判断概率分布PC的元素是否全为零:若全为零,则不改变特征矩阵集合A和密钥空间大小|K|,执行结束,得到最终的特征矩阵集合A′,该A′的空间数值大小等于秘密信息的空间数值大小m,A′中行的数值大小等于密钥空间数值大小|K|′,A′中列的数值大小等于候选隐藏载体集合CS的空间数值大小n;否则,执行(2c);(2b) The sender judges whether the elements of the probability distribution P C are all zeros: if they are all zeros, the characteristic matrix set A and the size of the key space |K| are not changed, and the execution ends, and the final characteristic matrix set A′ is obtained. The spatial value of A' is equal to the spatial value of secret information m, the value of rows in A' is equal to the value of the key space |K|', and the value of columns in A ' is equal to the spatial value of the candidate hidden carrier set CS size n; otherwise, execute (2c);

(2c)发送方对概率分布PC中的元素按照从大到小的顺序进行排列,即执行(2d),其中表示排序后PC中的第i个元素,σi表示的下标,i=1,...,n;(2c) The sender arranges the elements in the probability distribution PC in descending order, namely Execute (2d), where Indicates the i - th element in PC after sorting, and σ i represents The subscript of i=1,...,n;

(2d)发送方修改排序后概率分布PC的前m个元素,使其余元素不发生改变,执行(2e),其中是修改后的概率分布PC中的元素,m的数值大小与秘密信息的空间大小相同,并且1≤m<n,δ是概率分布PC中元素的修改变量;(2d) The sender modifies the first m elements of the sorted probability distribution P C such that The rest of the elements do not change, execute (2e), where is the element in the modified probability distribution P C , the value of m is the same as the size of the secret information space, and 1≤m<n, δ is the modified variable of the element in the probability distribution P C ;

(2e)返回(2b)重新判断修改后的概率分布PC,同时修改特征矩阵集合A中每个特征矩阵Aj,令Aj=Aj+δet,并将密钥空间增大为|K|=|K|+m,其中e表示单位行向量,t表示e中值为1的元素的坐标,t=((z+j)modm)+1,z,j=1,...,m,z≠j;(2e) Return to (2b) to re-judge the modified probability distribution P C , and at the same time modify each feature matrix A j in the feature matrix set A, so that A j =A j +δe t , and increase the key space to | K|=|K|+m, where e represents the unit row vector, t represents the coordinates of the element with a value of 1 in e, t=((z+j)modm)+1, z,j=1,... , m, z≠j;

步骤3,发送方获取最终的特征矩阵集合A′={A1′,A2′,...,Aj′,...,Am′}和密钥空间大小|K|′,其中Aj′表示最终的特征矩阵集合中A′的第j特征矩阵,|K|′表示最终的密钥空间大小。Step 3, the sender obtains the final feature matrix set A′={A 1 ′,A 2 ′,...,A j ′,...,A m ′} and the size of the key space |K|′, where A j ′ denotes the jth feature matrix of A′ in the final feature matrix set, and |K|′ denotes the size of the final key space.

步骤4,发送方利用最终的特征矩阵集合A′和密钥空间大小|K|′将秘密信息隐藏到载体中。Step 4, the sender uses the final feature matrix set A' and the key space size |K|' to hide the secret information into the carrier.

参照图3,本步骤的具体实现方式如下:Referring to Figure 3, the specific implementation of this step is as follows:

(4a)发送方利用秘密信息X=(x1,x2,...xj,...,xm)从特征矩阵集合A′中选取与秘密信息xj对应的矩阵Aj′,其中xj表示秘密信息X中的第j个元素,j=1,...,m;(4a) The sender uses the secret information X=(x 1 ,x 2 ,...x j ,...,x m ) to select the matrix A j ′ corresponding to the secret information x j from the feature matrix set A′, Where x j represents the jth element in the secret information X, j=1,...,m;

(4b)发送方利用Aj′和密钥k选取Aj′(k,i)≠0的元素所在列对应的载体作为隐藏秘密信息xj的载体,其中Aj′(k,i)表示矩阵Aj′中第k行第i列的元素,i=1,...,n,j=1,...,m,载体是候选隐藏载体集合CS中的一个元素, (4b) The sender uses A j ' and key k to select the carrier corresponding to the column where the element of A j '(k,i)≠0 is located As a carrier for hiding secret information x j , where A j ′(k,i) represents the element of row k and column i in matrix A j ′, i=1,...,n, j=1,... ,m, carrier is an element in the set of candidate hidden vectors CS,

