[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN105359356A - 多模法布里-珀罗光纤激光器 - Google Patents

多模法布里-珀罗光纤激光器 Download PDF

Info

Publication number
CN105359356A
CN105359356A CN201480037004.5A CN201480037004A CN105359356A CN 105359356 A CN105359356 A CN 105359356A CN 201480037004 A CN201480037004 A CN 201480037004A CN 105359356 A CN105359356 A CN 105359356A
Authority
CN
China
Prior art keywords
fiber
passive
laser
fbg
active optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201480037004.5A
Other languages
English (en)
Other versions
CN105359356B (zh
Inventor
安德烈·马什金
费多尔·谢尔比纳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IPG Photonics Corp
Original Assignee
IPG Photonics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IPG Photonics Corp filed Critical IPG Photonics Corp
Publication of CN105359356A publication Critical patent/CN105359356A/zh
Application granted granted Critical
Publication of CN105359356B publication Critical patent/CN105359356B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/0675Resonators including a grating structure, e.g. distributed Bragg reflectors [DBR] or distributed feedback [DFB] fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06716Fibre compositions or doping with active elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08018Mode suppression
    • H01S3/0804Transverse or lateral modes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094069Multi-mode pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S4/00Devices using stimulated emission of electromagnetic radiation in wave ranges other than those covered by groups H01S1/00, H01S3/00 or H01S5/00, e.g. phonon masers, X-ray lasers or gamma-ray lasers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • G02B6/0288Multimode fibre, e.g. graded index core for compensating modal dispersion
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29356Interference cavity within a single light guide, e.g. between two fibre gratings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/082Construction or shape of optical resonators or components thereof comprising three or more reflectors defining a plurality of resonators, e.g. for mode selection or suppression
    • H01S3/0823Construction or shape of optical resonators or components thereof comprising three or more reflectors defining a plurality of resonators, e.g. for mode selection or suppression incorporating a dispersive element, e.g. a prism for wavelength selection
    • H01S3/0826Construction or shape of optical resonators or components thereof comprising three or more reflectors defining a plurality of resonators, e.g. for mode selection or suppression incorporating a dispersive element, e.g. a prism for wavelength selection using a diffraction grating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • H01S3/094011Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre with bidirectional pumping, i.e. with injection of the pump light from both two ends of the fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1618Solid materials characterised by an active (lasing) ion rare earth ytterbium

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Lasers (AREA)

Abstract

一种多模(“MM”)光纤振荡器配置有:掺杂了发光体的MM有源光纤;一对MM无源光纤,接合至所述MM有源光纤的相应相对端部;以及多个MM光纤布拉格光栅(“FBG”),写入在所述MM无源光纤的相应芯区以提供谐振腔。所述无源光栅和有源光栅配置有相应芯区,所述芯区的尺寸具有彼此匹配的相应直径和基本上相同的数值孔径。

