CN105279738A - Coping method of shadow problem in vegetation parameter estimation, based on remote sensing images - Google Patents
Coping method of shadow problem in vegetation parameter estimation, based on remote sensing images Download PDFInfo
- Publication number
- CN105279738A CN105279738A CN201510415135.9A CN201510415135A CN105279738A CN 105279738 A CN105279738 A CN 105279738A CN 201510415135 A CN201510415135 A CN 201510415135A CN 105279738 A CN105279738 A CN 105279738A
- Authority
- CN
- China
- Prior art keywords
- remote sensing
- band
- sensing images
- correction
- shadow problem
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title abstract description 14
- 230000010485 coping Effects 0.000 title abstract 2
- 230000035945 sensitivity Effects 0.000 claims abstract description 8
- 230000003595 spectral effect Effects 0.000 claims description 6
- 238000010606 normalization Methods 0.000 claims description 2
- 238000002310 reflectometry Methods 0.000 claims 3
- 230000000694 effects Effects 0.000 abstract description 3
- 238000001228 spectrum Methods 0.000 abstract 2
- 238000010521 absorption reaction Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229930002875 chlorophyll Natural products 0.000 description 2
- 235000019804 chlorophyll Nutrition 0.000 description 2
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 1
- 208000005156 Dehydration Diseases 0.000 description 1
- 206010047571 Visual impairment Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
Landscapes
- Image Processing (AREA)
Abstract
Description
技术领域 technical field
本发明属于遥感技术领域,涉及一种针对遥感影像植被参数估算中阴影问题的应对方法。 The invention belongs to the technical field of remote sensing, and relates to a method for dealing with shadow problems in vegetation parameter estimation of remote sensing images.
背景技术 Background technique
植被生物化学-生物物理参数,如叶面积指数、叶绿素、叶片含水率、冠层含水量、生物量等对反应植被生长状况、估算大气低层与植被间物质与能量交换率、了解农作物水分迫胁程度、评估森林及草原火灾风险发生概率等具有重要的指示作用。这些重要植被参数在植被不同光谱波段上具有不同程度的灵敏度,如叶面积指数在近红外波段表现出较强反射特性,叶绿素在红波段表现出较强吸收特性而在绿波段则为较强反射特性,冠层含水量在短波红外波段具有较强的吸收性质。同时,遥感影像数据还具有多时相、多空间分辨率及时效性的特点,使得利用该数据可在空间大尺度、多时相上快速提取目标参数,为相关行业部门提高科学及时的决策信息。但是,地形起伏及部分云团形成的阴影会导致遥感图像在空间上的不连续性或得到错误的目标参数估计值,阻碍遥感技术的进一步应用。 Vegetation biochemical-biophysical parameters, such as leaf area index, chlorophyll, leaf water content, canopy water content, biomass, etc., respond to vegetation growth conditions, estimate material and energy exchange rates between the lower atmosphere and vegetation, and understand crop water stress It plays an important role in indicating the extent of forest and grassland fire risks and assessing the probability of occurrence of forest and grassland fire risks. These important vegetation parameters have different degrees of sensitivity in different spectral bands of vegetation. For example, the leaf area index shows strong reflection characteristics in the near-infrared band, and chlorophyll shows strong absorption properties in the red band and strong reflection in the green band. The water content of the canopy has strong absorption properties in the short-wave infrared band. At the same time, remote sensing image data also has the characteristics of multi-temporal, multi-spatial resolution, and timeliness, so that the data can be used to quickly extract target parameters in large-scale space and multi-temporal phases, and improve scientific and timely decision-making information for relevant industries. However, terrain undulations and shadows formed by some clouds will lead to spatial discontinuity in remote sensing images or get wrong target parameter estimates, hindering the further application of remote sensing technology.
发明内容 Contents of the invention
本发明目的旨在提供一种简单快捷应对基于遥感影像数据植被参数估计中地形起伏及云团所致阴影问题的方法,缓解阴影导致的遥感影像空间不连续性及目标参数被错估的问题。 The purpose of the present invention is to provide a simple and quick method for dealing with terrain fluctuations and shadows caused by clouds in vegetation parameter estimation based on remote sensing image data, so as to alleviate the problems of remote sensing image space discontinuity and target parameter misestimation caused by shadows.