(4c)发送方根据选定载体的方差计算秘密信息的嵌入深度αj(4c) The sender selects the carrier according to The variance of calculates the embedding depth α j of the secret information:

(4c1)计算载体数据的均值,公式如下:(4c1) Calculate the mean value of the carrier data, the formula is as follows:

dd &OverBar;&OverBar; == 11 (( 22 &Delta;&Delta; ++ 11 )) 22 &Sigma;&Sigma; kk &prime;&prime; == 11 22 &Delta;&Delta; ++ 11 &Sigma;&Sigma; ll &prime;&prime; == 11 22 &Delta;&Delta; ++ 11 dd (( kk &prime;&prime; ,, ll &prime;&prime; )) ,,

其中,Δ表示移动步长的控制变量,k′是控制载体数据横坐标移动的变量,l′是控制载体数据纵坐标移动的变量,k′=1,...,(2Δ+1),l′=1,...,(2Δ+1),k′≠l′;Among them, Δ represents the control variable of the moving step, k' is the variable that controls the movement of the abscissa of the carrier data, l' is the variable that controls the movement of the ordinate of the carrier data, k'=1,...,(2Δ+1), l'=1,...,(2Δ+1), k'≠l';

(4c2)利用均值定义载体数据的方差如下:(4c2) Using the mean Define the variance of the carrier data as follows:

&sigma;&sigma; (( uu ,, vv )) == 11 (( 22 &Delta;&Delta; ++ 11 )) 22 &Sigma;&Sigma; ee == uu -- &Delta;&Delta; uu ++ &Delta;&Delta; &Sigma;&Sigma; ff == vv -- &Delta;&Delta; vv ++ &Delta;&Delta; (( dd (( uu ++ ee ,, vv ++ ff )) -- dd &OverBar;&OverBar; )) 22 ,,

其中,u表示载体中心点的横坐标,v表示载体中心点的纵坐标,e是控制载体中心点横坐标移动的变量,f是控制载体数据纵坐标移动的变量,e=(u-Δ),....,(u+Δ),f=(v-Δ),...,(v+Δ);Wherein, u represents the abscissa of the carrier center point, v represents the ordinate of the carrier center point, e is the variable that controls the movement of the abscissa of the carrier center point, and f is the variable that controls the movement of the ordinate of the carrier data, e=(u-Δ) ,....,(u+Δ), f=(v-Δ),...,(v+Δ);

(4c3)根据载体数据的方差σ(u,v)定义载体图像分块的嵌入深度αj如下:(4c3) Define the embedding depth α j of the carrier image block according to the variance σ(u,v) of the carrier data as follows:

αj=λσ(u,v),α j =λσ(u,v),

其中,λ表示拉伸系数;Wherein, λ represents stretch coefficient;

(4d)发送方利用嵌入深度αj,把秘密信息嵌入到相应的载体数据中,主要采用加性数据修改方式嵌入秘密信息,其中sj表示隐藏秘密信息xj后的载体。(4d) The sender uses the embedding depth α j to embed the secret information into the corresponding carrier data, mainly adopting the additive data modification method to embed the secret information, where s j represents the carrier after hiding the secret information x j .

步骤5,发送方将获取的嵌入秘密信息后的载体集合S={s1,s2,...,sj,...,sm}发送给接收方。Step 5, the sender sends the obtained carrier set S={s 1 , s 2 ,...,s j ,...,s m } after embedding the secret information to the receiver.

步骤6,接收方获取秘密信息。Step 6, the receiver obtains the secret information.

参照图4,本步骤的具体实现方式如下:Referring to Figure 4, the specific implementation of this step is as follows:

(6a)接收方采用滤波方式估计出嵌入秘密信息后的载体集合S中的秘密信息X′;(6a) The receiver uses filtering to estimate the secret information X' in the carrier set S after embedding the secret information;

(6b)接收方根据估计出的秘密信息X′利用最终的特征矩阵集合A′,获取估计秘密信息X′与隐藏载体之间的对应关系;(6b) The receiver uses the final feature matrix set A' according to the estimated secret information X' to obtain the correspondence between the estimated secret information X' and the hidden carrier;

(6c)接收方根据获取的估计秘密信息X′与隐藏载体之间的对应关系,对估计秘密信息X′进行反排列获取真正的秘密信息X。(6c) According to the corresponding relationship between the acquired estimated secret information X' and the hidden carrier, the receiver reverses the estimated secret information X' to obtain the real secret information X.