Description

多模法布里-珀罗光纤激光器
技术领域
本公开涉及一种光纤激光器,更具体地涉及一种多模光纤法布里-珀罗光纤激光器,具有限定在多模光纤光纤之间的谐振腔并且能够在窄的谱线内发射多模光。
背景技术
通常,光纤振荡器配置有提供基本上单横模产生的单模(“SM”)有源和无源光纤或者其他模式的光纤部件。激光领域的普通技术人员都熟知SM光纤振荡器提供的优势。然而,SM光纤激光器也面对一些挑战,下面详细讨论这些挑战的一部分。
如已知的,存在对于SM有源阶跃折射率光纤的几何形状强加的限制。因为实践中SM芯区在达到约30微米芯径时不能只支持SM,SM芯区不能无限地扩大。但是,对于产生大功率SM激光束而言,需要较大芯径。这种限制的主要原因包括各种非线性效应(“NLE”),无论对于科学和制造团体关心的工作,非线性效应仍然是个问题。具体地,NLE对大功率光纤激光器和放大器造成损害。
如光纤激光器领域的普通技术人员所知的,NLE是限制光纤激光器的功率缩放的主要因素之一。不同的NLE具有以下共性:
A.NLE所处的脉冲光功率(称作“阈值功率”并且与可实现的最大脉冲功率相一致)与光纤芯区面积成正比,并且与光纤长度成反比。换句话说,光纤激光器中使用的小芯区长光纤偏好NLE;以及
B.NLE引起激光发射光谱和/或波长转换以及光学反馈不期望的谱展宽、功率不稳定性、以及随后对于光学部件的潜在损坏。具体地,响应于增加的功率密度而观察到的不期望展宽是四波混频(“FWM”)NLE的结果。此外,实践中对于光纤器件的操作有害的影响证实了拉曼NLE。
长周期光纤光栅(“LPFG”)的不期望构成也是不利的。在这种类型的结构中,与LPFG相互作用的信号光被耦合到包层模式中,在包层模式中信号光由于吸收和散射而迅速衰减。因此,信号可能会经历明显不期望的损耗,这与损耗多低无关。
如果增益介质包括低模有源光纤,由于高阶模式的激励导致能够观察到不稳定的激光器操作。典型地,SM激光器配置有低模有源光纤,该低模有源光纤的相对端部熔融至相应的SM无源光纤。如果相应的无源光纤和有源光纤的SM和基模的模场直径不匹配,则难以抑制高阶模式的激励。然而,实践中,这种低模有源光纤是配置为按照基本上单基模发射光束的所有大功率激光器/放大器设计的选择。因此,应该施加额外的制造工作以让相应的SM光纤和MM光纤的MFD基本上匹配。
对于具有低模有源光纤的SM激光器,输出光束具有接近特征为尖锐顶部的高斯强度轮廓。这种光束对于某些应用并非总是理想的。通常与该轮廓的平坦顶部相关联的均匀强度分布是有利的。在这种情况下,SM激光器应该附加地配置有光束整形光学器件,这增加了系统的总成本。
因此,存在对于具有成功满足上述挑战的结构的MM光纤振荡器的需要。
发明内容
这种需要是通过所公开的一种具有法布里-珀罗结构的振荡器来满足的。具体地,所公开的振荡器配置有多横模(“MM”)阶跃折射率有源光纤。该有源光纤的相对端部耦合至相应的MM无源光纤。在MM无源光纤的相应芯区中写入的两个MM光纤布拉格光栅之间限定了谐振腔。
所公开的振荡器结构的组件全部选择和设计用于最小化非线性效应的阈值,并且因此产生窄线发射。由所公开的振荡器参数的多种选择提供的灵活性允许将输出功率调节至所需级别,选择所需的波长,并且产生为多种特定应用而定制的期望窄波长线。
附图说明
利用以下附图的帮助,以上和其他公开的特征及优点将变得更加清楚明白,其中:
图1是公开的MM光纤振荡器的光学示意图;
图1A是根据本公开实施例之一配置的示范性多模有源光纤;
图2是公开的MM光纤振荡器的光学示意图,具有使用通过高反射FBG削弱的光的装置。
图3A和3B示出了在不同峰值功率级下操作的典型现有技术SMYb-掺杂光纤激光器的典型光学输出发射谱。
图4示出了现有技术的典型SM光纤激光器中随着输出功率增加观察到的拉曼NLE的产生。
图5A和5B是图1的MM法布里-珀罗激光器在相应的不同输出功率下操作的典型光谱。
图6A和6B分别示出了在由图1的MM光纤激光器和现有技术的SM激光器输出的单个脉冲的功率稳定性。
图7A和7B示出了图1的相应MM光纤激光器和现有技术的SM光纤激光器振荡器的典型输出光束参数,所述现有技术的SM光纤激光器振荡器配置有100μm直径MM输出光纤。
具体实施方式
现在对本发明的实施例提供详细参考。在可能的情况下,相同或类似的数字在附图和描述中用于表示相同或类似的部件或步骤。附图是简化形式的并且没有精确按比例绘制。除非特别指出,倾向于向在说明书和权利要求中的词语和短语赋予对于光纤激光器领域的普通技术人员普通和习惯的意思。词语“耦合”和类似术语不必表示直接和紧接的连接,而是也包括通过自由空间或中间元件的机械光学连接。只是为了清楚的目的,在利用MM镱激光器的实验器件获得了所有下面讨论的计算机产生的曲线。然而,下面讨论的基本方法可以成功地应用于各种稀土离子。
图1示出了配置有增益介质的本发明的MM光纤激光器或振荡器10,所述增益介质包括掺杂有发光体的MM光纤12。如已知的,发光体包括从以下中选择的稀土元素的离子:镱(“Yb”)、铒(“Er”)、钕(“Nd”)、铥(“Tm”)、钬(“Ho”)、镨(“Pr”)、铈(“Ce”)、镱(Y3+)、钐(Sm3+)、铕(Eu3+)、钆(Gd3+)、铽(Tb3+)、镝(Dy3+)和镥(Lu3+)及其各种组合。
有源阶跃折射率光纤12配置有芯区,能够支持典型地与大于20的芯径相关联的多种横模。光纤激光器领域的普通技术人员已知的是,一旦阶跃折射率光纤的芯径超过30μm直径,则阶跃折射率光纤不能继续支持单模。有源光纤12的结构还可以具有按照本领域普通技术人员知晓的方式来包围芯区的一个或多个包层。
振荡器10还配置有两个MM无源光纤14,所述MM无源光纤14熔融至有源光纤12的相应相对端部。MM无源光纤各自均配置有与有源光纤12基本上匹配的芯径和数值孔径。泵浦20包括按照侧面泵浦方案设置并且具有发射峰值的一个或多个MM带尾纤(pigtailed)激光二极管,所述发射峰值与所选择的掺杂离子的吸收峰相对应。如图1所示组合并且可选地放置于外壳(未示出)中的无源光纤、有源光纤和泵浦光纤的组合构成了单个增益块。
激光器10具有法布里-珀罗结构,具有分别在间隔开的强和弱反射率MM光纤布拉格光栅(“FBG”)16和18之间限定的谐振腔。将FPG16和18写入到相应的MM无源光纤14。尽管可以将FBG写入到有源光纤,但这在技术上是个挑战。
已经实现了单模(“SM”)大功率光纤激光器的几千瓦的实现方式,并且已经在市场上可用。当前连续波SM操作的现有示范状态是约10kW,并且已经预测了超过30kW的SM操作级。尽管光纤激光器在大功率下保持优秀光束质量的能力是无可置疑的,由于光纤激光器通常用于处理具有宽吸收波段的材料,不大关心激光线宽。
然而,一些应用要求选择性的谱线。例如,由于标准YbSM光纤激光器的使用导致了不期望的粉尘产生,在存在惰性气体的情况下利用Yb光纤激光器对钛和钛合金进行激光处理需要将大功率1070nmSM光纤激光器的典型较宽的光谱线宽变窄。可以通过激光的宽发射光谱线宽和惰性气体的吸收中心之间的重叠得到粉尘形成的解释。因此,应该将激光的光谱线宽变窄以避免可以通过高成本单频SM光纤激光器实现的吸收峰。
如已知的,SM光纤激光器中线展宽的主要原因之一是存在随着功率增加而变得更加显著的非线性效应(“NLE”),例如拉曼散射和四波混频。可以通过增加芯径和腔长度来降低NLE的阈值。因此,以大直径芯区和小腔长度为表征的MM光纤的特征在于相对较窄的光谱线宽。
本公开的有源MM光纤12完全满足针对相对较高NLE阈值的要求。在一个实施例中,MM有源光纤12的结构可以包括典型的圆柱形光纤。在其他实施例中,有源光纤可以配置为如图1A所示的双瓶颈形状,所述双瓶颈形状具有两个相对较小直径的输入和输出芯区11、中心相对较大直径的中央放大芯区13以及利用端部芯区的相应相对端部与中心区域的相对端部桥接的两个锥形区域15。放大区域增大的直径是进一步增大芯径、减小光纤长度并且最终提升NLE阈值和光谱线宽变窄的手段。图1A所示的MM有源光纤的包层可以配置有典型的圆柱形状截面,或者可以具有与芯区相同的双瓶颈形状。针对所公开激光器,满足许多工业要求(这些类型的材料激光器工艺)的光谱线宽可以从0.02nm至约10nm变化。可以通过对芯径、谐振腔的长度、MM布拉格光栅的结构、掺杂剂浓度的仔细选择来获得期望谱线。
除了图1之外还参考图2,强MMFBG16可能没有提供所有模式的期望反射,并且一部分光通过强MMFBG漏出。为了最小化、恢复或防止这种损耗,MM激光器10可以具有如下所公开的几种结构。
如图2所示,上游MM无源光纤14形成有回路,所述回路用于将漏出的光导引至沿着信号路径位于弱FBG18之后的合束器24。合束器24配置为对输出光信号与通过漏出损耗的光进行组合,并且进一步沿着路径输出组合光。
图1示出了用于最小化光损耗的装置的两个替代实施例。例如,上游MM光纤14的自由插口可以配置有反射镜26,反射镜26能够反射通过强FBG16漏出的所有模式。替代地,上游MM无源光纤可以具有环形自由端部28,环形自由端部28将漏出的光导引回腔体。在两个实施例中,漏出的光基本上恢复并且返回到谐振腔中。
所公开的振荡器10相对于SM光纤激光器的优点在于得到大量实验的良好支持。实验性的结构包括CW或电流调制CW激光(也称作准CW激光)YbMM激光器,电流调制CW激光YbMM激光器配置为由于泵浦20的二极管泵浦激光电流,发射脉冲序列。已经将测试结果与配置有SM有源光纤的SMYb激光器进行比较,该SM有源光纤具有接合至相应的SM无源光纤的相对端部,SM无源光纤各自具有写入到芯区的SMFBG。在以下计算机产生的图3A-3B、4、5A-5B、6A-6B和7A-6B中图形地示出了比较结果。
图3A-3B分别示出了在两个不同输出峰值功率级2000W和3000W下获得的SMYb激光的频谱。随着从2000W至3000W的输出峰值功率增加的带宽展宽是由于四波混频非线性(“FWM”)效应引起的非常不期望的现象。如在下面描述中变得显而易见的是,FWM不是仅在QCWSM光纤激光器中功率增大期间观察到的NLE。
图4示出了在QCWSM光纤激光器中观察到的拉曼NLE。可以看出,非常明显地示出了拉曼峰30,因此对于SM激光器的期望功率输出非常有害。
图5A和5B示出了在与图3A和3B的SM激光器相同的2000W和3000W峰值功率级处,按照准连续条件操作的本公开MM光纤激光器的光谱。具体地参考图5B,本领域普通技术人员应该容易看出,相对不明显的光谱展宽和实践中完全不存在拉曼发射将MM激光器与图3A和3B的SM激光器有利地相区分。依赖于腔的长度、FBG的结构、发光体浓度、泵浦功率、波长和其他参数,数千瓦激光器的线宽的范围可以在0.02nm至约10nm之间。实践中,平均来说,与本公开激光器相同功率处操作的类似配置的SM激光器相比,根据本公开配置的MM激光器的线宽的幅度至少小一个量级。
图6A和6B分别示出了通过QCWSM激光器和所公开的QCWMM激光器的脉冲输出中的噪声产生和功率下降。尽管由于高阶模式的激励导致在图6A的SM激光器发射的脉冲中噪声和功率下降均显著,但图6B的MM激光器具有稳定的输出和较低级别的噪声。
图7A和7B示出了在相应的MM激光器和SM激光器的输出中获得的光束质量。两种激光器结构分别具有相同结构的大直径输出无源光纤。与MM增益介质无关,MM输出的光束质量参数(5.038)与SM光纤的光束质量参数(3.652)没有显著地不同。
基于前述内容,实质上减小了配置有所公开的MM激光器的激光器系统的成本。例如,合并有SM激光器的大功率QCW激光器系统典型地具有主振荡器/功率放大器(“MOPA”)结构。换句话说,这种系统配置有至少两个增益模块。仅合并有一个强大MM振荡器(进行缩放以发射期望的输出)的相同系统比现有技术激光器系统明显更加廉价并且结构简单。具有MM激光器的激光器系统不但输出具有期望功率的光束,而且光束的质量与具有MOPA结构的系统相当。
总之,本发明的MM激光器具有包括多种以下优势:
a.实质上减小NLE对于功率缩放的不利影响;
b.较低的接合损耗,这是因为在将这些光纤彼此接合时不需要对相应有源和无源光纤的MFD进行匹配;
c.较宽范围的芯径和芯区折射率,这允许获得波导的期望参数;
d.可接受的光束质量,该光束质量与具有MM输出光纤的SM激光器的光束质量或者数个SM激光器的组合输出光束的光束质量类似;
e.MM有源光纤中高阶模式的激励和折射率调制不会带来较高级别的噪声和显著的功率下降;以及
f.合并了所公开MM激光器的激光器系统的节省成本且简单的结构。
对于本领域普通技术人员清楚的是,可以对本公开的MM光纤激光器和合并了该MM光纤激光器的激光器系统进行各种改进和变化。所公开的激光器可以用作其他光放大装置的泵浦、或者用于高谐波产生方案中或者作为产生可以达到千万级别的输出的单机装置。因此,本公开意欲覆盖在所附权利要求及其等价物的范围内所提供的本公开的改进和变化。

Claims (20)

1.一种CW或QCW多模“MM”法布里-珀罗全光纤振荡器,包括:
MM有源光纤,配置有掺杂有发光体的单片芯区;
两个MM无源光纤,接合至所述MM有源光纤的相应相对端部;以及
MM光纤布拉格光栅“FBG”,写入在所述MM无源光纤的相应芯区中并且限定了所述MM无源光纤之间的谐振腔,其中激光器配置为输出以期望波长发射并且具有在0.02和10nm之间变化的窄线宽的光。
2.根据权利要求1所述的MM光纤振荡器,其中,所述MM有源和无源光纤配置有相应单片芯区,所述芯区具有相应相对端部,所述相应性对端部的尺寸具有基本上彼此匹配的相应直径。
3.根据权利要求2所述的MM光纤振荡器,其中,所述MM有源光纤的芯区具有圆柱形横截面或双瓶颈形状的横截面,所述圆柱形横截面在所述MM有源光纤的相对端部之间具有均匀直径。
4.根据权利要求1所述的MM光纤振荡器,其中,所述MM有源光纤和无源光纤配置有实质上彼此匹配的相应数值孔径。
5.根据权利要求1所述的MM光纤振荡器,还包括泵浦,所述泵浦操作为对所述MM有源光纤进行侧面泵浦,所述泵浦包括一个或多个MM激光二极管。
6.根据权利要求1所述的MM光纤振荡器,其中,所述发光体包括从由以下成分组成的组中选择的稀土元素的离子:镱(“Yb”)、铒(“Er”)、钕(“Nd”)、铥(“Tm”)、钬(“Ho”)、镨(“Pr”)、铈(“Ce”)、镱(Y3+)、钐(Sm3+)、铕(Eu3+)、钆(Gd3+)、铽(Tb3+)、镝(Dy3+)和镥(Lu3+)及其组合。
7.根据权利要求1所述的MM光纤振荡器,其中,所述MMFBG包括高反射率光纤光栅和低反射率光纤光栅,在所述高反射率光纤光栅和所述低反射率光纤光栅之间限定了谐振腔。
8.根据权利要求7所述的MM光纤振荡器,其中,所述高反射率FBG的上游MM无源光纤配置为将通过所述高反射率FBG泄露的光导引回所述谐振腔。
9.根据权利要求1所述的MM光纤振荡器,还包括耦接至下游MM无源光纤的合束器,上游MM无源光纤配置为将通过所述高反射率FBG泄露的光导引到所述合束器,其中所述合束器容纳所述上游MM无源光纤的自由端部,以将通过低反射率FBG离开谐振腔的光和泄露的光进行组合。
10.根据权利要求1所述的MM光纤振荡器,还包括设置在所述上游MM无源光纤的插口上的反射镜,所述反射镜配置为将通过所述高反射率FBG泄露的光反射回腔体中。
11.一种光纤激光器系统,包括至少一个增益模块,所述增益模块配置有:
MM有源光纤,掺杂有一种或多种稀土元素的离子;
一对MM无源光纤,接合至所述MM有源光纤的相应相对端部;
间隔开的高反射率和低反射率MM光纤布拉格光栅“FBG”,写入到所述MM无源光纤的相应芯区中并且限定了所述MM无源光纤之间的谐振腔,其中所述MM有源光纤、MM无源光纤和FBG限定了一种MM法布里-珀罗激光器;以及
泵浦,操作为对所述有源光纤进行侧面泵浦,其中,所述光纤激光器系统配置为输出在所需波长发射并且具有窄光谱线宽的一个或几个千瓦级的光,所述光的幅度比在与所述MM法布里-珀罗激光器相同功率下操作的单模激光器小至少一个量级。
12.根据权利要求11所述的光纤激光器系统,其中,所述泵浦配置有多个激光二极管并且操作为输出脉冲序列
13.根据权利要求12所述的光纤激光器系统,其中,对所述增益模块的MM输出进行脉冲化,输出的光脉冲各自在所述脉冲的整个持续时间上具有基本上均匀的功率级。
14.根据权利要求11所述的MM光纤激光器系统,其中,所述MM有源和无源光纤配置有相应芯区,所述芯区具有直径基本上匹配的相应相对端部。
15.根据权利要求11所述的光纤激光器系统,其中,所述MM有源和无源光纤配置有实质上彼此匹配的相应数值孔径。
16.根据权利要求11所述的光纤激光器系统,其中,所述增益模块配置为发射连续的输出。
17.根据权利要求11所述的MM光纤激光器系统,还包括:合束器,所述合束器耦接至形成有低反射率FBG的下游MM无源光纤和配置为将通过高反射率FBG泄露的光导引至所述合束器的上游MM无源光纤,其中所述合束器容纳所述上游MM无源光纤的自由端部,以便组合通过所述低反射率FBG和高反射率FBG离开谐振腔的光。
18.根据权利要求11所述的MM光纤激光器系统,其中,具有高反射率FBG的上游MM无源光纤具有配置有反射元件的自由端部,所述反射元件配置为将通过所述高反射率FBG泄露的光反射回所述谐振腔。
19.根据权利要求14所述的MM光纤激光器系统,其中,所述MM有源光纤的芯区具有圆柱形横截面或双瓶颈形状的横截面,所述圆柱形横截面在所述MM有源光纤的相对端部之间具有均匀直径。
20.根据权利要求11所述的MM光纤激光器系统,其中,所述窄谱线在0.02nm和10nm之间变化。
CN201480037004.5A 2013-06-03 2014-06-03 多模法布里-珀罗光纤激光器 Active CN105359356B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361830376P 2013-06-03 2013-06-03
US61/830,376 2013-06-03
PCT/US2014/040754 WO2014197509A1 (en) 2013-06-03 2014-06-03 Multimode fabry-perot fiber laser

Publications (2)

Publication Number Publication Date
CN105359356A true CN105359356A (zh) 2016-02-24
CN105359356B CN105359356B (zh) 2019-11-15

Family

ID=52008539

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480037004.5A Active CN105359356B (zh) 2013-06-03 2014-06-03 多模法布里-珀罗光纤激光器

Country Status (4)

Country Link
US (1) US9647410B2 (zh)
EP (1) EP3005496B1 (zh)
CN (1) CN105359356B (zh)
WO (1) WO2014197509A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106058622A (zh) * 2016-07-08 2016-10-26 上海大学 基于铕离子掺杂荧光光纤的光纤有源器件
CN112688152A (zh) * 2020-12-29 2021-04-20 深圳市大族光子激光技术有限公司 光纤振荡器及光纤激光器

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6268232B2 (ja) * 2016-07-04 2018-01-24 株式会社フジクラ 光ファイバ、及び、レーザ装置
RU2730346C1 (ru) * 2016-09-23 2020-08-21 Айпиджи Фотоникс Корпорэйшн Способы предсварочного анализа и сопутствующей лазерной сварки и волоконные лазеры с применением предварительно выбранной ширины спектральных полос для обхода спектра электронного перехода пара металла/сплава
EP3794692A4 (en) * 2018-06-29 2022-03-02 IPG Photonics Corporation HIGH POWER YTTERBIUM:ERBIUM (YB:ER) FIBER LASER SYSTEM WITH 1.02-1.06 UM SHEATH PUMPING SYSTEM
KR102485106B1 (ko) * 2021-08-31 2023-01-05 한국생산기술연구원 광섬유 레이저 장치
CN114825005B (zh) * 2022-04-15 2024-07-12 清华大学 光纤激光器系统及激光产生方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1387626A (zh) * 1999-11-09 2002-12-25 康宁股份有限公司 多模光纤系统的模式匹配
CN1910795A (zh) * 2002-09-18 2007-02-07 欧贝兹光波有限公司 具有线性谐振腔的行波激光器
CN101132103A (zh) * 2007-08-23 2008-02-27 上海交通大学 基于法布里-波罗谐振腔的单纵模光纤激光器
EP2246718A2 (en) * 2005-10-02 2010-11-03 Elbit Systems Electro-Optical Elop Ltd. Optical fiber coupling device
WO2012132664A1 (ja) * 2011-03-31 2012-10-04 株式会社フジクラ 増幅用光ファイバ、及び、それを用いた光ファイバ増幅器及び共振器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6510167B1 (en) * 1999-09-22 2003-01-21 Science & Technology Corporation @Unm Method for actively modelocking an all-fiber laser
US7190705B2 (en) * 2000-05-23 2007-03-13 Imra America. Inc. Pulsed laser sources
US6751241B2 (en) * 2001-09-27 2004-06-15 Corning Incorporated Multimode fiber laser gratings
WO2003092131A1 (en) * 2002-04-24 2003-11-06 Alfalight, Inc. Feedback stabilized multi-mode and method of stabilizing a multi-mode laser
BRPI0808501A2 (pt) * 2007-03-09 2014-07-29 Mitsubishi Electric Corp Sensor de fibra óptica.
US7860360B2 (en) * 2009-01-23 2010-12-28 Raytheon Company Monolithic signal coupler for high-aspect ratio solid-state gain media
DE102009041891A1 (de) * 2009-09-18 2011-03-31 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Transversalmodenfilter für Wellenleiter
WO2011160234A2 (en) * 2010-06-23 2011-12-29 Coractive High-Tech Inc. Active optical device component with large area bragg grating
US9014220B2 (en) * 2011-03-10 2015-04-21 Coherent, Inc. High-power CW fiber-laser
BR112014000056B1 (pt) * 2011-08-18 2021-12-28 Ipg Photonics Corporation Fonte de bombeamento de fibra de alta potência com emissão de alto brilho e baixo ruído na faixa do comprimento de onda de cerca de 974 a 1030nm

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1387626A (zh) * 1999-11-09 2002-12-25 康宁股份有限公司 多模光纤系统的模式匹配
CN1910795A (zh) * 2002-09-18 2007-02-07 欧贝兹光波有限公司 具有线性谐振腔的行波激光器
EP2246718A2 (en) * 2005-10-02 2010-11-03 Elbit Systems Electro-Optical Elop Ltd. Optical fiber coupling device
CN101132103A (zh) * 2007-08-23 2008-02-27 上海交通大学 基于法布里-波罗谐振腔的单纵模光纤激光器
WO2012132664A1 (ja) * 2011-03-31 2012-10-04 株式会社フジクラ 増幅用光ファイバ、及び、それを用いた光ファイバ増幅器及び共振器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
干福熹等 著: "《光子学玻璃及应用》", 31 December 2011 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106058622A (zh) * 2016-07-08 2016-10-26 上海大学 基于铕离子掺杂荧光光纤的光纤有源器件
CN112688152A (zh) * 2020-12-29 2021-04-20 深圳市大族光子激光技术有限公司 光纤振荡器及光纤激光器

Also Published As

Publication number Publication date
EP3005496B1 (en) 2018-05-30
WO2014197509A1 (en) 2014-12-11
EP3005496A4 (en) 2017-03-01
US20160087392A1 (en) 2016-03-24
CN105359356B (zh) 2019-11-15
US9647410B2 (en) 2017-05-09
EP3005496A1 (en) 2016-04-13

Similar Documents

Publication Publication Date Title
CN105359356A (zh) 多模法布里-珀罗光纤激光器
EP1676344B1 (en) An optical system for providing short laser-pulses
US6275632B1 (en) High power fiber gain media system achieved through power scaling via multiplexing
US9564730B2 (en) Optical gain fiber having fiber segments with different-sized cores and associated method
JP3247292B2 (ja) 光通信システム
US7280567B2 (en) High-power red, orange, green, blue (ROGB) fiber lasers and applications thereof
JP6279484B2 (ja) 980nm高出力シングルモードファイバポンプレーザシステム
JP2008187176A (ja) 大モード面積でマルチモードの利得生成光ファイバを用いる高パワー光学装置
JP5822850B2 (ja) レーザ装置
EP2705581B1 (en) HIGH POWER SINGLE MODE FIBER LASER SYSTEM FOR WAVELENGTHS OPERATING IN 2 micrometer RANGE
US8982452B2 (en) All-in-one raman fiber laser
US9112328B2 (en) Optical source implementing a doped fiber, fiber for such an optical source and method for manufacturing such a fiber
Lim et al. Wavelength flexible, kW-level narrow linewidth fibre laser based on 7GHz PRBS phase modulation
KR20110065305A (ko) 이중 클래드 광섬유 레이저 소자
CN214478413U (zh) 基于光纤随机光栅的2μm波段柱矢量光纤随机激光器
CN110663146B (zh) 大功率包层泵浦单模光纤拉曼激光器
US20230119153A1 (en) Architecture for high-power thulium-doped fiber amplifier
US20240063598A1 (en) High power raman fiber laser
Zenteno et al. Novel fiber lasers and applications
CN113241576A (zh) 基于光纤随机光栅的2μm波段柱矢量光纤随机激光器
Jasapara et al. Core pumped Erbium fiber nanosecond pulse amplifier generating 360 kW peak power with M2< 1.1 at 1545 nm wavelength
Jäger et al. All-Fiber, Single-Stage Laser Assemblies with 91W Single-Mode, Continuous-Wave Output Power
Maleki et al. Fiber-coupled microsphere laser
WO1997033460A2 (en) Multicore fiber optic amplifier

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant