[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN105301323B - 采用云技术对特高压直流避雷器泄露电流在线侦测的方法 - Google Patents

采用云技术对特高压直流避雷器泄露电流在线侦测的方法 Download PDF

Info

Publication number
CN105301323B
CN105301323B CN201510609302.3A CN201510609302A CN105301323B CN 105301323 B CN105301323 B CN 105301323B CN 201510609302 A CN201510609302 A CN 201510609302A CN 105301323 B CN105301323 B CN 105301323B
Authority
CN
China
Prior art keywords
current
arrester
data
unit
hall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510609302.3A
Other languages
English (en)
Other versions
CN105301323A (zh
Inventor
邓敏
袁愿
陈耀高
郭翔
李文斐
蔡怡然
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Red Phase Ltd By Share Ltd
Original Assignee
Red Phase Ltd By Share Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Red Phase Ltd By Share Ltd filed Critical Red Phase Ltd By Share Ltd
Priority to CN201510609302.3A priority Critical patent/CN105301323B/zh
Publication of CN105301323A publication Critical patent/CN105301323A/zh
Application granted granted Critical
Publication of CN105301323B publication Critical patent/CN105301323B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

采用云技术对特高压直流避雷器泄露电流在线侦测的方法,利用一侦测系统分别完成以下步骤:a、判断是否对电流进行信号采集;b、对电流进行信号采集;c、将采集的信号进行处理后形成电流值数据输出;d、将获得的电流数据通过无线传输至中央监控装置内进行汇总;e、中央监控装置显示该电流数据同时将该电流数据分配发送到对应避雷器管理者的移动终端。本发明可以对微安数量级的微弱电路信号进行在线采集,并且有赖于云技术,可通过中央监控装置随时监控直流避雷器中漏电流、谐波以及静电的变化,有效地杜绝造成建筑物及人畜的损坏及伤亡,并且有利于延长避雷器的使用寿命。

Description

采用云技术对特高压直流避雷器泄露电流在线侦测的方法
技术领域
本发明涉及特高压直流线路避雷器状态检测技术,尤其是指涉及采用云技术对特高压直流避雷器泄露电流在线侦测的方法。
背景技术
随着我国经济快速发展,电力需求增长迅猛,而我国存在电力资源分布与负 荷中心区域不匹配的天然特性,需要借助远距离、大容量输电线路改善电力供需 矛盾问题,“西电东送”、“南北互供”等工程是现阶段主要部署方案,特高压直流输电技术是具体的实施技术手段。
直流输电将交流电通过换流器变换成直流电,然后通过直流输电线路送至受 电端并通过换流器变成交流电,最终注入交流电网。特高压直流输电的电压等级 概念与交流输电不一样。对于交流输电来说,一般将220kV及以下的电压等级称 为高压,330~750kV的称为超高压,1000kV及以上的称为特高压。直流输电则 稍有不同,±100kV以上的统称为高压;±500kV和±600kV仍称为高压,一般不 称为超高压;而超过±600kV的则称为特高压。
±800kV特高压直流输电由于中间无落点,可将大量电力直送大负荷中心, 具有输送容量大、送电距离远、节省输电架线走廊等优点,相关设备研发、控制与运行等技术和示范工程在近些年来得到快速发展和广泛应用,已使我国在特高压输电技术领域处于世界领先地位,引领着技术发展方向和关键设备研发趋势。
特高压直流输电系统的建设,离不开过电压保护装置,直流避雷器是特高压直流输电系统过电压保护的关键设备,决定了整个系统的绝缘水平,影响设备体 积、工程占地面积及造价。提高避雷器保护水平对于优化系统的绝缘配合及降低 工程造价至关重要。掌握直流避雷器实时运行状态和保护特性对加强直流特高压输电系统设备的运行管理、完善其带电检测技术和状态检修水平具有十分重要的意义。
就目前而言,直流避雷器的运行条件要比交流避雷器严酷得多,对直流避雷器的运行性能提出的技术要求很高。直流避雷器结构、工作条件、作用原理、保护特性等均与交流避雷器不同。为了及时发现直流避雷器的受潮、老化和其他隐患, 避免因事故造成巨大经济损失,在提高特高压避雷器产品可靠性、强化质量管理的同时, 对特高压避雷器进行在线监测意义重大且需求迫切。特别是急切需要一种针对于特高压直流避雷器泄露电流的检测装置和检测方法。
中国实用新型专利(CN202693723U)披露了一种避雷器泄漏电流报警系统,包括避雷器和计数器,避雷器连接有用于转换电流的第一电流互感器和第二电流互感器,第一电流互感器连接有基准电压电路,基准电压电路将基准电压加于第一电压转换电路,第二电流互感器连接有第一电压转换电路,第一电压转换电路为第一报警装置供电,第一电压转换电路连接有第二电压转换电路进行二次电压转换,第二电压转换电路为第二报警装置供电。以上泄露电流报警系统虽然原理简单,报警提示作用明显,然而在实际的使用过程中还存在以下不足之处:1、以上泄露电流报警系统主要针对于交流输电线路中,由于避雷器在特高压直流输电线路中的运行条件要比交流避雷器严酷得多,特别是在雷击过电压的自保护要求可能也难以达到,因而泄露电流报警系统的技术要求无法满足在特高压直流输电线路中进行有效和稳定地运行;2、以上泄露电流报警系统主要功能是进行定性操作,无法对每时每刻中泄露电流的大小数字进行检测。
发明内容
本发明提供采用云技术对特高压直流避雷器泄露电流在线侦测的方法,其主要目的在于克服现有泄露电流报警系统无法对特高压直流避雷器泄露电流进行稳定和准确检测的缺陷。
为解决上述技术问题,本发明采用如下技术方案:
采用云技术对特高压直流避雷器泄露电流在线侦测的方法,利用一侦测系统分别完成以下步骤:a、判断是否对电流进行信号采集;b、对电流进行信号采集;c、将采集的信号进行处理后形成电流值数据输出;d、将获得的电流数据通过无线传输至中央监控装置内进行汇总;e、中央监控装置显示该电流数据同时将该电流数据分配发送到对应避雷器管理者的移动终端,所述侦测系统包括一设置于直流避雷器附近的检测装置、用于将该检测装置获得的泄露电流检测结果进行传输的数据发送装置、数据接收装置、中央监控装置以及移动终端,所述数据接收装置的使能端连接于所述数据发送装置的输出端,所述中央监控装置的使能端连接于所述数据接收装置的输出端,所述中央监控装置的输出端连接与所述移动终端的使能端;所述检测装置包括数据采集单元、数据处理单元、保护电路单元以及电源单元,所述数据采集单元包括电流传感器、功率放大器以及电路采集模块,所述电流传感器包括一环形壳体、一呈C形布置的磁芯以及两霍尔电路模块,所述环形壳体内设置有一容置空间,所述磁芯上分别绕设有一第一线圈绕组以及一第二线圈绕组,并且该磁芯安装于所述容置空间内,两所述霍尔电路模块装设于所述容置空间内并且其两端与所述磁芯的两端邻接,两所述霍尔电路模块之间连接有一电桥,所述第一线圈绕组的输入端与避雷器漏电流电连接,所述第二线圈绕组的输入端与所述功率放大器的一输出端电连接,所述功率放大器的另一输出端与所述电路采集模块电连接,所述检测装置还包括一采集保护模块,所述电源单元的电能输出端分成四路,分别电连接于保护电路单元的电能输入端、采集保护模块的电能输入端、数据采集单元的电能输入端以及数据处理单元的电能输入端,避雷器电流的输出端分成两路,一路连接于所述数据采集单元的使能端,另一路连接于所述采集保护模块的使能端,所述采集保护模块的输出端连接于所述保护电路单元的使能端,所述数据处理单元的使能端设有两路,一路连接所述数据采集单元的输出端,另一路连接所述保护电路单元的输出端;所述步骤a包括在接上避雷器电流的引出导线后,通过采集保护模块和数据采集单元对引线上的电流进行初步检测,当避雷器电流小于或等于1毫安时,采集保护模块不动作,而数据采集单元启动并对电流进行信号采集和数据处理后经由数据处理单元输出;当避雷器电流大于1毫安时,数据采集单元不动,而采集保护模块启动,所述检测装置对输入呈现高阻态,此时不进行信号采集和数据处理,并经由数据处理单元输出。
进一步的,所述步骤b包括当避雷器漏电电流的直流信号经过第一线圈绕组后在磁芯中产生的磁场被聚集到两所述霍尔电路模块上,由于该两所述霍尔电路模块的位置不同,因而产生不相等的霍尔电压,两所述霍尔电路模块经由电路并联连接按照并联电容的等效电路合成后,两所述霍尔电路模块产生的电压信号的输出值为两霍尔电路模块输出值的算术平均值,该电压信号的输出值经功率放大器导通作用使得第二线圈绕组上产生反向补偿电流,补偿电流产生的磁通与避雷器漏电电流所产生的磁通方向相反,当二者实现磁平衡后,磁芯磁通为零,第二线圈绕组上补偿电流再经过电路采集模块的测试后,即得出避雷器泄露电流的直流信号值从而进入c步骤。
进一步的,各所述霍尔电路模块均包括一霍尔元件以及与该霍尔元件相串联的一调整电阻,所述霍尔电路模块的控制电流端并联接入于一直流恒流电源I+和I-,并且两所述霍尔电路模块的输出端也并联为VH+和VH-的数据接点,所述功率放大器包括一与所述数据接点输出端电连接的运算放大器、一第一三极管、一第二三极管以及一输入电源,所述第一三极管的集电极电连接于所述输入电源的正接口,所述第二三极管的集电极连接于所述输入电源的负接口,所述功率放大器的输出端分成两路,一路连接于所述第一三极管的基极,另一路连接于所述第二三级管的基极,所述第一三极管的放大级分成两路,一路连接于所述第二线圈绕组的输入端,另一路连接于所述第二三极管的放大级,所述电路采集模块包括一端连接于所述第二线圈绕组输出端的测量电阻R1以及用于测量该测量电阻内电流数值的电流表,所述测量电阻R1的另一端接地;所述步骤b包括,当避雷器漏电电流的直流信号经过第一线圈绕组后在磁芯中产生的磁场被聚集到两霍尔元件上,由于该两所述霍尔电路模块的位置不同,因而产生不相等的霍尔电压,两所述霍尔电路模块经由电路并联连接按照并联电容的等效电路合成后,两所述霍尔电路模块产生的电压信号的输出值为两霍尔电路模块输出值的算术平均值,该电压信号的输出值经运算放大器的放大作用来完成对输入电源的放电控制,使得输入电源的正接口向第二线圈绕组上输出反向补偿电流,补偿电流产生的磁通与避雷器漏电电流所产生的磁通方向相反,通过运算放大器对反向补偿电流的控制,使磁芯中的磁通密度始终为定值,此时第二线圈绕组上补偿电流再经过测量电阻R1的后输入到地面,通过电流表对测量电阻R1内流通的电流数值,并根据该电流数值进行比例运算即得出避雷器泄露电流的直流信号值,从而进入c步骤。
进一步的,避雷器电流的引出导线上加装有惰性气体二极管以及TVS二极管,该TVS二极管反向串联接地,在步骤a中,当避雷器电流高于预先设定的阈值时,TVS二极管可以迅速启动进行释放电流,之后惰性气体二极管进行启动,持续释放电流。
进一步的,还包括步骤f,该步骤f贯穿整个在线检测过程,其包括对所述磁芯上加载有交流信号,在磁芯上加载上交流信号之后,磁芯的磁通密度将在正向和反向来回充磁和退磁,在这个过程会打断外部电磁场对磁性材料的磁极化过程。
进一步的,所述环形壳体包括一屏蔽壳体以及设置于该屏蔽壳体外侧的绝缘壳体,所述磁芯包括两个对称设置的弧形芯块以及一固定管,两弧形芯块各以一端相互抵接,并且在该抵接位置的两侧通过所述固定管套上,所述弧形芯块为纳米非晶材料制成的弧形芯块,所述固定管为纳米非晶材料固定管。
进一步的,所述磁芯的开口处形成有一气隙,两所述霍尔电路模块平行间隔布置于该气隙内,所述固定管所占据的体积为所述容置空间体积的四分之一,位于所述固定管一侧的弧形芯块中未套上固定管的部分所占据的体积为所述容置空间体积的三分之一,位于所述固定管另一侧的弧形芯块中未套上固定管的部分所占据的体积为所述容置空间体积的三分之一,所述第二线圈绕组包括上第二线圈绕部以及下第二线圈绕部,所述上第二线圈绕部绕设于位于所述固定管一侧的弧形芯块中未套上固定管的部分,所述下第二线圈绕部绕设于位于所述固定管另一侧的弧形芯块中未套上固定管的部分,所述上第二线圈绕部和下第二线圈绕部相互电连接,所述第一线圈绕组绕设于所述固定管的外侧。
进一步的,所述中央监控装置包括后台处理器以及储存器,所述后台处理器的输入端连接于所述数据接收装置,所述后台处理器的输出端分别连接于所述移动终端以及上述储存器,所述后台处理器的输入端还连接有一加密单元,所述储存器的输出端连接有一终端显示器,所述数据发送装置为公网信号发射单元,数据接收装置为公网信号接收单元,所述步骤c包括当数据采集单元得出避雷器泄露电流的直流信号值后,将该直流信号值输出到数据处理单元上;所述步骤d包括数据处理单元经过数据运算处理之后,通过公网信号发射单元将含有避雷器泄露电流的直流信号值、测量时间或避雷器安装位置信息的编码以短信息形式发送到公网信号接收单元;所述步骤e包括后台处理器接收到编码形式的短信息后,进行信息转换,将编码信息转换成中文信息发送到相关管理人员或维修人员的移动终端上,并在储存器中永久保存上述信息。
进一步的,所述中央监控装置包括后台处理器以及储存器,所述后台处理器的输入端连接于所述数据接收装置,所述后台处理器的输出端分别连接于所述移动终端以及上述储存器,所述后台处理器的输入端还连接有一加密单元,所述储存器的输出端连接有一终端显示器,所述数据发送装置包括呈依次连接的射频信号发射单元、调频转发单元以及双模通信单元,所述数据接收装置为与该双模通信单元的输出端连接的公网信号接收单元,所述步骤c包括当数据采集单元得出避雷器泄露电流的直流信号值后,将该直流信号值输出到数据处理单元上;所述步骤d包括数据处理单元经过数据运算处理之后,将含有避雷器泄露电流的直流信号值、测量时间或避雷器安装位置信息的编码通过射频信号发射单元以及调频转发单元的配合,在保证通讯通道的畅通的情况下,以专网自动跳频的方式将编码信息经过一级转发到有移动公网信号覆盖区域的双模通讯单元上,然后再由双模通讯单元以短信息形式发送到公网信号接收单元;所述步骤e包括后台处理器接收到编码形式的短信息后,进行信息转换,将编码信息转换成中文信息发送到相关管理人员或维修人员的移动终端上,并在储存器中永久保存上述信息。
和现有技术相比,本发明产生的有益效果在于:
1、本发明结构简单、实用性强,当避雷器漏电电流的直流信号经过第一线圈绕组后在磁芯中产生的磁场被聚集到两所述霍尔电路模块上,由于该两所述霍尔电路模块的位置不同,因而产生不相等的霍尔电压,两所述霍尔电路模块经由电路并联连接按照并联电容的等效电路合成后,两所述霍尔电路模块产生的电压信号的输出值为两霍尔电路模块输出值的算术平均值,该电压信号的输出值经功率放大器导通作用使得第二线圈绕组上产生反向补偿电流,补偿电流产生的磁通与避雷器漏电电流所产生的磁通方向相反,当二者实现磁平衡后,磁芯磁通为零,第二线圈绕组上补偿电流再经过电路采集模块的测试后,即得出避雷器泄露电流的直流信号值,因而本发明一方面是采用非接触式对避雷器漏电流进行采集,从而可以保证采集单元能够在复杂电磁场中进行有效和稳定地运行,不仅耐压能力得到很大地提升,而且能够在过电压下具有较强自恢复和自适应能力。本发明另一方面是有设置两个霍尔电路模块,这样的话这该两个霍尔电路模块内的霍尔元件均可接成二种输出形式,一种是传感器的输出是二个单霍尔输出的算术平均值形式,该种方法适用于闭环霍尔电流传感器模式,其能大幅度降低了传感器的非线性度和位置误差,提高了传感器的抗干扰能力与量程范围。另一种是两个霍尔配合一定的元器件组成的传感器,其输出是差分形式。该种双霍尔电流传感器方案能够从信号源头上抑制温度漂移和共模干扰,改善了电流传感器的稳定性和线性度,且具有自补偿和线性校正的特征,可以对微安数量级的微弱电路信号进行在线采集,并且可通过中央监控装置随时监控直流避雷器中漏电流、谐波以及静电等的变化,可以有效防止避雷设备电信或电气及电子机台等设备因接地电阻值过高,影响雷击的接地效果,有效地杜绝造成建筑物及人畜的损坏及伤亡,并且有利于延长避雷器的使用寿命。
2、在本发明中,维修人员可以及时通过所述中央监控装置以短信息或者其他的形式获知直流避雷器泄露电流的相关信息,从而既避免维护人员在恶劣天气频繁巡查避雷器故障点,降低维修人员触电的风险,减少恢复线路供电所需的时间。
3、在本发明中,通过利用双霍尔元件为核心敏感元件用于隔离检测电流的模块化产品,由于霍尔元件本身能够产生霍尔效应,因而它的工作原理是采用磁平衡式原理,即当电流流过一根长的直导线时,在导线周围产生磁场,磁场的大小与流过导线的电流大小成正比,这一磁场可以通过霍尔元件来聚集,然后用双霍尔元件进行检测,由于磁场的变化与双霍尔元件的输出电压信号有良好的线形关系,因此可利用双霍尔元件测得的输出信号,直接反应出导线中的电流大小,并且双霍尔元件的优势在于它的准确度更高,响应更快,温漂小,特别是在复杂电场环境下,双霍尔元件具有较强的抗磁化和抗极化的特性,因而可以实现交流、直流、脉冲信号等的精确和稳定测量。
4、在本发明中,通过在磁芯上加载上交流信号之后,磁芯的磁通密度将在正向和反向来回充磁和退磁,在这个过程会打断外部电磁场对磁芯的磁极化过程。所以可以很好的避免磁芯的磁极化,有利于提高本发明的检测精度和使用寿命。
5、在本发明中,在所有引入导线、引出导线和其他有必要的部分均可选择加装惰性气体二极管和 TVS 二极管防止大电流破坏电路系统。由于 TVS 二极管启动时间快,但是放电持续能力较差;而惰性气体二极管的启动时间慢,放电持续能力强。所以两者同时使用能够很好的解决电路保护问题。
6、在本发明中,复杂的电磁场除了会对磁芯造成磁极化的影响外,还可能影响电子电路的稳定工作。所以本发明通过设置屏蔽壳体和绝缘壳体来实现电磁隔离,去耦滤波等功能,从而使系统能够长时间稳定运行。而且通过设置上述屏蔽壳体和绝缘壳体,有利于减少了磁芯的漏磁量,相应提高测量精度,同时也可有效屏蔽周边电磁场的干扰,减少测量误差。
7、在本发明中,电流传感器由纳米非晶材料、双霍尔元件、纳米非晶材料固定管和屏蔽外壳构成。为了方便安装,我们将纳米非晶材料做成HALF结构。在纳米非晶材料安装完毕之后使用固定管固定,以保证传感器在工作时该材料能够较好的对接。本发明在选择磁性材料时,充分考虑到了大电流冲击的问题。所以我们选择纳米非晶和非晶软磁作为电流传感器的磁芯材料。非晶软磁和纳米非晶材料具有很好的恢复能力,在承受瞬间的大电流冲击之后,可以很好的恢复。
8、本发明既可以在有公网覆盖的范围内将电路检测数值传输到中央监控装置,也可以在没有公网信号的区域中通过所述射频信号发射单元与调频转发单元的配合,先将雷击信息发到有设置在公网覆盖范围内的双模通信单元,之后再传输到中央监控装置,这样可以大大拓宽本发明的适用场合,使得设在一些深山或者密林中的直流避雷器也可以实时在线侦测其泄露电流的信息。
9、本发明通过射频信号发射单元与调频转发单元的配合,可以自动地选择频段中传播距离最远的频点来对采集到的电流数据进行发射,可以克服单一频点传播距离过短的缺陷,使得本发明的适用场合更加宽广。
10、在本发明中,当避雷器漏电电流的直流信号经过第一线圈绕组后在磁芯中产生的磁场被聚集到双霍尔元件上,双霍尔感应到这部分磁通密度之后将产生电压,双霍尔元件产生的电压信号经运算放大器的放大作用来完成对输入电源的放电控制,使得输入电源的正接口向第二线圈绕组上输出反向补偿电流,补偿电流产生的磁通与避雷器漏电电流所产生的磁通方向相反,通过运算放大器对反向补偿电流的控制,使磁芯中的磁通密度始终为定值,此时第二线圈绕组上补偿电流再经过测量电阻R1的后输入到地面,通过电流表对测量电阻R1内流通的电流数值,并根据该电流数值进行比例运算即得出避雷器泄露电流的直流信号值,以上检测过程不仅电路结构简单、制备成本低,而且检测准确性高、能够保证信号检测精度。
附图说明
图1为本发明中实施例一的电路原理框图。
图2为本发明中所述数据采集单元的结构示意图。
图3为图2中各部件的电路原理框图。
图4为本发明中所述环形壳体的安装示意图。
图5为本发明中两个所述霍尔电路模块的电路原理框图。
图6为本发明中实施例二的电路原理框图。
具体实施方式
下面参照附图说明本发明的具体实施方式。
实施例一
参照图1。一种采用云技术对特高压直流避雷器泄露电路在线侦测的系统,包括一设置于直流避雷器附近的检测装置1、用于将该检测装置1获得的泄露电流检测结果进行传输的数据发送装置、数据接收装置、中央监控装置以及移动终端3。所述数据发送装置为公网信号发射单元5,数据接收装置为公网信号接收单元6。公网信号发射单元5和公网信号接收单元6可以通过移动公网(GSM网络或GPRS网络)实现数据传输,本实施例中公网信号接收单元6优选 GSM网络或GPRS网络的调制解调器,公网信号发射单元5优选 GSM网络或GPRS网络的通讯模块。所述中央监控装置包括后台处理器40以及储存器41,所述后台处理器40的输入端连接于所述数据接收装置,所述后台处理器40的输出端分别连接于所述移动终端3以及上述储存器41,所述后台处理器40的输入端还连接有一加密单元42,所述储存器41的输出端连接有一终端显示器43。所述数据接收装置的使能端连接于所述数据发送装置的输出端,所述中央监控装置的使能端连接于所述数据接收装置的输出端,所述中央监控装置的输出端连接与所述移动终端3的使能端。通过上述设置,维修人员可以及时通过所述中央监控装置以短信息或者其他的形式获知直流避雷器泄露电流的相关信息,从而既避免维护人员在恶劣天气频繁巡查避雷器故障点,降低维修人员触电的风险,减少恢复线路供电所需的时间。
在本实施例中,可以构建成一个汇集各地特高压直流避雷器状态各种监测数据的大数据平台,其大体包括通过网络联接的云服务器(即为所述中央监控装置)、云客户端(即为所述移动终端3)和至少一个测量终端(即为设置于各电网中各特高压直流避雷器上的检测装置1或者其他直流避雷器状态信息的检测仪器和设备,这些检测仪器和设备的功能包括有可以实现测量避雷设备或电信、电气及电子机台等设备的接地电阻值、漏电流及谐波、静电等的变化)。在该系统正常运行时,测量终端通过网络联接将测量数据传输至云服务器,云客户端从云服务器上获取所需测量数据,用户通过云客户端对测量数据进行查询、显示、输出、利用、评估等操作,实现了传统测量技术无法完成的对位于不同现场的相关联对象的协调或关联测量,从而缩短了测量时间,实现对多个测量终端同时进行实时监控和对被测对象的远程测量,同时有利于科学分析和研究雷击现象。
参照图1。所述检测装置1包括数据采集单元10、数据处理单元11、保护电路单元12、电源单元13以及一采集保护模块14。
所述电源单元13的电能输出端分成四路,分别电连接于保护电路单元12的电能输入端、采集保护模块14的电能输入端、数据采集单元10的电能输入端以及数据处理单元11的电能输入端。在工作时,避雷器电流的输出端分成两路,一路连接于所述数据采集单元10的使能端,另一路连接于所述采集保护模块14的使能端,所述采集保护模块14的输出端连接于所述保护电路单元12的使能端,所述数据处理单元11的使能端设有两路,一路连接所述数据采集单元10的输出端,另一路连接所述保护电路单元12的输出端,当避雷器电流小于或等于1毫安时,采集保护模块14不动作,而数据采集单元10启动并对电流进行信号采集和数据处理后经由数据处理单元11输出;当避雷器电流大于1毫安时,数据采集单元10不动,而采集保护模块14启动,所述检测装置1对输入呈现高阻态,此时不进行信号采集和数据处理,并经由数据处理单元11输出。
参照图1、图2、图3、图4和图5。所述数据采集单元10包括电流传感器7、功率放大器8、电路采集模块9。
参照图1、图2、图3、图4和图5。所述电流传感器7包括一环形壳体70、一呈C形布置的磁芯71以及两霍尔电路模块72,所述环形壳体70内设置有一容置空间700,所述磁芯71上分别绕设有一第一线圈绕组710以及一第二线圈绕组711,并且该磁芯71安装于所述容置空间700内,两所述霍尔电路模块72装设于所述容置空间700内并且其两端与所述磁芯71的两端邻接,两所述霍尔电路72模块之间连接有一电桥73,所述第一线圈绕组710的输入端与避雷器漏电流电连接,所述第二线圈绕组711的输入端与所述功率放大器8的一输出端电连接,所述功率放大器8的另一输出端与所述电路采集模块9电连接,所述第二线圈绕组711所产生的磁通密度方向与所述第一线圈绕组710的磁通密度方向相反。
参照图1、图2、图3、图4和图5。各所述霍尔电路模块72均包括一霍尔元件720以及与该霍尔元件720相串联的一调整电阻722,所述霍尔电路模块72的控制电流端并联接入于一直流恒流电源723的I+和I-,并且两所述霍尔电路模块72的输出端也并联为VH+和VH-的数据接点721,所述功率放大器8包括一与所述数据接点721输出端电连接的运算放大器80、一第一三极管81、一第二三极管82以及一输入电源83,所述第一三极管81的集电极电连接于所述输入电源83的正接口830,所述第二三极管82的集电极连接于所述输入电源83的负接口831,所述功率放大器8的输出端分成两路,一路连接于所述第一三极管81的基极,另一路连接于所述第二三级管的基极,所述第一三极管81的放大级分成两路,一路连接于所述第二线圈绕组711的输入端,另一路连接于所述第二三极管82的放大级,所述电路采集模块9包括一端连接于所述第二线圈绕组711输出端的测量电阻R1以及用于测量该测量电阻内电流数值的电流表A,所述测量电阻R1的另一端接地。当避雷器漏电电流的直流信号经过第一线圈绕组后在磁芯中产生的磁场被聚集到两所述霍尔电路模块上,由于该两所述霍尔电路模块的位置不同,因而产生不相等的霍尔电压,两所述霍尔电路模块经由电路并联连接按照并联电容的等效电路合成后,两所述霍尔电路模块产生的电压信号的输出值为两霍尔电路模块输出值的算术平均值,该电压信号的输出值经功率放大器导通作用使得第二线圈绕组上产生反向补偿电流,补偿电流产生的磁通与避雷器漏电电流所产生的磁通方向相反,当二者实现磁平衡后,磁芯磁通为零,第二线圈绕组上补偿电流再经过电路采集模块的测试后,即得出避雷器泄露电流的直流信号值,因而本发明一方面是采用非接触式对避雷器漏电流进行采集,从而可以保证采集单元能够在复杂电磁场中进行有效和稳定地运行,不仅耐压能力得到很大地提升,而且能够在过电压下具有较强自恢复和自适应能力。本发明另一方面是有设置两个霍尔电路模块,这样的话这该两个霍尔电路模块内的霍尔元件均可接成二种输出形式,一种是传感器的输出是二个单霍尔输出的算术平均值形式,该种方法适用于闭环霍尔电流传感器模式,其能大幅度降低了传感器的非线性度和位置误差,提高了传感器的抗干扰能力与量程范围。另一种是两个霍尔配合一定的元器件组成的传感器,其输出是差分形式。该种双霍尔电流传感器方案能够从信号源头上抑制温度漂移和共模干扰,改善了电流传感器的稳定性和线性度,且具有自补偿和线性校正的特征,可以对微安数量级的微弱电路信号进行在线采集,并且可通过中央监控装置随时监控直流避雷器中漏电流、谐波以及静电等的变化,可以有效防止避雷设备电信或电气及电子机台等设备因接地电阻值过高,影响雷击的接地效果,有效地杜绝造成建筑物及人畜的损坏及伤亡,并且有利于延长避雷器的使用寿命。本实施例还利用双霍尔元件为核心敏感元件用于隔离检测电流的模块化产品,由于霍尔元件本身能够产生霍尔效应,因而它的工作原理是采用磁平衡式原理,即当电流流过一根长的直导线时,在导线周围产生磁场,磁场的大小与流过导线的电流大小成正比,这一磁场可以通过霍尔元件来聚集,然后用双霍尔元件进行检测,由于磁场的变化与双霍尔元件的输出电压信号有良好的线形关系,因此可利用双霍尔元件测得的输出信号,直接反应出导线中的电流大小,并且双霍尔元件的优势在于它的准确度更高,响应更快,温漂小,特别是在复杂电场环境下,双霍尔元件具有较强的抗磁化和抗极化的特性,因而可以实现交流、直流、脉冲信号等的精确和稳定测量。
参照图1、图2、图3、图4和图5。所述电桥73包括两并联设置的电阻对730和电阻对731,该电阻对730和电阻对731的一侧的接点连接于一霍尔电路模块72中霍尔元件720与调整电阻722中间的接线处,该电阻对730和电阻对731的另一侧的接点连接于另一霍尔电路模块72中霍尔元件720与调整电阻722中间的接线处,电阻对730和电阻对731各包括两个串联设置的电阻733,并且电阻对730中两串联设置的电阻733接线的中间与另一电阻对731中两串联设置的电阻733接线的中间电连接。
参照图1、图2、图3、图4和图6。所述环形壳体70包括一屏蔽壳体701以及设置于该屏蔽壳体701外侧的绝缘壳体702,所述磁芯71包括两个对称设置的弧形芯块714以及一固定管715,两弧形芯块714各以一端相互抵接,并且在该抵接位置的两侧通过所述固定管715套上,所述弧形芯块714为纳米非晶材料制成的弧形芯块714,所述固定管715为纳米非晶材料固定管715。电流传感器由纳米非晶材料、双霍尔元件、纳米非晶材料固定管和屏蔽外壳构成。为了方便安装,我们将纳米非晶材料做成HALF结构。在纳米非晶材料安装完毕之后使用固定管固定,以保证传感器在工作时该材料能够较好的对接。本发明在选择磁性材料时,充分考虑到了大电流冲击的问题。所以我们选择纳 米非晶和非晶软磁作为电流传感器的磁芯材料。非晶软磁和纳米非晶材料具有很好的恢复能力,在承受瞬间的大电流冲击之后,可以很好的恢复。
参照图1、图2、图3、图4和图5。所述磁芯71的开口处形成有一气隙718,两所述霍尔电路模块72平行间隔布置于该气隙内,所述固定管715所占据的体积为所述容置空间700体积的四分之一,位于所述固定管715一侧的弧形芯块714中未套上固定管715的部分所占据的体积为所述容置空间700体积的三分之一,位于所述固定管715另一侧的弧形芯块714中未套上固定管715的部分所占据的体积为所述容置空间700体积的三分之一,所述第二线圈绕组711包括上第二线圈绕部以及下第二线圈绕部,所述上第二线圈绕部绕设于位于所述固定管715一侧的弧形芯块714中未套上固定管715的部分,所述下第二线圈绕部绕设于位于所述固定管715另一侧的弧形芯块714中未套上固定管715的部分,所述上第二线圈绕部和下第二线圈绕部相互电连接,所述第一线圈绕组710绕设于所述固定管715的外侧。
参照图1、图2、图3、图4和图6。所述避雷器电流的引出导线上加装有惰性气体二极管以及TVS二极管,该TVS二极管反向串联接地。本实施例在所有引入导线、引出导线和其他有必要的部分均可选择加装惰性气体二极管和 TVS 二极管防止大电流破坏电路系统。由于 TVS 二极管启动时间快,但是放电持续能力较差;而惰性气体二极管的启动时间慢,放电持续能力强。所以两者同时使用能够很好的解决电路保护问题。
参照图1、图2、图3、图4和图5。所述磁芯71上加载有交流信号。通过在磁芯71上加载上交流信号之后,磁芯71的磁通密度将在正向和反向来回充磁和退磁,在这个过程会打断外部电磁场对磁性材料的磁极化过程。所以可以很好的避免磁性材料的磁极化。有利于提高本发明的检测精度和使用寿命。
参照图1、图2、图3、图4和图5。所述环形壳体70套设在避雷器的地线16上并且其包括可相互拆卸的左半壳体705以及右半壳体706。
参照图1、图2、图3、图4和图6。当避雷器漏电电流的直流信号经过第一线圈绕组后在磁芯中产生的磁场被聚集到双霍尔元件上,双霍尔感应到这部分磁通密度之后将产生电压,双霍尔元件产生的电压信号经运算放大器的放大作用来完成对输入电源的放电控制,使得输入电源的正接口向第二线圈绕组上输出反向补偿电流,补偿电流产生的磁通与避雷器漏电电流所产生的磁通方向相反,通过运算放大器对反向补偿电流的控制,使磁芯中的磁通密度始终为定值,此时第二线圈绕组上补偿电流再经过测量电阻R1的后输入到地面,通过电流表对测量电阻R1内流通的电流数值,并根据该电流数值进行比例运算即得出避雷器泄露电流的直流信号值,以上检测过程不仅电路结构简单、制备成本低,而且检测准确性高、能够保证信号检测精度。
另外,由于复杂的电磁场除了会对磁芯造成磁极化的影响外,还可能影响电子电路的稳定工作。所以本发明还会从布线方式,结构设计和外壳处理方面实现电磁隔离,去耦滤波等功能,从而使系统能够长时间稳定运行。通过设置屏蔽壳体和绝缘壳体,有利于减少了磁芯的漏磁量,相应提高测量精度,同时也可有效屏蔽周边电磁场的干扰,减少测量误差。
参照图1、图2、图3、图4和图5。本实施例对应的采用云技术对特高压直流避雷器泄露电流的在线侦测方法,包括以下步骤:
a、判断是否对电流进行信号采集,当避雷器电流高于预先设定的阈值时,TVS二极管可以迅速启动进行释放电流,之后惰性气体二极管进行启动,持续释放电流。
b、对电流进行信号采集,当避雷器漏电电流的直流信号经过第一线圈绕组710后在磁芯71中产生的磁场被聚集到双霍尔元件720上,由于该两所述霍尔元件720的位置不同,因而产生不相等的霍尔电压,两所述霍尔电路模块72经由电路并联连接按照并联电容的等效电路合成后,两所述霍尔电路模块72产生的电压信号的输出值为两霍尔电路模块72输出值的算术平均值,双霍尔元件720产生的电压信号经运算放大器80的放大作用来完成对输入电源83的放电控制,使得输入电源83的正接口830向第二线圈绕组711上输出反向补偿电流,补偿电流产生的磁通与避雷器漏电电流所产生的磁通方向相反,通过运算放大器80对反向补偿电流的控制,使磁芯71中的磁通密度始终为定值,此时第二线圈绕组711上补偿电流再经过测量电阻R1的后输入到地面,通过电流表A对测量电阻R1内流通的电流数值,并根据该电流数值进行比例运算即得出避雷器泄露电流的直流信号值,从而进入下一个步骤。
c、将采集的信号进行处理后形成电流值数据输出。
d、将获得的电流数据通过无线传输至中央监控装置内进行汇总,数据处理单元11经过数据运算处理之后,通过公网信号发射单元5将含有避雷器泄露电流的直流信号值、测量时间或避雷器安装位置信息的编码以短信息形式发送到公网信号接收单元6。
e、中央监控装置显示该电流数据同时将该电流数据分配发送到对应避雷器管理者的移动终端3,具体为后台处理器40接收到编码形式的短信息后,进行信息转换,将编码信息转换成中文信息发送到相关管理人员或维修人员的移动终端3上,并在储存器41中永久保存上述信息。
另外,贯穿整个在线检测过程,均有对所述磁芯71上加载有交流信号,在磁芯71上加载上交流信号之后,磁芯71的磁通密度将在正向和反向来回充磁和退磁,在这个过程会打断外部电磁场对磁性材料的磁极化过程。
另外,本实施例试验中使用纳米非晶材料由中国科学院磁性材料与器件重点实验室提供。同样经过本申请人多次测试,其他类型的纳米非晶材料制得的磁芯也能够完成本项申请的目的。
实施例二
参照图6。本实施例与实施例一的实施方式大体相同,其不同之处在于:所述数据发送装置包括呈依次连接的射频信号发射单元50、调频转发单元51以及双模通信单元52,所述数据接收装置为与该双模通信单元52的输出端连接的公网信号接收单元6。
采用上述设置可以使得本实施例既可以在有公网覆盖的范围内将电路检测数值传输到中央监控装置,也可以在没有公网信号的区域中通过所述射频信号发射单元与调频转发单元的配合,先将雷击信息发到有设置在公网覆盖范围内的双模通信单元,之后再传输到中央监控装置,这样可以大大拓宽本发明的适用场合,使得设在一些深山或者密林中的直流避雷器也可以实时在线侦测其泄露电流的信息。
本实施例通过射频信号发射单元与调频转发单元的配合,可以自动地选择频段中传播距离最远的频点来对采集到的电流数据进行发射,可以克服单一频点传播距离过短的缺陷,使得本发明的适用场合更加宽广。
另外,由于本实施例针对数据发送装置与实施例一有所区别,因而本实施例采用云技术对特高压直流避雷器泄露电路的在线侦测方法也有所不同,其不同之处在于:
一方面,步骤d包括数据处理单元经过数据运算处理之后,将含有避雷器泄露电流的直流信号值、测量时间或避雷器安装位置信息的编码通过射频信号发射单元以及调频转发单元的配合,在保证通讯通道的畅通的情况下,以专网自动跳频的方式将编码信息经过一级转发到有移动公网信号覆盖区域的双模通讯单元上,然后再由双模通讯单元以短信息形式发送到公网信号接收单元。
另一方面,步骤e包括后台处理器接收到编码形式的短信息后,进行信息转换,将编码信息转换成中文信息发送到相关管理人员或维修人员的移动终端上,并在储存器中永久保存上述信息。
上述仅为本发明的具体实施方式,但本发明的设计构思并不局限于此,凡利用此构思对本发明进行非实质性的改动,均应属于侵犯本发明保护范围的行为。

Claims (8)

1.采用云技术对特高压直流避雷器泄露电流在线侦测的方法,其特征在于,利用一侦测系统分别完成以下步骤:a、判断是否对电流进行信号采集;b、对电流进行信号采集;c、将采集的信号进行处理后形成电流数据输出;d、将获得的电流数据通过无线传输至中央监控装置内进行汇总;e、中央监控装置显示该电流数据同时将该电流数据分配发送到对应避雷器管理者的移动终端,所述侦测系统包括一设置于直流避雷器附近的检测装置、用于将该检测装置获得的泄露电流检测结果进行传输的数据发送装置、数据接收装置、中央监控装置以及移动终端,所述数据接收装置的使能端连接于所述数据发送装置的输出端,所述中央监控装置的使能端连接于所述数据接收装置的输出端,所述中央监控装置的输出端连接于所述移动终端的使能端;所述检测装置包括数据采集单元、数据处理单元、保护电路单元以及电源单元,所述数据采集单元包括电流传感器、功率放大器以及电路采集模块,所述电流传感器包括一环形壳体、一呈C 形布置的磁芯以及两霍尔电路模块,所述环形壳体内设置有一容置空间,所述磁芯上分别绕设有一第一线圈绕组以及一第二线圈绕组,并且该磁芯安装于所述容置空间内,两所述霍尔电路模块装设于所述容置空间内并且其两端与所述磁芯的两端邻接,两所述霍尔电路模块之间连接有一电桥;各所述霍尔电路模块均包括一霍尔元件以及与该霍尔元件相串联的一调整电阻,所述霍尔电路模块的控制电流端并联接入于一直流恒流电源I+ 和I-,并且两所述霍尔电路模块的输出端也并联为VH+ 和VH- 的数据接点,所述功率放大器包括一与所述数据接点输出端电连接的运算放大器、一第一三极管、一第二三极管以及一输入电源,所述第一三极管的集电极电连接于所述输入电源的正接口,所述第二三极管的集电极连接于所述输入电源的负接口,所述运算放大器的输出端分成两路,一路连接于所述第一三极管的基极,另一路连接于所述第二三极 管的基极,所述第一三极管的放大级分成两路,一路连接于所述第二线圈绕组的输入端,另一路连接于所述第二三极管的放大级,所述电路采集模块包括一端连接于所述第二线圈绕组输出端的测量电阻R1 以及用于测量该测量电阻内电流数值的电流表,所述测量电阻R1 的另一端接地;所述电桥包括两并联设置的电阻对,该两电阻对的一侧的接点连接于一霍尔电路模块中霍尔元件与调整电阻中间的接线处,该两电阻对的另一侧的接点连接于另一霍尔电路模块中霍尔元件与调整电阻中间的接线处,两并联设置的电阻对中每个电阻对各包括两个串联设置的电阻,并且其中一电阻对中两串联设置的电阻接线的中间与另一电阻对中两串联设置的电阻接线的中间电连接;所述第一线圈绕组的输入端与避雷器漏电流电连接,所述第二线圈绕组的输入端与所述功率放大器的一输出端电连接,所述功率放大器的另一输出端与所述电路采集模块电连接,所述检测装置还包括一采集保护模块,所述电源单元的电能输出端分成四路,分别电连接于保护电路单元的电能输入端、采集保护模块的电能输入端、数据采集单元的电能输入端以及数据处理单元的电能输入端,避雷器电流的输出端分成两路,一路连接于所述数据采集单元的使能端,另一路连接于所述采集保护模块的使能端,所述采集保护模块的输出端连接于所述保护电路单元的使能端,所述数据处理单元的使能端设有两路,一路连接所述数据采集单元的输出端,另一路连接所述保护电路单元的输出端;所述步骤a 包括在接上避雷器电流的引出导线后,通过采集保护模块和数据采集单元对引线上的电流进行初步检测,当避雷器电流小于或等于1 毫安时,采集保护模块不动作,而数据采集单元启动并对电流进行信号采集和数据处理后经由数据处理单元输出;当避雷器电流大于1 毫安时,数据采集单元不动,而采集保护模块启动,所述检测装置对输入呈现高阻态,此时不进行信号采集和数据处理,也不经由数据处理单元输出;所述环形壳体包括一屏蔽壳体以及设置于该屏蔽壳体外侧的绝缘壳体,所述磁芯包括两个对称设置的弧形芯块以及一固定管,两弧形芯块各以一端相互抵接,并且在该抵接位置的两侧通过所述固定管套上,所述弧形芯块为纳米非晶材料制成的弧形芯块,所述固定管为纳米非晶材料固定管;所述环形壳体套设在避雷器的地线上并且其包括可相互拆卸的左半壳体以及右半壳体。
2.如权利要求1 所述采用云技术对特高压直流避雷器泄露电流在线侦测的方法,其特征在于:所述步骤b 包括当避雷器漏电电流的直流信号经过第一线圈绕组后在磁芯中产生的磁场被聚集到两所述霍尔电路模块上,由于该两所述霍尔电路模块的位置不同,因而产生不相等的霍尔电压,两所述霍尔电路模块经由电路并联连接按照并联电容的等效电路合成后,两所述霍尔电路模块产生的电压信号的输出值为两霍尔电路模块输出值的算术平均值,该电压信号的输出值经功率放大器导通作用使得第二线圈绕组上产生反向补偿电流,补偿电流产生的磁通与避雷器漏电电流所产生的磁通方向相反,当二者实现磁平衡后,磁芯磁通为零,第二线圈绕组上补偿电流再经过电路采集模块的测试后,即得出避雷器泄露电流的直流信号值从而进入c 步骤。
3.如权利要求2 所述采用云技术对特高压直流避雷器泄露电流在线侦测的方法,其特征在于:所述步骤b 包括,当避雷器漏电电流的直流信号经过第一线圈绕组后在磁芯中产生的磁场被聚集到两霍尔元件上,由于该两所述霍尔电路模块的位置不同,因而产生不相等的霍尔电压,两所述霍尔电路模块经由电路并联连接按照并联电容的等效电路合成后,两所述霍尔电路模块产生的电压信号的输出值为两霍尔电路模块输出值的算术平均值,该电压信号的输出值经运算放大器的放大作用来完成对输入电源的放电控制,使得输入电源的正接口向第二线圈绕组上输出反向补偿电流,补偿电流产生的磁通与避雷器漏电电流所产生的磁通方向相反,通过运算放大器对反向补偿电流的控制,使磁芯中的磁通密度始终为定值,此时第二线圈绕组上补偿电流再经过测量电阻R1 的后输入到地面,通过电流表对测量电阻R1 内流通的电流数值,并根据该电流数值进行比例运算即得出避雷器泄露电流的直流信号值,从而进入c 步骤。
4.如权利要求3 所述采用云技术对特高压直流避雷器泄露电流在线侦测的方法,其特征在于:避雷器电流的引出导线上加装有惰性气体二极管以及TVS 二极管,该TVS 二极管反向串联接地,在步骤a 中,当避雷器电流高于预先设定的阈值时,TVS 二极管可以迅速启动进行释放电流,之后惰性气体二极管进行启动,持续释放电流。
5.如权利要求4 所述采用云技术对特高压直流避雷器泄露电流在线侦测的方法,其特征在于:还包括步骤f,该步骤f 贯穿整个在线检测过程,其包括对所述磁芯上加载有交流信号,在磁芯上加载上交流信号之后,磁芯的磁通密度将在正向和反向来回充磁和退磁,在这个过程会打断外部电磁场对磁性材料的磁极化过程。
6.如权利要求1所述采用云技术对特高压直流避雷器泄露电流在线侦测的方法,其特征在于:所述磁芯的开口处形成有一气隙,两所述霍尔电路模块平行间隔布置于该气隙内,所述固定管所占据的体积为所述容置空间体积的四分之一,位于所述固定管一侧的弧形芯块中未套上固定管的部分所占据的体积为所述容置空间体积的三分之一,位于所述固定管另一侧的弧形芯块中未套上固定管的部分所占据的体积为所述容置空间体积的三分之一,所述第二线圈绕组包括上第二线圈绕部以及下第二线圈绕部,所述上第二线圈绕部绕设于位于所述固定管一侧的弧形芯块中未套上固定管的部分,所述下第二线圈绕部绕设于位于所述固定管另一侧的弧形芯块中未套上固定管的部分,所述上第二线圈绕部和下第二线圈绕部相互电连接,所述第一线圈绕组绕设于所述固定管的外侧。
7.如权利要求6所述采用云技术对特高压直流避雷器泄露电流在线侦测的方法,其特征在于:所述中央监控装置包括后台处理器以及储存器,所述后台处理器的输入端连接于所述数据接收装置,所述后台处理器的输出端分别连接于所述移动终端以及上述储存器,所述后台处理器的输入端还连接有一加密单元,所述储存器的输出端连接有一终端显示器,所述数据发送装置为公网信号发射单元,数据接收装置为公网信号接收单元,所述步骤c 包括当数据采集单元得出避雷器泄露电流的直流信号值后,将该直流信号值输出到数据处理单元上;所述步骤d 包括数据处理单元经过数据运算处理之后,通过公网信号发射单元将含有避雷器泄露电流的直流信号值、测量时间或避雷器安装位置信息的编码以短信息形式发送到公网信号接收单元;所述步骤e 包括后台处理器接收到编码形式的短信息后,进行信息转换,将编码信息转换成中文信息发送到相关管理人员或维修人员的移动终端上,并在储存器中永久保存上述信息。
8.如权利要求7所述采用云技术对特高压直流避雷器泄露电流在线侦测的方法,其特征在于:所述中央监控装置包括后台处理器以及储存器,所述后台处理器的输入端连接于所述数据接收装置,所述后台处理器的输出端分别连接于所述移动终端以及上述储存器,所述后台处理器的输入端还连接有一加密单元,所述储存器的输出端连接有一终端显示器,所述数据发送装置包括呈依次连接的射频信号发射单元、调频转发单元以及双模通信单元,所述数据接收装置为与该双模通信单元的输出端连接的公网信号接收单元,所述步骤c 包括当数据采集单元得出避雷器泄露电流的直流信号值后,将该直流信号值输出到数据处理单元上;所述步骤d 包括数据处理单元经过数据运算处理之后,将含有避雷器泄露电流的直流信号值、测量时间或避雷器安装位置信息的编码通过射频信号发射单元以及调频转发单元的配合,在保证通讯通道的畅通的情况下,以专网自动跳频的方式将编码信息经过一级转发到有移动公网信号覆盖区域的双模通讯单元上,然后再由双模通讯单元以短信息形式发送到公网信号接收单元;所述步骤e 包括后台处理器接收到编码形式的短信息后,进行信息转换,将编码信息转换成中文信息发送到相关管理人员或维修人员的移动终端上,并在储存器中永久保存上述信息。
CN201510609302.3A 2015-09-23 2015-09-23 采用云技术对特高压直流避雷器泄露电流在线侦测的方法 Active CN105301323B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510609302.3A CN105301323B (zh) 2015-09-23 2015-09-23 采用云技术对特高压直流避雷器泄露电流在线侦测的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510609302.3A CN105301323B (zh) 2015-09-23 2015-09-23 采用云技术对特高压直流避雷器泄露电流在线侦测的方法

Publications (2)

Publication Number Publication Date
CN105301323A CN105301323A (zh) 2016-02-03
CN105301323B true CN105301323B (zh) 2018-10-30

Family

ID=55198824

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510609302.3A Active CN105301323B (zh) 2015-09-23 2015-09-23 采用云技术对特高压直流避雷器泄露电流在线侦测的方法

Country Status (1)

Country Link
CN (1) CN105301323B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107192973A (zh) * 2017-05-27 2017-09-22 中国电力科学研究院 一种电力现场环境下的避雷器泄漏电流补偿系统及方法
CN109521252A (zh) * 2018-11-27 2019-03-26 北京智芯微电子科技有限公司 直流漏电流的检测装置
CN111505700A (zh) * 2020-05-21 2020-08-07 山东蓝孚高能物理技术股份有限公司 一种电子加速器束流强度实时监测装置
CN113049983A (zh) * 2021-03-12 2021-06-29 广西电网有限责任公司电力科学研究院 一种避雷器泄漏电流非接触式无线监测系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201007846Y (zh) * 2006-11-07 2008-01-16 西安神电电器有限公司 避雷器在线监测系统
CN102004179A (zh) * 2009-09-01 2011-04-06 天津市松正电动科技有限公司 用于电动车辆控制器的磁感应电流传感器
CN101702361B (zh) * 2009-11-17 2011-08-10 武汉市长江电气发展有限公司 大型变压器或互感器超低频交流恒流退磁装置及退磁检测方法
CN201732112U (zh) * 2010-06-23 2011-02-02 长沙南车电气设备有限公司 一种机车车辆用电压传感器
CN102012448B (zh) * 2010-10-26 2012-07-04 西安交通大学 罗哥夫斯基电流传感器
CN102323467A (zh) * 2011-08-31 2012-01-18 清华大学 一种采用非晶合金磁环结构的巨磁电阻效应电流传感器
CN202256454U (zh) * 2011-10-12 2012-05-30 长沙南车电气设备有限公司 一种电流传感器
CN102998511B (zh) * 2012-10-29 2016-04-20 中国电力科学研究院 一种避雷器放电电流监测装置
CN103364612A (zh) * 2013-07-05 2013-10-23 华中科技大学 一种双霍尔元件电流传感器
CN203479959U (zh) * 2013-10-10 2014-03-12 泉州维盾电气有限公司 安装于输电线路杆塔上的雷击定位系统
CN203759086U (zh) * 2013-12-24 2014-08-06 北京嘉岳同乐极电子有限公司 一种铁芯接地电流在线监控设备
CN203658443U (zh) * 2013-12-25 2014-06-18 深圳市合兴加能科技有限公司 霍尔传感装置及三相电流平衡检测电路
CN204439709U (zh) * 2014-03-13 2015-07-01 达州市远东电器有限公司 一种电力负荷管理终端的信息采集装置
CN104698311B (zh) * 2015-02-25 2018-05-18 中国南方电网有限责任公司超高压输电公司检修试验中心 一种直流线路直流避雷器带电检测方法

Also Published As

Publication number Publication date
CN105301323A (zh) 2016-02-03

Similar Documents

Publication Publication Date Title
CN105158543B (zh) 基于双霍尔元件对特高压直流避雷器泄漏电流的采集单元
CN105182044B (zh) 以霍尔传感器为构架对特高压直流避雷器状态检测的装置
CN105182163B (zh) 基于云技术的特高压直流避雷器泄漏电流的在线侦测系统
CN103412176B (zh) 一种基于磁电阻的交直流避雷器电流实时在线监测传感器
CN105467241B (zh) 一种分布式换流变压器直流偏磁检测系统及其检测方法
CN105301323B (zh) 采用云技术对特高压直流避雷器泄露电流在线侦测的方法
Huang et al. Innovative testing and measurement solutions for smart grid
CN106771840A (zh) 一种干式空心电抗器匝间短路故障在线检测方法
CN103487679B (zh) 一种ais电子互感器测试系统及其方法
CN205103292U (zh) 基于双霍尔元件对特高压直流避雷器泄露电流的采集单元
CN205103296U (zh) 以非接触传感器对特高压直流避雷器泄露电流的检测装置
CN105158633B (zh) 以云平台共享特高压直流避雷器状态在线检测数据的方法
CN104535957A (zh) 一种智能变电站测量准确性对比装置
CN103995171B (zh) 非接触式直流输电线路电流测量方法
CN105301325B (zh) 以霍尔感应理论对特高压直流避雷器泄漏电流采集的方法
CN205103294U (zh) 以霍尔传感器为构架对特高压直流避雷器状态检测的装置
CN105182043B (zh) 以非接触传感器对特高压直流避雷器泄漏电流的检测装置
CN204925306U (zh) 基于云技术的特高压直流避雷器泄露电流的在线侦测系统
CN202676825U (zh) 一种电气与通信系统接地安全监测报警装置
CN205103356U (zh) 以软磁片为核心对非接触式微弱泄露电流信号的采集单元
CN105301324B (zh) 以磁平衡理论对特高压直流避雷器泄漏电流采集的方法
CN204925224U (zh) 以特高压直流避雷器状态检测数据为构架的大数据平台
Yuan et al. A three-core power cable online monitoring system based on phase current sensing
CN102590645B (zh) 采用单极核相装置对交流高压供电线路进行核相的方法
CN105182045B (zh) 以特高压直流避雷器状态检测数据为构架的大数据平台

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 361001 one of the 1002 units of No. 3 Nantou Road, Siming District, Xiamen, Fujian.

Applicant after: Red phase Limited by Share Ltd

Address before: 361001 E 21 unit, Hai Guang building, 33 Narcissus Road, Siming Road, Xiamen, Fujian

Applicant before: Xiamen Red Phase Instruments Inc.

GR01 Patent grant
GR01 Patent grant