以上描述仅是本发明的一个具体实例,不构成对本发明的任何限制。显然对于本领域的专业人员来说,在了解了本发明内容和原理后,都可能在不背离本发明原理、结构的情况下,进行形式和细节上的各种修正和改变,但是这些基于本发明思想的修正和改变仍在本发明的权利要求保护范围之内。The above description is only a specific example of the present invention, and does not constitute any limitation to the present invention. Obviously, for those skilled in the art, after understanding the content and principles of the present invention, it is possible to make various modifications and changes in form and details without departing from the principles and structures of the present invention, but these are based on the present invention. The modification and change of the inventive concept are still within the protection scope of the claims of the present invention.

Claims (4)

1.一种利用图像进行秘密信息隐藏的方法,包括:1. A method for hiding secret information using images, comprising: (1)发送方利用共享密钥k从载体图像库中选取载体图像进行块分割,并对每一块选择伪随机数产生器,将密钥k作为初始种子,获取候选隐藏载体CS的概率分布PC={p1,p2...,pi,...,pn},pi是概率分布PC中的第i个元素,i=1,...,n,n是候选隐藏载体集合CS的空间大小;(1) The sender uses the shared key k to select the carrier image from the carrier image database for block segmentation, and selects a pseudo-random number generator for each block, and uses the key k as the initial seed to obtain the probability distribution of the candidate hidden carrier CS P C ={p 1 ,p 2 ...,p i ,...,p n }, p i is the i-th element in the probability distribution P C , i=1,...,n, n is The space size of the candidate hidden carrier set CS ; (2)发送方创建载体图像的特征矩阵:(2) The sender creates the feature matrix of the carrier image: (2a)发送方初始化特征矩阵集合A={A1,A2...,Aj,...,Am}和密钥空间大小|K|,将特征矩阵集合A中的每个矩阵都置为空,同时将密钥空间大小|K|置为零,执行(2b),其中Aj表示特征矩阵集合A中的第j个矩阵,j=1,...,m;(2a) The sender initializes the feature matrix set A={A 1 ,A 2 ...,A j ,...,A m } and the size of the key space |K|, and assigns each matrix in the feature matrix set A Set them all to be empty, and at the same time set the size of the key space |K| to zero, and execute (2b), where A j represents the jth matrix in the feature matrix set A, j=1,...,m; (2b)发送方判断概率分布PC的元素是否全为零:若全为零则不改变特征矩阵集合A和密钥空间大小|K|,执行结束,得到最终的特征矩阵集合A′,该A′的空间数值大小等于秘密信息的空间数值大小m,A′中行的数值大小等于密钥空间数值大小|K|′,A′中列的数值大小等于候选隐藏载体集合CS的空间数值大小n;否则,执行(2c);(2b) The sender judges whether the elements of the probability distribution P C are all zeros: if they are all zeros, the feature matrix set A and the size of the key space |K| are not changed, and the execution ends, and the final feature matrix set A′ is obtained. The spatial numerical size of A' is equal to the spatial numerical size m of the secret information, the numerical size of the row in A' is equal to the key space numerical size |K|', and the numerical value of the column in A ' is equal to the spatial numerical size of the candidate hidden carrier set CS n; otherwise, execute (2c); (2c)发送方对概率分布PC中的元素按照从大到小的顺序进行排列,即,执行(2d),其中表示排序后PC中的第i个元素,σi表示的下标,i=1,...,n;(2c) The sender arranges the elements in the probability distribution PC in descending order, namely , execute (2d), where Indicates the i - th element in PC after sorting, and σ i represents The subscript of i=1,...,n; (2d)发送方修改排序后概率分布PC的前m个元素,使其余元素不发生改变,执行(2e),其中是修改后的概率分布PC中的元素,m的数值大小与秘密信息的空间大小相同,并且1≤m<n,δ是概率分布PC中元素的修改变量;(2d) The sender modifies the first m elements of the sorted probability distribution P C such that The rest of the elements do not change, execute (2e), where is the element in the modified probability distribution P C , the value of m is the same as the size of the secret information space, and 1≤m<n, δ is the modified variable of the element in the probability distribution P C ; (2e)返回(2b)重新判断修改后的概率分布PC,同时修改特征矩阵集合A中每个特征矩阵Aj,令Aj=Aj+δet,并将密钥空间增大为|K|=|K|+m,其中e表示单位行向量,t表示e中值为1的元素的坐标,t=((z+j)modm)+1,z,j=1,...,m;(2e) Return to (2b) to re-judge the modified probability distribution P C , and at the same time modify each feature matrix A j in the feature matrix set A, so that A j =A j +δe t , and increase the key space to | K|=|K|+m, where e represents the unit row vector, t represents the coordinates of the element with a value