CN105388162A - 基于机器视觉的原料硅片表面划痕检测方法 - Google Patents
基于机器视觉的原料硅片表面划痕检测方法 Download PDFInfo
- Publication number
- CN105388162A CN105388162A CN201510713473.0A CN201510713473A CN105388162A CN 105388162 A CN105388162 A CN 105388162A CN 201510713473 A CN201510713473 A CN 201510713473A CN 105388162 A CN105388162 A CN 105388162A
- Authority
- CN
- China
- Prior art keywords
- raw material
- silicon chip
- image
- material silicon
- technology
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 74
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 74
- 239000010703 silicon Substances 0.000 title claims abstract description 74
- 239000002994 raw material Substances 0.000 title claims abstract description 59
- 238000001514 detection method Methods 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 claims abstract description 29
- 239000002245 particle Substances 0.000 claims abstract description 27
- 238000001914 filtration Methods 0.000 claims abstract description 13
- 238000004458 analytical method Methods 0.000 claims abstract description 10
- 230000000877 morphologic effect Effects 0.000 claims abstract description 8
- 238000003708 edge detection Methods 0.000 claims abstract description 4
- 230000008569 process Effects 0.000 claims description 12
- 230000011218 segmentation Effects 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 230000007704 transition Effects 0.000 claims description 5
- 238000000926 separation method Methods 0.000 claims description 4
- 241001270131 Agaricus moelleri Species 0.000 claims description 3
- 238000011946 reduction process Methods 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 abstract description 11
- 230000007547 defect Effects 0.000 abstract description 3
- 238000003709 image segmentation Methods 0.000 abstract description 3
- 238000009499 grossing Methods 0.000 abstract 2
- 238000010586 diagram Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000005520 cutting process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 241001494479 Pecora Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 235000008216 herbs Nutrition 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
- G01N2021/8887—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques
Landscapes
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
Abstract
Description
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510713473.0A CN105388162B (zh) | 2015-10-28 | 2015-10-28 | 基于机器视觉的原料硅片表面划痕检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510713473.0A CN105388162B (zh) | 2015-10-28 | 2015-10-28 | 基于机器视觉的原料硅片表面划痕检测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105388162A true CN105388162A (zh) | 2016-03-09 |
CN105388162B CN105388162B (zh) | 2017-12-01 |
Family
ID=55420691
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510713473.0A Active CN105388162B (zh) | 2015-10-28 | 2015-10-28 | 基于机器视觉的原料硅片表面划痕检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105388162B (zh) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106157303A (zh) * | 2016-06-24 | 2016-11-23 | 浙江工商大学 | 一种基于机器视觉对表面检测的方法 |
CN106269549A (zh) * | 2016-08-23 | 2017-01-04 | 厦门佳元电子科技有限公司 | 硅片筛分流水线系统及筛分方法 |
CN107358598A (zh) * | 2017-05-24 | 2017-11-17 | 上海视马艾智能科技有限公司 | 一种划痕检测方法与装置 |
CN108090929A (zh) * | 2017-12-04 | 2018-05-29 | 国家海洋局第海洋研究所 | 矿区线性异常分析提取新型方法 |
CN108230303A (zh) * | 2017-12-21 | 2018-06-29 | 河北工业大学 | 一种多晶硅太阳能电池片外观划痕缺陷检测的方法 |
CN108365051A (zh) * | 2018-02-05 | 2018-08-03 | 河北工业大学 | 一种太阳能电池片轨道去除的方法 |
CN108732186A (zh) * | 2018-07-20 | 2018-11-02 | 梧州学院 | 嵌入式工件表面缺陷自动检测系统及其控制方法 |
CN109060838A (zh) * | 2018-07-23 | 2018-12-21 | 三固(厦门)科技有限公司 | 一种基于机器视觉的产品表面划痕检测方法 |
CN109085791A (zh) * | 2018-07-25 | 2018-12-25 | 嘉兴锐川电气有限公司 | 冲床视觉监控系统及其监控方法 |
CN109084957A (zh) * | 2018-08-31 | 2018-12-25 | 华南理工大学 | 光伏太阳能晶硅电池片的缺陷检测和颜色分选方法及其系统 |
CN109374638A (zh) * | 2018-12-18 | 2019-02-22 | 王章飞 | 一种基于机器视觉的木地板表面检测装置及其检测方法 |
CN109584212A (zh) * | 2018-11-05 | 2019-04-05 | 华中科技大学 | 一种基于matlab的slm粉床铺粉图像划痕缺陷识别方法 |
CN110632086A (zh) * | 2019-11-04 | 2019-12-31 | 大连中启伟创科技有限公司 | 一种基于机器视觉的注塑件表面缺陷的检测方法及系统 |
CN112508937A (zh) * | 2020-12-22 | 2021-03-16 | 北京百度网讯科技有限公司 | 生成划痕数据的方法、装置、电子设备和存储介质 |
CN113129260A (zh) * | 2021-03-11 | 2021-07-16 | 广东工业大学 | 一种锂电池电芯内部缺陷的自动检测方法及装置 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040223053A1 (en) * | 2003-05-07 | 2004-11-11 | Mitutoyo Corporation | Machine vision inspection system and method having improved operations for increased precision inspection throughput |
JP2009229197A (ja) * | 2008-03-21 | 2009-10-08 | Seiko Epson Corp | 線状欠陥検出方法および線状欠陥検出装置 |
CN101852768A (zh) * | 2010-05-05 | 2010-10-06 | 电子科技大学 | 磁粉探伤环境下基于复合特征的工件伤痕识别方法 |
CN103175839A (zh) * | 2011-12-21 | 2013-06-26 | 北京兆维电子(集团)有限责任公司 | 胶印版材表面检测的处理方法及系统 |
CN103245671A (zh) * | 2013-05-09 | 2013-08-14 | 深圳先进技术研究院 | 冲压件表面缺陷检测装置及方法 |
CN104111029A (zh) * | 2013-04-19 | 2014-10-22 | 延锋伟世通汽车电子有限公司 | 用于电子产品加工检验的机器视觉检测系统 |
CN104458749A (zh) * | 2013-09-25 | 2015-03-25 | 中国科学院沈阳自动化研究所 | 基于机器视觉的铝型材表面缺陷实时检测系统 |
CN104952754A (zh) * | 2015-05-05 | 2015-09-30 | 江苏大学 | 基于机器视觉的镀膜后硅片分选方法 |
CN104966101A (zh) * | 2015-06-17 | 2015-10-07 | 镇江苏仪德科技有限公司 | 一种基于LabVIEW的太阳能电池片分类方法 |
-
2015
- 2015-10-28 CN CN201510713473.0A patent/CN105388162B/zh active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040223053A1 (en) * | 2003-05-07 | 2004-11-11 | Mitutoyo Corporation | Machine vision inspection system and method having improved operations for increased precision inspection throughput |
JP2009229197A (ja) * | 2008-03-21 | 2009-10-08 | Seiko Epson Corp | 線状欠陥検出方法および線状欠陥検出装置 |
CN101852768A (zh) * | 2010-05-05 | 2010-10-06 | 电子科技大学 | 磁粉探伤环境下基于复合特征的工件伤痕识别方法 |
CN103175839A (zh) * | 2011-12-21 | 2013-06-26 | 北京兆维电子(集团)有限责任公司 | 胶印版材表面检测的处理方法及系统 |
CN104111029A (zh) * | 2013-04-19 | 2014-10-22 | 延锋伟世通汽车电子有限公司 | 用于电子产品加工检验的机器视觉检测系统 |
CN103245671A (zh) * | 2013-05-09 | 2013-08-14 | 深圳先进技术研究院 | 冲压件表面缺陷检测装置及方法 |
CN104458749A (zh) * | 2013-09-25 | 2015-03-25 | 中国科学院沈阳自动化研究所 | 基于机器视觉的铝型材表面缺陷实时检测系统 |
CN104952754A (zh) * | 2015-05-05 | 2015-09-30 | 江苏大学 | 基于机器视觉的镀膜后硅片分选方法 |
CN104966101A (zh) * | 2015-06-17 | 2015-10-07 | 镇江苏仪德科技有限公司 | 一种基于LabVIEW的太阳能电池片分类方法 |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106157303A (zh) * | 2016-06-24 | 2016-11-23 | 浙江工商大学 | 一种基于机器视觉对表面检测的方法 |
CN106269549A (zh) * | 2016-08-23 | 2017-01-04 | 厦门佳元电子科技有限公司 | 硅片筛分流水线系统及筛分方法 |
CN106269549B (zh) * | 2016-08-23 | 2018-10-12 | 厦门佳元电子科技有限公司 | 硅片筛分流水线系统及筛分方法 |
CN107358598A (zh) * | 2017-05-24 | 2017-11-17 | 上海视马艾智能科技有限公司 | 一种划痕检测方法与装置 |
CN108090929A (zh) * | 2017-12-04 | 2018-05-29 | 国家海洋局第海洋研究所 | 矿区线性异常分析提取新型方法 |
CN108090929B (zh) * | 2017-12-04 | 2021-12-03 | 国家海洋局第一海洋研究所 | 矿区线性异常分析提取新型方法 |
CN108230303A (zh) * | 2017-12-21 | 2018-06-29 | 河北工业大学 | 一种多晶硅太阳能电池片外观划痕缺陷检测的方法 |
CN108365051B (zh) * | 2018-02-05 | 2019-08-02 | 河北工业大学 | 一种太阳能电池片轨道去除的方法 |
CN108365051A (zh) * | 2018-02-05 | 2018-08-03 | 河北工业大学 | 一种太阳能电池片轨道去除的方法 |
CN108732186A (zh) * | 2018-07-20 | 2018-11-02 | 梧州学院 | 嵌入式工件表面缺陷自动检测系统及其控制方法 |
CN109060838B (zh) * | 2018-07-23 | 2020-12-29 | 三固(厦门)科技有限公司 | 一种基于机器视觉的产品表面划痕检测方法 |
CN109060838A (zh) * | 2018-07-23 | 2018-12-21 | 三固(厦门)科技有限公司 | 一种基于机器视觉的产品表面划痕检测方法 |
CN109085791A (zh) * | 2018-07-25 | 2018-12-25 | 嘉兴锐川电气有限公司 | 冲床视觉监控系统及其监控方法 |
CN109084957A (zh) * | 2018-08-31 | 2018-12-25 | 华南理工大学 | 光伏太阳能晶硅电池片的缺陷检测和颜色分选方法及其系统 |
CN109084957B (zh) * | 2018-08-31 | 2024-03-19 | 华南理工大学 | 光伏太阳能晶硅电池片的缺陷检测和颜色分选方法及其系统 |
CN109584212A (zh) * | 2018-11-05 | 2019-04-05 | 华中科技大学 | 一种基于matlab的slm粉床铺粉图像划痕缺陷识别方法 |
CN109584212B (zh) * | 2018-11-05 | 2022-04-26 | 华中科技大学 | 一种基于matlab的slm粉床铺粉图像划痕缺陷识别方法 |
CN109374638A (zh) * | 2018-12-18 | 2019-02-22 | 王章飞 | 一种基于机器视觉的木地板表面检测装置及其检测方法 |
CN109374638B (zh) * | 2018-12-18 | 2022-01-18 | 深圳市鼎源检测技术有限公司 | 一种基于机器视觉的木地板表面检测装置及其检测方法 |
CN110632086A (zh) * | 2019-11-04 | 2019-12-31 | 大连中启伟创科技有限公司 | 一种基于机器视觉的注塑件表面缺陷的检测方法及系统 |
CN112508937A (zh) * | 2020-12-22 | 2021-03-16 | 北京百度网讯科技有限公司 | 生成划痕数据的方法、装置、电子设备和存储介质 |
CN113129260A (zh) * | 2021-03-11 | 2021-07-16 | 广东工业大学 | 一种锂电池电芯内部缺陷的自动检测方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
CN105388162B (zh) | 2017-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105388162A (zh) | 基于机器视觉的原料硅片表面划痕检测方法 | |
CN103913468B (zh) | 生产线上大尺寸lcd玻璃基板的多视觉缺陷检测设备及方法 | |
CN102495069B (zh) | 一种基于数字图像处理的拉链链带缺陷检测方法 | |
CN102998316B (zh) | 一种透明液体杂质检测系统及其检测方法 | |
CN109598715B (zh) | 基于机器视觉的物料粒度在线检测方法 | |
CN103454285A (zh) | 基于机器视觉的传动链条质量检测系统 | |
CN108760747A (zh) | 一种3d打印模型表面缺陷视觉检测方法 | |
CN109724984A (zh) | 一种基于深度学习算法的缺陷检测识别装置和方法 | |
CN201935873U (zh) | 瓶盖在线影像检测系统 | |
CN105891233A (zh) | 基于机器视觉的镜片表面缺陷智能检测系统及其实现方法 | |
CN102175692A (zh) | 织物坯布疵点快速检测系统及方法 | |
CN110648364A (zh) | 一种多维度空间固废视觉检测定位及识别方法与系统 | |
CN106780526A (zh) | 一种铁氧体圆片表面裂痕识别方法 | |
CN107084992A (zh) | 一种基于机器视觉的胶囊检测方法及系统 | |
CN104952754B (zh) | 基于机器视觉的镀膜后硅片分选方法 | |
CN109781737B (zh) | 一种软管表面缺陷的检测方法及其检测系统 | |
CN105403147A (zh) | 一种基于嵌入式的瓶胚检测系统和检测方法 | |
CN107328781A (zh) | 一种基于机器视觉的柱状产品表面缺陷检测方法及装置 | |
CN106248680A (zh) | 一种基于机器视觉的电机换向器质量检测系统及检测方法 | |
CN113894055A (zh) | 基于机器视觉的五金件表面缺陷检测分类系统及方法 | |
CN107891012B (zh) | 基于等效算法的珍珠大小及圆形度分拣装置 | |
CN112560941A (zh) | 基于图像检测的煤矸识别方法 | |
CN110096980A (zh) | 字符检测识别系统 | |
CN104048966B (zh) | 一种基于大律法的布面疵点检测及分类方法 | |
CN103245666B (zh) | 一种蓄电池极板外观缺陷自动检测方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP02 | Change in the address of a patent holder | ||
CP02 | Change in the address of a patent holder |
Address after: Room 301, building C30, R & D zone, No. 99 Chuqiao Road, Zhenjiang New District, Jiangsu Province, 212013 Patentee after: ZHENJIANG SYD TECHNOLOGY Co.,Ltd. Address before: 212013 Zhenjiang City, Jiangsu province Jingkou District No. 301 School of Jiangsu University Patentee before: ZHENJIANG SYD TECHNOLOGY Co.,Ltd. |
|
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20160309 Assignee: Zhenjiang yinuoweisi Intelligent Technology Co.,Ltd. Assignor: ZHENJIANG SYD TECHNOLOGY Co.,Ltd. Contract record no.: X2022320000303 Denomination of invention: Scratch Detection Method of Raw Silicon Wafer Surface Based on Machine Vision Granted publication date: 20171201 License type: Common License Record date: 20221210 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
CB03 | Change of inventor or designer information |
Inventor after: Sun Zhiquan Inventor after: Tong Gang Inventor after: Zhou Qi Inventor before: Sun Zhiquan Inventor before: Tong Gang Inventor before: Zhou Qi Inventor before: Zhang Qian |
|
CB03 | Change of inventor or designer information | ||
EC01 | Cancellation of recordation of patent licensing contract |
Assignee: Zhenjiang yinuoweisi Intelligent Technology Co.,Ltd. Assignor: ZHENJIANG SYD TECHNOLOGY Co.,Ltd. Contract record no.: X2022320000303 Date of cancellation: 20240116 |
|
EC01 | Cancellation of recordation of patent licensing contract |