CN105388457A - Long-baseline hydroacoustic positioning method based on equivalent acoustic velocity gradient - Google Patents
Long-baseline hydroacoustic positioning method based on equivalent acoustic velocity gradient Download PDFInfo
- Publication number
- CN105388457A CN105388457A CN201510875555.5A CN201510875555A CN105388457A CN 105388457 A CN105388457 A CN 105388457A CN 201510875555 A CN201510875555 A CN 201510875555A CN 105388457 A CN105388457 A CN 105388457A
- Authority
- CN
- China
- Prior art keywords
- sound velocity
- transponder
- equivalent
- transducer
- approximate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 32
- 238000012545 processing Methods 0.000 claims description 15
- 239000011159 matrix material Substances 0.000 claims description 5
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 claims description 2
- 238000004364 calculation method Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000013535 sea water Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000007792 addition Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/18—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
Abstract
本发明公开了一种基于等效声速梯度的长基线水声定位方法,属于水声定位导航领域,采用长基线水声定位系统,该系统由搭载在目标物上的收发换能器发射定位信号,布设在海底的应答器基阵接收并返回应答信号,测量声信号从发射到返回的传播时间,由安装在收发换能器和海底应答器上的微型声速仪实时测量声速值;根据等效声速剖面原理,利用历史声速剖面计算初始值搜索等效声速梯度,当换能器到应答器、应答器到换能器往返传播距离相等时,确定等效声速梯度值,并计算出目标的准确位置。本发明不需要准确的声速剖面,甚至不需要声速剖面,有效消除了声速剖面代表性误差的影响,提高了水下目标定位的精度。
The invention discloses a long-baseline underwater acoustic positioning method based on an equivalent sound velocity gradient, which belongs to the field of underwater acoustic positioning and navigation, and adopts a long-baseline underwater acoustic positioning system, which transmits positioning signals by a transceiver transducer mounted on a target , the transponder array arranged on the seabed receives and returns the response signal, measures the propagation time of the acoustic signal from launch to return, and the sound velocity value is measured in real time by the miniature sound velocity meter installed on the transceiver transducer and the subsea transponder; according to the equivalent The principle of the sound velocity profile, using the historical sound velocity profile to calculate the initial value to search for the equivalent sound velocity gradient, when the round-trip propagation distance from the transducer to the transponder and from the transponder to the transducer is equal, determine the equivalent sound velocity gradient value, and calculate the accuracy of the target Location. The present invention does not need accurate sound velocity profile, even does not need sound velocity profile, effectively eliminates the influence of representative error of sound velocity profile, and improves the accuracy of underwater target positioning.
Description
技术领域technical field
本发明属于水声定位导航领域,具体涉及一种基于等效声速梯度的长基线水声定位方法。The invention belongs to the field of underwater acoustic positioning and navigation, and in particular relates to a long baseline underwater acoustic positioning method based on an equivalent sound velocity gradient.
背景技术Background technique
长基线水声定位系统跟踪范围大,定位精度高,已经在海洋资源开发、海洋工程建设、水下考古、海洋国防建设等多方面得到了广泛应用。目前已研发的长基线水声定位系统多采用距离交会的定位方法,距离测量的精度直接影响到长基线系统的定位精度,因此根据实测声速剖面进行声线改正非常重要,但声速剖面难以实时获取,声速剖面代表性误差难以避免,因此有必要研究一种能够有效消除声速剖面代表性误差影响的长基线水声定位系统。The long-baseline hydroacoustic positioning system has a large tracking range and high positioning accuracy, and has been widely used in marine resource development, marine engineering construction, underwater archaeology, and marine national defense construction. The long-baseline underwater acoustic positioning systems that have been developed so far mostly use the positioning method of distance intersection. The accuracy of distance measurement directly affects the positioning accuracy of the long-baseline system. Therefore, it is very important to correct the sound ray based on the measured sound velocity profile, but the sound velocity profile is difficult to obtain in real time. , the representative error of the sound velocity profile is unavoidable, so it is necessary to study a long baseline underwater acoustic positioning system that can effectively eliminate the influence of the representative error of the sound velocity profile.
发明内容Contents of the invention
针对现有技术中存在的上述技术问题,本发明提出了一种基于等效声速梯度的长基线水声定位方法,设计合理,克服了现有技术的不足,消除了声速剖面的误差影响,提高了精度。Aiming at the above technical problems existing in the prior art, the present invention proposes a long baseline underwater acoustic positioning method based on the equivalent sound velocity gradient, which is reasonably designed, overcomes the deficiencies of the prior art, eliminates the error influence of the sound velocity profile, and improves accuracy.