of 1 in e, t=((z+j)modm)+1, z,j=1,... ,m; (3)发送方获取最终的特征矩阵集合A′={A′1,A′2,...,A′j,...,A′m}和密钥空间大小|K|′,(3) The sender obtains the final feature matrix set A'={A' 1 ,A' 2 ,...,A' j ,...,A' m } and the size of the key space |K|', 其中A′j表示最终的特征矩阵集合中A′的第j特征矩阵,|K|′表示最终的密钥空间大小;Where A' j represents the jth feature matrix of A' in the final set of feature matrices, and |K|' represents the final key space size; (4)发送方利用最终的特征矩阵集合A′和密钥空间大小|K|′将秘密信息隐藏到载体中:(4) The sender uses the final feature matrix set A' and the size of the key space |K|' to hide the secret information in the carrier: (4a)发送方利用秘密信息X=(x1,x2,...xj,...,xm)从特征矩阵集合A′中选取与秘密信息xj对应的矩阵A′j,其中xj表示秘密信息X中的第j个元素,j=1,...,m;(4a) The sender uses the secret information X=(x 1 ,x 2 ,...x j ,...,x m ) to select the matrix A′ j corresponding to the secret information x j from the feature matrix set A′, Where x j represents the jth element in the secret information X, j=1,...,m; (4b)发送方利用A′j和密钥k选取A′j(k,i)≠0的元素所在列对应的载体作为隐藏秘密信息xj的载体,其中A′j(k,i)表示矩阵A′j中第k行第i列的元素,i=1,...,n,j=1,...,m,载体是候选隐藏载体集合CS中的一个元素, (4b) The sender uses A' j and key k to select the carrier corresponding to the column where the element of A' j (k, i)≠0 is located As a carrier for hiding secret information x j , where A′ j (k, i) represents the element of row k and column i in matrix A′ j , i=1,...,n, j=1,... ,m, carrier is an element in the set of candidate hidden vectors CS, (4c)发送方计算选定载体的方差定义秘密信息的嵌入深度αj,j=1,...,m;(4c) The sender calculates the selected bearer The variance of defines the embedding depth α j of secret information, j=1,...,m; (4d)发送方利用嵌入深度αj,把秘密信息嵌入到相应的载体数据中,主要采用加性数据修改方式嵌入秘密信息,其中sj表示隐藏秘密信息xj后的载体;(4d) The sender uses the embedding depth α j to embed the secret information into the corresponding carrier data, mainly adopting the additive data modification method to embed the secret information, Where s j represents the carrier after hiding the secret information x j ; (5)发送方将获取的嵌入秘密信息后的载体集合S={s1,s2,...,sj,...,sm}发送给接收方;(5) The sender sends the obtained carrier set S={s 1 ,s 2 ,...,s j ,...,s m } after embedding the secret information to the receiver; (6)接收方获取秘密信息:(6) The receiver obtains the secret information: (6a)接收方采用滤波方式估计出嵌入秘密信息后的载体集合S中的秘密信息X′;(6a) The receiver uses filtering to estimate the secret information X' in the carrier set S after embedding the secret information; (6b)接收方根据估计出的秘密信息X′利用最终的特征矩阵集合A′,获取估计秘密信息X′与隐藏载体之间的对应关系;(6b) The receiver uses the final feature matrix set A' according to the estimated secret information X' to obtain the correspondence between the estimated secret information X' and the hidden carrier; (6c)接收方根据获取的估计秘密信息X′与隐藏载体之间的对应关系,对估计秘密信息X′进行反排列获取真正的秘密信息X。(6c) According to the corresponding relationship between the acquired estimated secret information X' and the hidden carrier, the receiver reverses the estimated secret information X' to obtain the real secret information X. 2.根据权利要求1所述的利用图像进行秘密信息隐藏的方法,其特征在于,步骤(1)中对载体图像进行块分割,是先将载体图像分割成8×8的小块,并计算每个小块的模糊值;再将模糊值与给定的阈值T进行比较:若模糊值大于或等于阈值T,则将该模糊值对应的小块加入到候选隐藏载体集合CS中;否则,丢弃,直到计算完所有的图像分块为止。2. The method for hiding secret information using images according to claim 1, characterized in that, in the step (1), the carrier image is divided into blocks by first dividing the carrier image into small blocks of 8×8, and calculating The fuzzy value of each small block; then compare the fuzzy value with a given threshold T: if the fuzzy value is greater than or equal to the threshold T , then add the small block corresponding to the fuzzy value to the candidate hidden carrier set CS; otherwise , discarded until all image blocks are calculated. 3.