本发明解决上述技术问题所采取的技术方案是:首先,对遥感影像做大气校正,将DN值转换为地表反射率;其次,选取对目标植被参数敏感(吸收或反射特性)的光谱波段;最后,将上步骤中任意两个波段反射率带入如下公式,y=(b1-b2)/(b1+b2),其中,b1、b2为对植被敏感任意两个不重复波段,具体为绿光波段(500-600nm)、红光波段(600-700nm)、近红外波段(760-900nm)及短波红外波段(1500-2400nm),y为最终得到的归一化后的指数,其取值范围为-1到1之间。利用本技术方案最终得到的指数既能保证其对目标植被参数的灵敏性,又能在一定程度上缓解地形起伏及云团所致的阴影问题。 The technical scheme adopted by the present invention to solve the above-mentioned technical problems is: firstly, perform atmospheric correction on the remote sensing image, and convert the DN value into the surface reflectance; secondly, select the spectral band sensitive to the target vegetation parameters (absorption or reflection characteristics); finally , bring the reflectance of any two bands in the above step into the following formula, y=(b1-b2)/(b1+b2), where b1 and b2 are any two non-repetitive bands sensitive to vegetation, specifically green light band (500-600nm), red band (600-700nm), near-infrared band (760-900nm) and short-wave infrared band (1500-2400nm), y is the final normalized index, and its value range It is between -1 and 1. The final index obtained by using this technical scheme can not only ensure its sensitivity to the target vegetation parameters, but also alleviate the shadow problems caused by terrain fluctuations and clouds to a certain extent.
进一步的是,遥感影像特指有植被覆盖区域的遥感影像数据。 Furthermore, remote sensing images specifically refer to remote sensing image data of areas covered by vegetation.
进一步的是,b1及b2须为大气校正后的地表反射率影像数据。 Further, b1 and b2 must be atmospherically corrected surface albedo image data.
进一步的是,b1及b2须为对目标参数敏感(吸收或反射特性)的光谱波段,具体为绿光波段(500-600nm)、红光波段(600-700nm)、近红外波段(760-900nm)及短波红外波段(1500-2400nm)。 Further, b1 and b2 must be spectral bands sensitive to target parameters (absorption or reflection characteristics), specifically green light band (500-600nm), red light band (600-700nm), near-infrared band (760-900nm) ) and short-wave infrared band (1500-2400nm).
进一步的是,y的取值范围为-1到1之间。 Further, the value range of y is between -1 and 1.
本发明的有益效果:原始遥感影像数据即使经过大气校正也无法缓解地形起伏及云团导致的阴影问题。本发明所提供方法最终得到的归一化指数既能保证其对目标参数的灵敏度,又能一定程度上缓解阴影的影响。同时,该方法简单快捷,易于操作,可用于缓解大尺度范围内的遥感影像阴影问题,保证遥感影像数据在空间上的连续性及整体上提高目标参数的估算精度的效果。 The beneficial effect of the present invention is that even if the original remote sensing image data is subjected to atmospheric correction, the problem of shadows caused by terrain fluctuations and clouds cannot be alleviated. The final normalization index obtained by the method provided by the present invention can not only ensure its sensitivity to target parameters, but also alleviate the influence of shadows to a certain extent. At the same time, the method is simple, fast, and easy to operate, and can be used to alleviate the shadow problem of remote sensing images in a large scale, ensure the spatial continuity of remote sensing image data and improve the estimation accuracy of target parameters as a whole.
附图说明 Description of drawings
附图1为原始图像与利用本专利方法校正后遥感影像对比效果 Accompanying drawing 1 is the comparison effect of the original image and the remote sensing image corrected by this patent method
具体实施方式 detailed description
下面结合附图与实施例对本发明做进一步的说明。 The present invention will be further described below in conjunction with the accompanying drawings and embodiments.
图1(a)为Landsat8真彩色合成图。从图中可以看出,山体及云团导致的阴影问题十分严重,如直接用该影像数据估算目标参数无疑会导致该研究区域遥感影像空间上的不连续或出现更为严重的参数错估问题。现利用本专利方法做如下处理:首先对该幅影像做大气校正将DN值转换为表观反射率。常用大气校正软件有ENVI自带FLAASH模块及6S大气校正模型,二者输入参数相似,且可从遥感数据自带元文件及当地气象站发布数据中获得。其次,选取目标波段。估算植被参数一般常使用红波段(band4)、近红外波段(band5)及短波红外波段(band6)。本例中也选择该三波段作为校正对象。最后,将所选波段影像数据带入y=(b1-b2)/(b1+b2)中,得到最终归一化指数。如图1(b)及(c)所示,经校正后得到遥感影像中的阴影得到了极大的缓解,尤其是(b)图对阴影的缓解更为明显;同时,该方法保证了校正后影像对植被的高敏感度。由此可见,利用该专利能有效地缓解地形起伏及云团导致的阴影问题。 Figure 1(a) is a real-color synthetic image of Landsat8. It can be seen from the figure that the shadow problem caused by mountains and clouds is very serious. If the image data is directly used to estimate the target parameters, it will undoubtedly lead to spatial discontinuity in the remote sensing image of the study area or more serious parameter misestimation problems. . The method of this patent is now used for the following processing: firstly, the atmospheric correction is performed on the image to convert the DN value into the apparent reflectance. The commonly used atmospheric correction software includes the FLAASH module of ENVI and the 6S atmospheric correction model. The input parameters of the two are similar, and can be obtained from the metadata file of the remote sensing data and the data released by the local weather station. Second, select the target band. Generally, red band (band4), near-infrared band (band5) and short-wave infrared band (band6) are used to estimate vegetation parameters. In this example, the three bands are also selected as the calibration object. Finally, the selected band image data is brought into y=(b1-b2)/(b1+b2) to obtain the final normalized index. As shown in Figure 1(b) and (c), after correction, the shadows in the remote sensing images are greatly relieved, especially the relief of shadows in (b) is more obvious; at the same time, this method guarantees the correction High sensitivity of the afterimage to vegetation. It can be seen that using this patent can effectively alleviate the shadow problems caused by terrain fluctuations and clouds.
本专利缓解遥感影像上阴影方法采用的校正公式为遥感数据两个波段的简单线性运算,复杂度低,可极大地提高计算速率,便于遥感影像的批量处理。从校正结果来看,其效果显著,一定程度上缓解了阴影问题,并保持对目标参数的敏感度。因此,该专利所提供的技术方法对于缓解地形起伏及云团导致的阴影问题简单实用。 The correction formula used in the method for alleviating shadows on remote sensing images in this patent is a simple linear operation of two bands of remote sensing data, with low complexity, which can greatly increase the calculation rate and facilitate batch processing of remote sensing images. Judging from the correction results, the effect is remarkable, which alleviates the shadow problem to a certain extent and maintains the sensitivity to the target parameters. Therefore, the technical method provided by this patent is simple and practical for alleviating the shadow problems caused by terrain fluctuations and clouds.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510415135.9A CN105279738A (en) | 2015-07-15 | 2015-07-15 | Coping method of shadow problem in vegetation parameter estimation, based on remote sensing images |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510415135.9A CN105279738A (en) | 2015-07-15 | 2015-07-15 | Coping method of shadow problem in vegetation parameter estimation, based on remote sensing images |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105279738A true CN105279738A (en) | 2016-01-27 |
Family
ID=55148691
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510415135.9A Pending CN105279738A (en) | 2015-07-15 | 2015-07-15 | Coping method of shadow problem in vegetation parameter estimation, based on remote sensing images |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105279738A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107909607A (en) * | 2017-12-11 | 2018-04-13 | 河北省科学院地理科学研究所 | A kind of year regional vegetation coverage computational methods |
CN108051371A (en) * | 2017-12-01 | 2018-05-18 | 河北省科学院地理科学研究所 | A kind of shadow extraction method of ecology-oriented environment parameter remote-sensing inversion |
CN108230310A (en) * | 2018-01-03 | 2018-06-29 | 电子科技大学 | A kind of method that non-fire space-time data is extracted based on semivariable function |
CN110321774A (en) * | 2019-04-04 | 2019-10-11 | 平安科技(深圳)有限公司 | Crops evaluation methods for disaster condition, device, equipment and computer readable storage medium |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102103203A (en) * | 2011-01-19 | 2011-06-22 | 环境保护部卫星环境应用中心 | Environmental satellite 1-based surface temperature single-window inversion method |
CN102254174A (en) * | 2011-07-08 | 2011-11-23 | 中铁第四勘察设计院集团有限公司 | Method for automatically extracting information of bare area in slumped mass |
CN103886130A (en) * | 2014-02-24 | 2014-06-25 | 中国林业科学研究院森林生态环境与保护研究所 | Forest fire combustible combustion efficiency estimation method |
-
2015
- 2015-07-15 CN CN201510415135.9A patent/CN105279738A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102103203A (en) * | 2011-01-19 | 2011-06-22 | 环境保护部卫星环境应用中心 | Environmental satellite 1-based surface temperature single-window inversion method |
CN102254174A (en) * | 2011-07-08 | 2011-11-23 | 中铁第四勘察设计院集团有限公司 | Method for automatically extracting information of bare area in slumped mass |
CN103886130A (en) * | 2014-02-24 | 2014-06-25 | 中国林业科学研究院森林生态环境与保护研究所 | Forest fire combustible combustion efficiency estimation method |
Non-Patent Citations (1)
Title |
---|
全兴文: "高原湿地植被参数遥感定量反演及同化技术研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108051371A (en) * | 2017-12-01 | 2018-05-18 | 河北省科学院地理科学研究所 | A kind of shadow extraction method of ecology-oriented environment parameter remote-sensing inversion |
CN108051371B (en) * | 2017-12-01 | 2018-10-02 | 河北省科学院地理科学研究所 | A kind of shadow extraction method of ecology-oriented environment parameter remote-sensing inversion |
CN107909607A (en) * | 2017-12-11 | 2018-04-13 | 河北省科学院地理科学研究所 | A kind of year regional vegetation coverage computational methods |
CN108230310A (en) * | 2018-01-03 | 2018-06-29 | 电子科技大学 | A kind of method that non-fire space-time data is extracted based on semivariable function |
CN108230310B (en) * | 2018-01-03 | 2021-12-17 | 电子科技大学 | A method for extracting non-fire spatiotemporal data based on semivariogram |
CN110321774A (en) * | 2019-04-04 | 2019-10-11 | 平安科技(深圳)有限公司 | Crops evaluation methods for disaster condition, device, equipment and computer readable storage medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106845326B (en) | A Glacier Identification Method Based on Aerial Hyperspectral Remote Sensing Data | |
CN110751727B (en) | A Synthetic Image Construction Method Based on Landsat Long Time Sequence | |
CN101699315B (en) | A monitoring device and method for crop growth uniformity | |
Lück et al. | Evaluation of a rule-based compositing technique for Landsat-5 TM and Landsat-7 ETM+ images | |
CN111795936A (en) | A look-up table-based multispectral remote sensing image atmospheric correction system, method and storage medium | |
CN108986040B (en) | NDVI shadow influence removing method based on remote sensing multispectral image | |
CN109101955A (en) | Industrial heat anomaly area recognizing method based on Multi-sensor satellite remote sensing | |
CN103901420A (en) | Method for dynamic threshold method remote sensing data cloud identification supported by prior surface reflectance | |
CN106908415A (en) | A kind of big region crops time of infertility Soil Moisture Monitoring method based on amendment NDVI time serieses | |
CN105279738A (en) | Coping method of shadow problem in vegetation parameter estimation, based on remote sensing images | |
CN112507276A (en) | Offshore enteromorpha green tide remote sensing monitoring method without atmospheric correction | |
CN109543654B (en) | Construction method of improved vegetation index reflecting crop growth conditions | |
CN116519557B (en) | Aerosol optical thickness inversion method | |
CN110705449A (en) | Land utilization change remote sensing monitoring analysis method | |
CN109087316B (en) | A kind of greenhouse extracting method and device based on remote sensing images | |
CN108830846A (en) | A kind of high-resolution all band Hyperspectral Remote Sensing Image emulation mode | |
CN108399363B (en) | Cloud detection method based on polarization image | |
CN110009146A (en) | A planning method for tree barrier felling in transmission lines based on hyperspectral remote sensing technology | |
CN112257531B (en) | Remote sensing monitoring method for forest land change based on diversity feature combination | |
CN116246272A (en) | Cloud and snow distinguishing method for domestic satellite multispectral image quality marks | |
CN103630651A (en) | Remote sensing monitoring method for gibberellic disease of winter wheat in flowering phase | |
CN111175231B (en) | Inversion method and device of canopy vegetation index and server | |
Chen et al. | An improved deep learning approach for detection of maize tassels using UAV-based RGB images | |
CN104062238B (en) | Land for growing field crops winter wheat jointing stage banded sclerotial blight remote-sensing monitoring method | |
CN114581793B (en) | Cloud recognition method, device, electronic device and readable storage medium for remote sensing images |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20160127 |
|
WD01 | Invention patent application deemed withdrawn after publication |