为了实现上述目的,本发明采用如下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:
一种基于等效声速梯度的长基线水声定位方法,采用长基线水声定位系统,其包括安装在水面船只的处理及控制单元、安装在水面船只或水下机器人上的收发换能器以及布设在海底的由多个应答器组成的应答器基阵,所述收发换能器和应答器基阵上都安装有微型声速仪;A long-baseline underwater acoustic positioning method based on an equivalent sound velocity gradient, using a long-baseline underwater acoustic positioning system, which includes a processing and control unit installed on a surface vessel, a transceiver transducer installed on a surface vessel or an underwater robot, and A transponder array composed of a plurality of transponders arranged on the seabed, and a miniature sound velocity meter is installed on the transceiver transducer and the transponder array;
所述的基于等效声速梯度的长基线水声定位方法按照如下步骤进行:The long baseline underwater acoustic positioning method based on the equivalent sound velocity gradient is carried out according to the following steps:
步骤1:对布设在海底的应答器基阵进行绝对位置校准;Step 1: Calibrate the absolute position of the transponder array deployed on the seabed;
步骤2:通过处理及控制单元控制收发换能器和应答器基阵测量声波传播的往返时间ti,通过处理及控制单元控制微型声速仪测量收发换能器的声速C0和应答器的声速C′0i;Step 2: Measure the round-trip time t i of sound wave propagation by controlling the transceiver transducer and the transponder matrix through the processing and control unit, and measure the sound velocity C 0 of the transceiver transducer and the sound velocity of the transponder by controlling the miniature sound velocity meter through the processing and control unit C′ 0i ;
步骤3:计算收发换能器到各个应答器的近似距离和目标近似坐标以及各个应答器到收发换能器的近似距离和目标近似坐标;Step 3: Calculating the approximate distance and approximate coordinates of the target from the transponder to each transponder and the approximate distance and approximate coordinates of the target from each transponder to the transponder;
步骤4:计算出准确的目标位置。Step 4: Calculate the exact target position.
优选地,在步骤3中,具体包括:Preferably, in step 3, it specifically includes:
步骤3.1:利用历史声速剖面计算近似等效声速梯度g0,设置搜索步长Δg,搜索等效声速梯度gij:Step 3.1: Calculate the approximate equivalent sound velocity gradient g 0 using the historical sound velocity profile, set the search step size Δg, and search for the equivalent sound velocity gradient g ij :
gij=g0+j·Δg(9)g ij =g 0 +j·Δg(9)
式中,i为声线序号,j为搜索次数。In the formula, i is the serial number of the sound ray, and j is the number of searches.
步骤3.2:利用gij以及测量得到的收发换能器的声速C0、声波往返时间ti,计算收发换能器到各个应答器的近似距离Lij及目标近似坐标Pj(Xj,Yj,Zj);Step 3.2 : Calculate the approximate distance L ij from the transceiver transducer to each transponder and the approximate target coordinates P j (X j , Y j , Z j );
步骤3.3:根据声速剖面积分面积相等原则,通过公式(10)计算应答器到收发换能器的等效声速梯度g′ij:Step 3.3: According to the principle of equal sound velocity section integral area, calculate the equivalent sound velocity gradient g′ ij from the transponder to the transceiver transducer by formula (10):
g′ij=gij-2(C′0i-C0)/(Zi-Zj)(10)g' ij =g ij -2(C' 0i -C 0 )/(Z i -Z j )(10)
其中,C0、C′0i分别为通过微型声速仪测量得到的收发换能器和应答器的声速值,Zi为应答器的深度值,Zj为步骤3.2计算得到的目标近似坐标Pj(Xj,Yj,Zj)的深度值;Among them, C 0 and C′ 0i are the sound velocity values of the transceiver transducer and the transponder measured by the micro-sound velocity meter, Z i is the depth value of the transponder, and Z j is the approximate target coordinate P j calculated in step 3.2 Depth value of (X j ,Y j ,Z j );
步骤3.4:利用计算得到的g′ij以及测量得到的应答器的声速C′0i、声波往返时间ti,计算各个应答器到收发换能器的近似距离L′ij及目标近似坐标P′j(X′j,Y′j,Z′j)。Step 3.4: Calculate the approximate distance L′ ij from each transponder to the transceiver transducer and the approximate coordinates P′ j of the target by using the calculated g′ ij and the measured sound velocity C′ 0i of the transponder and the round-trip time t i of the sound wave (X′ j , Y′ j , Z′ j ).
优选地,在步骤4中,具体包括:Preferably, in step 4, specifically include:
步骤4.1:根据计算出的收发换能器到各个应答器的距离Lij以及各个应答器到收发换能器的距离L′ij,令ΔLij=|Lij-L'ij|;Step 4.1: According to the calculated distance L ij from the transceiver transducer to each transponder and the distance L′ ij from each transponder to the transceiver transducer, let ΔL ij =|L ij -L' ij |;
步骤4.2:根据往返距离相等的原则,当ΔLij取最小值时的gij值即为实际等效声速梯度gi值,即gi=gij,采用最小二乘法计算出准确的目标位置P(X,Y,Z)。Step 4.2: According to the principle of equal round-trip distance, the g ij value when ΔL ij takes the minimum value is the actual equivalent sound velocity gradient g i value, that is, g i = g ij , and the accurate target position P is calculated by the least square method (X,Y,Z).