根据权利要求2所述的对载体图像进行块分割的方法,其特征在于,计算每个小块的模糊值,按如下步骤进行:3. the method for carrying out block segmentation to carrier image according to claim 2, is characterized in that, calculates the fuzzy value of each small block, carries out as follows: 首先,定义模糊集合隶属度如下:First, define the fuzzy set membership degree as follows: uu (( pp ,, qq )) == 11 11 ++ || dd (( pp ,, qq )) -- dd &prime;&prime; || // NN ,, 其中,d(p,q)是图像(p,q)处的像素值,d′是图像(p,q)处像素的归一化值,p,q=1,...,8,N为常数,其取值要保证u(p,q)的值域范围在0.5到1之间,即0.5≤u(d(p,q))≤1;Among them, d(p,q) is the pixel value at the image (p,q), d′ is the normalized value of the pixel at the image (p,q), p,q=1,...,8,N It is a constant, and its value should ensure that the value range of u(p,q) is between 0.5 and 1, that is, 0.5≤u(d(p,q))≤1; 其次,在模糊集合隶属度的基础上定义图像(p,q)位置处像素的模糊值如下:Secondly, the fuzzy value of the pixel at the position (p, q) of the image is defined on the basis of the membership degree of the fuzzy set as follows: H(p,q)=-(u(p,q))log2(u(p,q))-(1-u(p,q))log2(1-u(p,q)),H(p,q)=-(u(p,q))log 2 (u(p,q))-(1-u(p,q))log 2 (1-u(p,q)), 最后,根据图像(p,q)位置处像素的模糊值H(p,q)定义小块的模糊值如下:Finally, define the blur value of the small block according to the blur value H(p,q) of the pixel at the position (p,q) of the image as follows: RR (( pp 00 ,, qq 00 )) == 11 aa &times;&times; aa &Sigma;&Sigma; kk == -- (( aa -- 11 )) // 22 (( aa -- 11 )) // 22 &Sigma;&Sigma; ll == -- (( aa -- 11 )) // 22 (( aa -- 11 )) // 22 Hh (( pp 00 ++ kk ,, qq 00 ++ ll )) ,, 其中,p0表示小块中心点的横坐标,q0表示小块中心点的纵坐标,a表示小块的长,a=8,k是控制小块中心点横坐标移动的变量,l是控制小块中心点纵坐标移动的变量, k = - ( a - 1 ) 2 , ... , ( a - 1 ) 2 , l = - ( a - 1 ) 2 , ... , ( a - 1 ) 2 , k &NotEqual; l . Wherein, p 0 represents the abscissa of the small block center point, q 0 represents the ordinate of the small block center point, a represents the length of the small block, a=8, k is the variable that controls the movement of the small block center point abscissa, and l is The variable that controls the vertical coordinate movement of the center point of the small block, k = - ( a - 1 ) 2 , ... , ( a - 1 ) 2 , l = - ( a - 1 ) 2 , ... , ( a - 1 ) 2 , k &NotEqual; l . 4.根据权利要求1所述的利用图像进行秘密信息隐藏的方法,其特征在于步骤4c)中计算载体的嵌入深度αj,按如下步骤进行:4. The method for hiding secret information using images according to claim 1, characterized in that in the step 4c), the embedding depth α j of the carrier is calculated as follows: 首先计算载体数据的均值,公式如下:First calculate the mean value of the carrier data, the formula is as follows: dd &OverBar;&OverBar; == 11 (( 22 &Delta;&Delta; ++ 11 )) 22 &Sigma;&Sigma; kk &prime;&prime; == 11 22 &Delta;&Delta; ++ 11 &Sigma;&Sigma; ll &prime;&prime; == 11 22 &Delta;&Delta; ++ 11 dd (( kk &prime;&prime; ,, ll &prime;&prime; )) ,, 其中,Δ表示移动步长的控制变量,k′是控制载体数据横坐标移动的变量,l′是控制载体数据纵坐标移动的变量,k′=1,...,(2Δ+1),l′=1,...,(2Δ+1),;Among them, Δ represents the control variable of the moving step, k' is the variable that controls the movement of the abscissa of the carrier data, l' is the variable that controls the movement of the ordinate of the carrier data, k'=1,...,(2Δ+1), l'=1,...,(2Δ+1),; 其次,利用均值定义载体数据的方差如下:Second, using the mean Define the variance of the carrier data as follows: &sigma;&sigma; (( uu ,, vv )) == 11 (( 22 &Delta;&Delta; ++ 11 )) 22 &Sigma;&Sigma; ee == uu -- &Delta;&Delta; uu ++ &Delta;&Delta; &Sigma;&Sigma; ff == vv -- &Delta;&Delta; vv ++ &Delta;&Delta; (( dd (( uu ++ ee ,, vv ++ ff )) -- dd &OverBar;&OverBar; )) 22 ,, 其中,u表示载体中心点的横坐标,v表示载体中心点的纵坐标,e是控制载体中心点横坐标移动的变量,f是控制载体数据纵坐标移动的变量,e=(u-Δ),....,(u+Δ),f=(v-Δ),...,(v+Δ);Wherein, u represents the abscissa of the carrier center point, v represents the ordinate of the carrier center point, e is the variable that controls the movement of the abscissa of the carrier center point, and f is the variable that controls the movement of the ordinate of the carrier data, e=(u-Δ) ,....,(u+Δ), f=(v-Δ),...,(v+Δ); 最后,根据载体数据的方差σ(u,v)定义载体图像分块的嵌入深度αj如下:Finally, according to the variance σ(u,v) of the carrier data, the embedding depth α j of the carrier image block is defined as follows: αj=λσ(u,v).α j =λσ(u,v). 其中,λ表示拉伸系数。Among them, λ represents the stretching coefficient.
CN201510965256.0A 2015-12-21 2015-12-21 The method hidden using image progress secret information Active CN105389517B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510965256.0A CN105389517B (en) 2015-12-21 2015-12-21 The method hidden using image progress secret information

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510965256.0A CN105389517B (en) 2015-12-21 2015-12-21 The method hidden using image progress secret information

Publications (2)

Publication Number Publication Date
CN105389517A true CN105389517A (en) 2016-03-09
CN105389517B CN105389517B (en) 2018-04-17

Family

ID=55421793

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510965256.0A Active CN105389517B (en) 2015-12-21 2015-12-21 The method hidden using image progress secret information

Country Status (1)

Country Link
CN (1) CN105389517B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107784286A (en) * 2017-10-27 2018-03-09 济南大学 Palm grain identification method based on contention code and bloom wave filters
CN108282469A (en) * 2018-01-04 2018-07-13 暨南大学 Support the steganography method extracted based on attribute information
CN108595975A (en) * 2018-05-07 2018-09-28 南京信息工程大学 A kind of carrier-free information concealing method based on the retrieval of nearly multiimage
CN110086606A (en) * 2019-02-28 2019-08-02 南京信息工程大学 A kind of black white image Multiparty quantum secret sharing method based on quantum mechanical
CN112884632A (en) * 2021-02-25 2021-06-01 安徽师范大学 High-load image steganography method based on reconstruction matrix
CN114782563A (en) * 2022-05-26 2022-07-22 中国人民解放军国防科技大学 Secret image sharing method and system for JPEG image
CN115131253A (en) * 2022-05-26 2022-09-30 中国人民解放军国防科技大学 A secret image sharing method and system for combating JPEG recompression

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102122385A (en) * 2011-02-28 2011-07-13 北京工业大学 Digital watermark method capable of simultaneously resisting various attacks

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102122385A (en) * 2011-02-28 2011-07-13 北京工业大学 Digital watermark method capable of simultaneously resisting various attacks

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHRISTIAN CACHIN: "An information-theoretic model for steganography", 《INFORMATION AND COMPUTATION》 *
J LLNER ETC: "Modeling the security of steganographic systems", 《LECTURE NOTES IN COMPUTER SCIENCE》 *
杨世勇 等: "一种新的基于图像内容特征的顽健水印", 《通信学报》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107784286A (en) * 2017-10-27 2018-03-09 济南大学 Palm grain identification method based on contention code and bloom wave filters
CN108282469A (en) * 2018-01-04 2018-07-13 暨南大学 Support the steganography method extracted based on attribute information
CN108282469B (en) * 2018-01-04 2020-09-04 暨南大学 Steganography method supporting attribute information extraction
CN108595975A (en) * 2018-05-07 2018-09-28 南京信息工程大学 A kind of carrier-free information concealing method based on the retrieval of nearly multiimage
CN110086606A (en) * 2019-02-28 2019-08-02 南京信息工程大学 A kind of black white image Multiparty quantum secret sharing method based on quantum mechanical
CN110086606B (en) * 2019-02-28 2021-12-14 南京信息工程大学 A method for multi-party secret sharing of black and white images based on quantum mechanism
CN112884632A (en) * 2021-02-25 2021-06-01 安徽师范大学 High-load image steganography method based on reconstruction matrix
CN112884632B (en) * 2021-02-25 2023-08-29 安徽师范大学 High Load Image Steganography Method Based on Reconstruction Matrix
CN114782563A (en) * 2022-05-26 2022-07-22 中国人民解放军国防科技大学 Secret image sharing method and system for JPEG image
CN115131253A (en) * 2022-05-26 2022-09-30 中国人民解放军国防科技大学 A secret image sharing method and system for combating JPEG recompression

Also Published As

Publication number Publication date
CN105389517B (en) 2018-04-17

Similar Documents

Publication Publication Date Title
CN105389517B (en) The method hidden using image progress secret information
Surekha et al. Sensitive digital image watermarking for copyright protection
CN105404817B (en) It is based on(k, n)The user-friendly visual secret sharing scheme method of thresholding
Ernawan Tchebichef image watermarking along the edge using YCoCg-R color space for copyright protection
CN109658322B (en) A large-capacity image steganography method and secret information extraction method
CN113989096B (en) Robust image watermarking method and system based on deep learning and attention network
CN113115053B (en) Image encryption method based on integer wavelet transform and compressed sensing
Keyvanpour et al. Blind image watermarking method based on chaotic key and dynamic coefficient quantization in the DWT domain
CN111882477A (en) An Adaptive Zero-Watermarking Method Combining Visual Cryptography and Enhanced Singular Value Decomposition
Singh High PSNR based image steganography
Hazim et al. A Novel Method of Invisible Video Watermarking Based on Index Mapping and Hybrid DWT-DCT.
Bekkouch et al. Robust and reversible image watermarking scheme using combined DCT-DWT-SVD transforms
Singh et al. A recent survey on data hiding techniques
CN114170062A (en) Robust image watermarking method based on quantum random walk and discrete wavelet transform
CN1177472C (en) Digital Watermark Embedding and Extraction Method Based on Path Search
CN114092306B (en) Medical image robust watermark embedding and extracting method based on InceptionV deep learning network
Yasmeen et al. A novel watermarking scheme based on discrete wavelet transform‐singular value decomposition
Sheth Snake and ladder based algorithm for steganographic application of specific streamline bits on prime gap method
Kadian et al. A Highly Secure and Robust Copyright Protection Method for Grayscale Images using DWT-SVD
Shahid et al. Digital Video Watermarking: Issues and Challenges
Boora et al. Arnold transform based steganography
Nikbakht et al. Targeted dewatermarking of two non-blind SVD-based image watermarking schemes
Ye et al. An image hiding scheme based on 3D skew tent map and discrete wavelet transform
Gupta et al. AHybrid APPROACH FOR ENSURING SECURITY IN DATA COMMUNICATION
Zhongqin et al. Study of digital watermark based on chaos algorithm

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20191122

Address after: 710075 2506, building a, yipinmei Road, Gaoxin Road, Zhangba Street office, high tech Zone, Xi'an City, Shaanxi Province

Patentee after: Xi'an narong Electronic Communication Co., Ltd

Address before: Xi'an City, Shaanxi province Taibai Road 710071 No. 2

Patentee before: Xi'an University of Electronic Science and Technology