本发明所带来的有益技术效果:Beneficial technical effects brought by the present invention:
本发明提出一种基于等效声速梯度的长基线水声定位方法,与现有技术相比,可以不需要准确的声速剖面,甚至不需要声速剖面,消除了声速剖面代表性误差对定位计算精度的影响,提高了长基线水声定位系统的定位精度。The present invention proposes a long baseline underwater acoustic positioning method based on the equivalent sound velocity gradient. Compared with the prior art, the accurate sound velocity profile may not be required, or even the sound velocity profile is not required, and the representative error of the sound velocity profile has no effect on the positioning calculation accuracy. The impact of the long baseline hydroacoustic positioning system improves the positioning accuracy.
附图说明Description of drawings
图1为本发明基于等效声速梯度的长基线水声定位方法中长基线水声定位系统的原理图。Fig. 1 is a schematic diagram of the long baseline underwater acoustic positioning system in the long baseline underwater acoustic positioning method based on the equivalent sound velocity gradient of the present invention.
图2为本发明基于等效声速梯度的长基线水声定位方法的流程框图。Fig. 2 is a flowchart of the long baseline underwater acoustic positioning method based on the equivalent sound velocity gradient of the present invention.
图3为本发明中等效声速梯度的计算示意图。Fig. 3 is a schematic diagram of calculating the equivalent sound velocity gradient in the present invention.
图4为本发明中等效声速梯度与距离较差关系图。Fig. 4 is a diagram of the relationship between the equivalent sound velocity gradient and the distance difference in the present invention.
图5为本发明中海底应答器基阵及目标位置示意图。Fig. 5 is a schematic diagram of the submarine transponder array and target positions in the present invention.
图6为本发明中搜索声速梯度变化与距离较差关系图。Fig. 6 is a graph showing the relationship between the search sound velocity gradient change and the distance difference in the present invention.
图7为本发明方法与其他方法定位误差比较图。Fig. 7 is a comparison diagram of positioning errors between the method of the present invention and other methods.
其中,1-处理及控制单元;2-收发换能器;3-应答器;4-微型声速仪。Among them, 1-processing and control unit; 2-receiver transducer; 3-transponder; 4-miniature sound velocity meter.
具体实施方式detailed description
下面结合附图以及具体实施方式对本发明作进一步详细说明:Below in conjunction with accompanying drawing and specific embodiment the present invention is described in further detail:
如图1所示,长基线水声定位系统包括安装在水面船只的处理及控制单元1、安装在船只或水下机器人上的收发换能器2、布放在海底的由多个应答器3组成的应答器基阵,所述收发换能器2和应答器3上都安装有微型声速仪4。As shown in Figure 1, the long-baseline hydroacoustic positioning system includes a processing and control unit 1 installed on a surface vessel, a transceiver transducer 2 installed on a vessel or an underwater robot, and multiple transponders 3 deployed on the seabed. The composed transponder array, the transponder 2 and the transponder 3 are all equipped with a miniature sound velocity meter 4 .
处理及控制单元1负责测量数据的存储和计算,并控制整个系统的运行。The processing and control unit 1 is responsible for the storage and calculation of measurement data, and controls the operation of the entire system.
处理及控制单元1控制收发换能器和应答器基阵测量声波传播的往返时间ti,并控制微型声速仪测量收发换能器的声速C0和应答器的声速C′0i,之后将测量的数据ti、C0以及C′0i存储到处理及控制单元1中。The processing and control unit 1 controls the transceiving transducer and the transponder array to measure the round-trip time t i of sound wave propagation, and controls the miniature sound velocity meter to measure the sound velocity C 0 of the transceiving transducer and the sound velocity C′ 0i of the transponder, and then measure The data t i , C 0 and C′ 0i are stored in the processing and control unit 1 .
由于海水为非均匀介质体,海水中的声速随着温度、盐度和压力的变化而变化,声波在海水中的传播路径是一条连续的曲线,按照等效声速剖面法原理,可将实际声速剖面用一个常梯度等效声速剖面来代替。根据射线声学的理论,声线在常梯度层中的轨迹为圆弧,圆弧半径为:Since seawater is a non-uniform medium, the speed of sound in seawater changes with temperature, salinity and pressure, and the propagation path of sound waves in seawater is a continuous curve. According to the principle of equivalent sound velocity profile method, the actual sound velocity can be The profile is replaced by a constant gradient equivalent sound velocity profile. According to the theory of ray acoustics, the trajectory of sound rays in the constant gradient layer is an arc, and the radius of the arc is:
R=1/|pg|(1)R=1/|pg|(1)
式中,g为常梯度层中的声速梯度值,p为snell常数。In the formula, g is the sound velocity gradient value in the constant gradient layer, and p is the snell constant.
g=(Cr-C0)/(Zr-Z0)(2)g=(C r -C 0 )/(Z r -Z 0 )(2)
p=sinθ0/C0=sinθr/Cr(3)p=sinθ 0 /C 0 =sinθ r /C r (3)
式中,C0为初始声速值,可以通过安装在换能器上的微型声速仪测量得到;Cr为终止声速值,在声速梯度g已知的情况下由公式(2)计算得到;Z0为换能器入水深度,Zr为应答器处水深;θ0、θr分别为声波的初始入射角和终止入射角,θ0可由公式(4)通过牛顿迭代公式计算得到,θr可由公式(5)计算得到:In the formula, C 0 is the initial sound velocity value, which can be measured by a miniature sound velocity meter installed on the transducer; C r is the end sound velocity value, which is calculated by formula (2) when the sound velocity gradient g is known; Z 0 is the water entry depth of the transducer, Z r is the water depth at the transponder; θ 0 and θ r are the initial incident angle and end incident angle of the sound wave respectively, θ 0 can be calculated by formula (4) through Newton’s iterative formula, θ r can be calculated by Formula (5) is calculated to get:
tan[arcsin(Crsinθ0/C0)/2]-etg/2tan(θ0/2)=0(4)tan[arcsin(C r sinθ 0 /C 0 )/2]-e tg/2 tan(θ 0 /2)=0(4)
θr=2arctan(etg/2tan(θ0/2))(5)θ r =2arctan(e tg/2 tan(θ 0 /2))(5)
式中,t为测量得到的声波往返时间,g为等效声速梯度值。In the formula, t is the round-trip time of the measured sound wave, and g is the equivalent sound velocity gradient value.
声波传播的垂向距Δz、侧向距Δx计算公式如下:The formulas for calculating the vertical distance Δz and lateral distance Δx of sound wave propagation are as follows:
公式(6)即为声线折射改正公式,经过改正后的距离可表示为:Formula (6) is the sound ray refraction correction formula, and the corrected distance can be expressed as:
假设存在4个海底应答器,则可利用Li采用最小二乘方法进行定位解算:Assuming that there are 4 submarine transponders, L i can be used to solve the positioning by using the least square method:
式中,P(X,Y,Z)为收发换能器的坐标,Pi(Xi,Yi,Zi),(i=1,2,3,4)为海底声基阵中已校准的应答器的坐标。In the formula, P(X,Y,Z) is the coordinates of the transceiver transducer, P i (X i ,Y i ,Z i ), (i=1,2,3,4) is the Coordinates of the calibrated transponder.
在实际等效声速梯度gi,(i=1,2,3,4)已知的情况下,利用公式(1)~(8)通过迭代计算即可得到目标换能器坐标。但由于实时声速剖面难以获得,通常只能利用历史声速剖面计算出由换能器到应答器的近似等效声速梯度g0,若直接用g0进行计算,必然引入声速剖面代表性误差。In the case that the actual equivalent sound velocity gradient g i , (i=1, 2, 3, 4) is known, the coordinates of the target transducer can be obtained through iterative calculation using formulas (1)-(8). However, since the real-time sound velocity profile is difficult to obtain, usually only the approximate equivalent sound velocity gradient g 0 from the transducer to the transponder can be calculated by using the historical sound velocity profile. If g 0 is directly used for calculation, the representative error of the sound velocity profile will inevitably be introduced.
本发明利用近似等效声速梯度g0,设置搜索步长Δg,搜索等效声速梯度gij:The present invention uses the approximate equivalent sound velocity gradient g 0 , sets the search step size Δg, and searches for the equivalent sound velocity gradient g ij :
gij=g0+j·Δg(9)g ij =g 0 +j·Δg(9)
式中,i为声线序号,j为搜索次数。In the formula, i is the serial number of the sound ray, and j is the number of searches.
利用gij以及测量得到的收发换能器的声速C0、声波往返时间ti,可迭代计算出收发换能器到各个应答器的近似距离Lij及目标近似坐标Pj(Xj,Yj,Zj);Using g ij and the measured sound velocity C 0 of the transceiver transducer and the sound round-trip time t i , the approximate distance L ij from the transceiver transducer to each transponder and the approximate target coordinates P j (X j ,Y j , Z j );
结合图3所示,根据声速剖面积分面积相等的原则,由换能器到应答器的等效声速梯度gij,反算应答器到换能器的等效声速梯度g′ij:Combined with Fig. 3, according to the principle of equal sound velocity section integral area, from the equivalent sound velocity gradient g ij from the transducer to the transponder, the equivalent sound velocity gradient g′ ij from the transponder to the transducer is inversely calculated:
g′ij=gij-2(C′0i-C0)/(Zi-Zj)(10)g' ij =g ij -2(C' 0i -C 0 )/(Z i -Z j )(10)
其中,C0、C′0i分别为通过微型声速仪测量得到的收发换能器和应答器的声速值,Zi为应答器的深度值,Zj为目标近似坐标Pj(Xj,Yj,Zj)中的水深值;Among them, C 0 , C′ 0i are the sound velocity values of the transmitting and receiving transducers and the transponder measured by the miniature sound velocity meter, Z i is the depth value of the transponder, and Z j is the approximate target coordinate P j (X j ,Y j , Z j );
同理,利用g′ij以及测量得到的应答器的声速C′0i、声波往返时间ti,可迭代计算各个应答器到换能器的近似距离L′ij、近似坐标P′j(X′j,Y′j,Z′j)。Similarly , the approximate distance L′ ij and the approximate coordinates P ′ j ( X′ j , Y′ j , Z′ j ).
根据往返距离相等的原则,Lij和L′ij应该是相等的,即距离较差ΔLij=|Lij-L′ij|=0,但如果搜索的等效声速梯度gij存在误差,则ΔLij≠0,且gij误差越大,距离较差ΔLij越大。如图4所示,等效声速梯度与距离较差关系图,当搜索等效声速梯度达到0.05时,即搜索等效声速梯度与实际等效声速梯度相等,此时ΔLij=0。According to the principle of equal round-trip distance, L ij and L' ij should be equal, that is, the distance is poor ΔL ij =|L ij -L' ij |=0, but if there is an error in the searched equivalent sound velocity gradient g ij , then ΔL ij ≠0, and the greater the g ij error, the greater the distance difference ΔL ij . As shown in Figure 4, the relationship between the equivalent sound velocity gradient and the distance difference, when the search equivalent sound velocity gradient reaches 0.05, that is, the search equivalent sound velocity gradient is equal to the actual equivalent sound velocity gradient, at this time ΔL ij =0.
据此特性,则可通过搜索的方法得到换能器到各应答器的等效声速梯度gi,再由公式(1)~(8)计算出准确的目标位置P(X,Y,Z)。According to this characteristic, the equivalent sound velocity gradient g i from the transducer to each transponder can be obtained by searching, and then the accurate target position P(X,Y,Z) can be calculated by formulas (1)~(8) .
本发明一种基于等效声速梯度的长基线水声定位方法(如图2所示),按照如下步骤进行:A long baseline underwater acoustic positioning method (as shown in Figure 2) based on the equivalent sound velocity gradient of the present invention is carried out according to the following steps:
步骤1:对布设在海底的应答器基阵进行绝对位置校准,通过处理及控制单元控制收发换能器和应答器基阵测量声波传播的往返时间ti,通过处理及控制单元控制微型声速仪测量收发换能器的声速C0和应答器的声速C′0i,同时利用GNSS测量收发换能器的位置坐标;其中对收发换能器与应答器之间的距离Li的声线改正方法,与对目标物实施定位时的方法一致;Step 1: Calibrate the absolute position of the transponder matrix deployed on the seabed, measure the round-trip time t i of sound wave propagation by controlling the transceiver transducer and the transponder matrix through the processing and control unit, and control the miniature sound velocity meter through the processing and control unit Measure the sound velocity C 0 of the transceiver transducer and the sound velocity C′ 0i of the transponder, and use GNSS to measure the position coordinates of the transceiver transducer; the sound ray correction method for the distance L i between the transceiver transducer and the transponder , which is consistent with the method used to locate the target;
步骤2:通过处理及控制单元控制收发换能器和应答器基阵测量声波传播的往返时间ti,通过处理及控制单元控制微型声速仪测量收发换能器的声速C0和应答器的声速C′0i;Step 2: Measure the round-trip time t i of sound wave propagation by controlling the transceiver transducer and the transponder matrix through the processing and control unit, and measure the sound velocity C 0 of the transceiver transducer and the sound velocity of the transponder by controlling the miniature sound velocity meter through the processing and control unit C′ 0i ;
步骤3:利用历史声速剖面计算近似等效声速梯度g0,在一定范围内搜索换能器到应答器的等效声速梯度gij,计算换能器到各应答器的距离Lij、目标近似坐标Pj(Xj,Yj,Zj),反算应答器到换能器的等效声速梯度g′ij,计算应答器到换能器的距离L′ij及目标近似坐标P′j(X′j,Y′j,Z′j);Step 3: Use the historical sound velocity profile to calculate the approximate equivalent sound velocity gradient g 0 , search for the equivalent sound velocity gradient g ij from the transducer to the transponder within a certain range, calculate the distance L ij from the transducer to each transponder, and target approximation Coordinate P j (X j , Y j , Z j ), inversely calculate the equivalent sound velocity gradient g′ ij from the transponder to the transducer, calculate the distance L′ ij from the transponder to the transducer and the approximate coordinates of the target P′ j (X′ j ,Y′ j ,Z′ j );
步骤4:根据计算出的收发换能器到各个应答器的距离Lij以及各个应答器到收发换能器的距离L′ij,令ΔLij=|Lij-L'ij|;根据往返距离相等的原则,判断ΔLij=|Lij-L'ij|是否可以取到最小值;Step 4: According to the calculated distance L ij from the transceiver transducer to each transponder and the distance L′ ij from each transponder to the transceiver transducer, set ΔL ij =|L ij -L' ij |; according to the round-trip distance Based on the principle of equality, judge whether ΔL ij =|L ij -L' ij | can take the minimum value;
若:判断结果是ΔLij=|Lij-L'ij|可以取到最小值,则当ΔLij取最小值时的gij值即为实际等效声速梯度gi值,即gi=gij,采用最小二乘法计算出准确的目标位置P(X,Y,Z);If: the judgment result is that ΔL ij =|L ij -L' ij | can take the minimum value, then the g ij value when ΔL ij takes the minimum value is the actual equivalent sound velocity gradient g i value, that is g i =g ij , using the least square method to calculate the accurate target position P(X,Y,Z);
或判断结果是ΔLij=|Lij-L'ij|取不到最小值,则执行步骤3。Or if the judgment result is that ΔL ij =|L ij -L' ij | cannot obtain the minimum value, then step 3 is performed.
对本发明的方法进行计算机仿真,结合图5所示,在水深为500m的某海域内,按边长为500m的正方形网形布设海底声基阵,目标所在深度为100m,声速为1500m/s,目标到四个应答器的等效声速梯度分别为0.04、0.05、0.06、0.07,微型声速仪测量精度为0.02m/s,应答器基阵校准精度为平面方向20cm、垂直方向20cm。假设利用历史声速剖面计算得到的等效声速梯度为0.04,测区测量一个声速剖面,其等效声速梯度为0.05。采用本发明方法对水下目标进行定位计算,同时,分别采用历史声速剖面、实际测量声速剖面进行定位计算,并对三种方法的定位精度进行比较分析。The method of the present invention is carried out computer simulation, in conjunction with shown in Fig. 5, in the certain sea area that is 500m in depth of water, be the square grid shape of 500m to lay out the submarine sound base array by side length, the depth of target is 100m, and the speed of sound is 1500m/s, The equivalent sound velocity gradients from the target to the four transponders are 0.04, 0.05, 0.06, and 0.07 respectively, the measurement accuracy of the miniature sound velocity meter is 0.02m/s, and the calibration accuracy of the transponder array is 20cm in the plane direction and 20cm in the vertical direction. Assuming that the equivalent sound velocity gradient calculated by using the historical sound velocity profile is 0.04, and a sound velocity profile is measured in the survey area, the equivalent sound velocity gradient is 0.05. The method of the present invention is used for positioning calculation of underwater targets, and at the same time, the historical sound velocity profile and the actual measurement sound velocity profile are respectively used for positioning calculation, and the positioning accuracy of the three methods is compared and analyzed.
当目标处于不同位置时,利用本发明方法对目标进行定位计算,得到搜索声速梯度变化与距离较差关系如图6所示,最后确定的目标到四个应答器的等效声速梯度分别为0.0395、0.05、0.06、0.07,与已知值最大相差0.0005,可看出采用本发明方法可准确搜索得到等效声速梯度。When the target is in a different position, the method of the present invention is used to calculate the positioning of the target, and the relationship between the search sound velocity gradient and the distance difference is obtained, as shown in Figure 6, and the final determined equivalent sound velocity gradients from the target to the four transponders are respectively 0.0395 .
结合图7所示,可以看出采用本发明方法定位计算的平面误差和垂向误差均在分米级,其中平面误差平均为0.2m,垂向误差平均为0.1m;采用历史声速剖面进行定位计算时,平面误差平均为1.8m,垂向误差平均为1.3m;采用实际测量声速剖面进行定位计算时,平面误差平均为1.7m,垂向误差平均为0.5m。As shown in Figure 7, it can be seen that the plane error and vertical error calculated by the method of the present invention are all at the decimeter level, wherein the average plane error is 0.2m, and the average vertical error is 0.1m; the historical sound velocity profile is used for positioning During the calculation, the average plane error is 1.8m, and the average vertical error is 1.3m; when the actual measured sound velocity profile is used for positioning calculation, the average plane error is 1.7m, and the average vertical error is 0.5m.
因此,与采用历史声速剖面方法相比,采用实际测量声速剖面提高了定位计算的精度,但不能消除声速剖面代表性误差的影响,而本发明提出的长基线水声定位方法可以不需要准确的声速剖面,甚至不需要声速剖面,有效消除了声速剖面代表性误差影响,提高了长基线水声定位的精度。Therefore, compared with the method using the historical sound velocity profile, the use of the actual measurement of the sound velocity profile improves the accuracy of positioning calculations, but cannot eliminate the influence of the representative error of the sound velocity profile, and the long baseline underwater acoustic positioning method proposed by the present invention does not require accurate The sound velocity profile, even without the sound velocity profile, effectively eliminates the influence of the representative error of the sound velocity profile, and improves the accuracy of long baseline underwater acoustic positioning.
当然,上述说明并非是对本发明的限制,本发明也并不仅限于上述举例,本技术领域的技术人员在本发明的实质范围内所做出的变化、改型、添加或替换,也应属于本发明的保护范围。Of course, the above descriptions are not intended to limit the present invention, and the present invention is not limited to the above examples. Changes, modifications, additions or replacements made by those skilled in the art within the scope of the present invention shall also belong to the present invention. protection scope of the invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510875555.5A CN105388457B (en) | 2015-12-03 | 2015-12-03 | A kind of Long baselines hydrolocation method based on equivalent sound velocity gradient |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510875555.5A CN105388457B (en) | 2015-12-03 | 2015-12-03 | A kind of Long baselines hydrolocation method based on equivalent sound velocity gradient |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105388457A true CN105388457A (en) | 2016-03-09 |
CN105388457B CN105388457B (en) | 2017-10-27 |
Family
ID=55420946
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510875555.5A Active CN105388457B (en) | 2015-12-03 | 2015-12-03 | A kind of Long baselines hydrolocation method based on equivalent sound velocity gradient |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105388457B (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107132520A (en) * | 2017-05-03 | 2017-09-05 | 江苏中海达海洋信息技术有限公司 | A kind of sound ray modification method and system based on underwater sound ultra short baseline locating system |
CN107202988A (en) * | 2017-05-23 | 2017-09-26 | 国家海洋局第三海洋研究所 | A kind of easy hydrolocation method |
CN108267743A (en) * | 2017-12-29 | 2018-07-10 | 中国海洋石油集团有限公司 | Iteratively faster Underwater Navigation method based on fitting |
CN109597032A (en) * | 2019-01-31 | 2019-04-09 | 中国科学院深海科学与工程研究所 | A kind of under-water acoustic locating communication means |
CN110132281A (en) * | 2019-05-21 | 2019-08-16 | 哈尔滨工程大学 | A high-precision autonomous acoustic navigation method for underwater high-speed targets based on query-response mode |
CN110261824A (en) * | 2019-07-15 | 2019-09-20 | 交通运输部天津水运工程科学研究所 | A kind of ultra-short baseline calibration system and scaling method based on multi-beacon |
CN111812694B (en) * | 2020-06-28 | 2021-05-18 | 中国科学院地质与地球物理研究所 | A long-baseline shipborne positioning device and positioning method thereof |
CN113156413A (en) * | 2021-04-28 | 2021-07-23 | 哈尔滨工程大学 | Seabed reference calibration method based on double-pass acoustic path |
CN113406645A (en) * | 2021-05-10 | 2021-09-17 | 山东科技大学 | Novel average sound velocity underwater sonar positioning method |
CN113486574A (en) * | 2021-06-21 | 2021-10-08 | 广东海洋大学 | Sound velocity profile completion method and device based on historical data and machine learning |
CN116070092A (en) * | 2023-03-06 | 2023-05-05 | 山东科技大学 | Equal gradient sound velocity profile optimization method |
CN117031398A (en) * | 2023-10-08 | 2023-11-10 | 青岛智能导航与控制研究所 | Position correction method for underwater transponder |
CN117252035A (en) * | 2023-11-14 | 2023-12-19 | 天津大学 | Method for determining incidence angle of water surface aircraft |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102269811A (en) * | 2010-06-04 | 2011-12-07 | 国家海洋局第一海洋研究所 | Edge beam water depth data sound velocity correction method based on vertical beam water depth |
US20120294112A1 (en) * | 2011-05-17 | 2012-11-22 | Sonardyne International Limited | System for measuring a time offset and method of measuring a time offset |
CN103323815A (en) * | 2013-03-05 | 2013-09-25 | 上海交通大学 | Underwater acoustic locating method based on equivalent sound velocity |
-
2015
- 2015-12-03 CN CN201510875555.5A patent/CN105388457B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102269811A (en) * | 2010-06-04 | 2011-12-07 | 国家海洋局第一海洋研究所 | Edge beam water depth data sound velocity correction method based on vertical beam water depth |
US20120294112A1 (en) * | 2011-05-17 | 2012-11-22 | Sonardyne International Limited | System for measuring a time offset and method of measuring a time offset |
CN103323815A (en) * | 2013-03-05 | 2013-09-25 | 上海交通大学 | Underwater acoustic locating method based on equivalent sound velocity |
Non-Patent Citations (2)
Title |
---|
FANLIN YANG 等: "Precise Positioning of Underwater Static Objects without Sound Speed Profile", 《MARINE GEODESY》 * |
辛明真 等: "一种等效声速梯度的迭代计算方法", 《海洋测绘》 * |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107132520A (en) * | 2017-05-03 | 2017-09-05 | 江苏中海达海洋信息技术有限公司 | A kind of sound ray modification method and system based on underwater sound ultra short baseline locating system |
CN107132520B (en) * | 2017-05-03 | 2020-08-14 | 江苏中海达海洋信息技术有限公司 | Sound ray correction method and system based on underwater sound ultra-short baseline positioning system |
CN107202988A (en) * | 2017-05-23 | 2017-09-26 | 国家海洋局第三海洋研究所 | A kind of easy hydrolocation method |
CN107202988B (en) * | 2017-05-23 | 2019-05-24 | 自然资源部第三海洋研究所 | A kind of easy hydrolocation method |
CN108267743A (en) * | 2017-12-29 | 2018-07-10 | 中国海洋石油集团有限公司 | Iteratively faster Underwater Navigation method based on fitting |
CN109597032A (en) * | 2019-01-31 | 2019-04-09 | 中国科学院深海科学与工程研究所 | A kind of under-water acoustic locating communication means |
CN110132281A (en) * | 2019-05-21 | 2019-08-16 | 哈尔滨工程大学 | A high-precision autonomous acoustic navigation method for underwater high-speed targets based on query-response mode |
CN110132281B (en) * | 2019-05-21 | 2023-10-20 | 哈尔滨工程大学 | Underwater high-speed target high-precision autonomous acoustic navigation method based on inquiry response mode |
CN110261824A (en) * | 2019-07-15 | 2019-09-20 | 交通运输部天津水运工程科学研究所 | A kind of ultra-short baseline calibration system and scaling method based on multi-beacon |
CN110261824B (en) * | 2019-07-15 | 2024-03-19 | 交通运输部天津水运工程科学研究所 | Ultrashort baseline calibration system and calibration method based on multiple beacons |
CN111812694B (en) * | 2020-06-28 | 2021-05-18 | 中国科学院地质与地球物理研究所 | A long-baseline shipborne positioning device and positioning method thereof |
CN113156413A (en) * | 2021-04-28 | 2021-07-23 | 哈尔滨工程大学 | Seabed reference calibration method based on double-pass acoustic path |
CN113156413B (en) * | 2021-04-28 | 2022-11-15 | 哈尔滨工程大学 | Seabed reference calibration method based on double-pass acoustic path |
CN113406645A (en) * | 2021-05-10 | 2021-09-17 | 山东科技大学 | Novel average sound velocity underwater sonar positioning method |
CN113486574A (en) * | 2021-06-21 | 2021-10-08 | 广东海洋大学 | Sound velocity profile completion method and device based on historical data and machine learning |
CN116070092A (en) * | 2023-03-06 | 2023-05-05 | 山东科技大学 | Equal gradient sound velocity profile optimization method |
CN117031398A (en) * | 2023-10-08 | 2023-11-10 | 青岛智能导航与控制研究所 | Position correction method for underwater transponder |
CN117031398B (en) * | 2023-10-08 | 2024-01-12 | 青岛智能导航与控制研究所 | Position correction method for underwater transponder |
CN117252035A (en) * | 2023-11-14 | 2023-12-19 | 天津大学 | Method for determining incidence angle of water surface aircraft |
CN117252035B (en) * | 2023-11-14 | 2024-02-13 | 天津大学 | Method for determining incident angle of surface vehicle |
Also Published As
Publication number | Publication date |
---|---|
CN105388457B (en) | 2017-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105388457B (en) | A kind of Long baselines hydrolocation method based on equivalent sound velocity gradient | |
CN101644759B (en) | Submarine object-locating system based on dualistic structure and locating method | |
CN107132520B (en) | Sound ray correction method and system based on underwater sound ultra-short baseline positioning system | |
CN106595834B (en) | A method of obtaining the horizontal longitudinal correlation of the big depth sound field in deep-sea | |
CN106950568B (en) | A kind of construction method of adaptive multinode equivalent sound velocity profile | |
CN105004413B (en) | Acoustic propagation path comprehensive speed assay method and device for submarine target positioning | |
CN102262226B (en) | Underwater Positioning Method Based on Differential Technology | |
CN109870695B (en) | Non-cooperative target multi-node hydroacoustic positioning method based on deep-sea bottom reflection | |
CN111896962B (en) | Submarine transponder positioning method, system, storage medium and application | |
CN102269811A (en) | Edge beam water depth data sound velocity correction method based on vertical beam water depth | |
CN105116372B (en) | A kind of method of bottom of shallow sea horizontal linear hydrophone array direction calibration | |
CN101833081A (en) | Method for precise calibration of absolute position of deep sea underwater transponder | |
CN109738902B (en) | High-precision autonomous acoustic navigation method for underwater high-speed target based on synchronous beacon mode | |
CN107664758A (en) | Deep-sea navigation positioning system and method based on Long baselines or ultra-short baseline networking | |
CN113671443A (en) | A deep-sea target localization method for underwater acoustic sensor network based on grazing angle sound ray correction | |
CN112946574A (en) | Seabed sonar reference beacon positioning method and device and seabed positioning system | |
CN107167224A (en) | A kind of measuring method of Ship Radiated-Noise | |
CN105022032A (en) | Long baseline navigation positioning system absolute array measurement distance measurement correction method | |
CN110824430A (en) | Underwater positioning method based on Beidou positioning system | |
JP4922450B2 (en) | Direction measurement method for target emitting sound wave | |
CN112147578B (en) | High-precision deep water transmitting array and multi-element vertical receiving array element positioning system and method | |
CN105445694A (en) | Equal-gradient sound ray tracking acoustic velocity profile adaptive layering method | |
CN105241442B (en) | Inertial navigation based on " virtual short baseline " alignment system/underwater sound Combinated navigation method | |
CN105487046A (en) | Large-incidence-angle sound ray tracking and positioning method | |
CN114563778B (en) | Array calibration method based on time delay redundancy measurement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |