CN105182328B - A kind of GPR buried target detection method based on two-dimensional empirical mode decomposition - Google Patents
A kind of GPR buried target detection method based on two-dimensional empirical mode decomposition Download PDFInfo
- Publication number
- CN105182328B CN105182328B CN201510570738.6A CN201510570738A CN105182328B CN 105182328 B CN105182328 B CN 105182328B CN 201510570738 A CN201510570738 A CN 201510570738A CN 105182328 B CN105182328 B CN 105182328B
- Authority
- CN
- China
- Prior art keywords
- empirical mode
- dimensional empirical
- target
- echo data
- penetrating radar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 47
- 238000000354 decomposition reaction Methods 0.000 title claims abstract description 26
- 238000000034 method Methods 0.000 claims abstract description 28
- 230000003247 decreasing effect Effects 0.000 claims abstract description 8
- 230000000149 penetrating effect Effects 0.000 claims description 28
- 238000013178 mathematical model Methods 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 7
- 238000005516 engineering process Methods 0.000 claims description 4
- 239000000523 sample Substances 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 2
- 238000002592 echocardiography Methods 0.000 description 5
- 238000013508 migration Methods 0.000 description 3
- 230000005012 migration Effects 0.000 description 3
- 238000004422 calculation algorithm Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000003709 image segmentation Methods 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 238000012567 pattern recognition method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/885—Radar or analogous systems specially adapted for specific applications for ground probing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/41—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Geophysics And Detection Of Objects (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
技术领域technical field
本发明涉及探地雷达探测领域,具体涉及一种基于二维经验模态分解的探地雷达地下目标检测方法。The invention relates to the field of ground-penetrating radar detection, in particular to a ground-penetrating radar underground target detection method based on two-dimensional empirical mode decomposition.
背景技术Background technique
探地雷达是近几十年迅速发展起来的一种有效的浅层地下目标探测技术,它是一种非破坏性探测手段,具有探测速度快、分辨率高、操作方便灵活、探测成本低等诸多优点,已被广泛应用于地下目标,如空洞、管道、地雷等的探测及定位。Ground-penetrating radar is an effective shallow underground target detection technology developed rapidly in recent decades. It is a non-destructive detection method with fast detection speed, high resolution, convenient and flexible operation, and low detection cost. With many advantages, it has been widely used in the detection and positioning of underground targets, such as cavities, pipelines, mines, etc.
探地雷达探测的二维回波数据称为B-Scan数据,它是后续雷达信号处理、目标识别及解译的数据基础,探地雷达目标定位技术也要基于B-Scan数据。对实现目标准确定位影响最大的是探地雷达B-Scan数据中的“杂波”。探地雷达杂波可看作是除了目标回波以外的各种回波,通常包括天线直达波、地表回波、地下非均匀介质产生的回波、以及伪目标所产生的回波等等。探地雷达杂波使得对地下目标的准确探测变得困难,尤其对于浅层埋地目标,目标回波与地表回波相比是较弱的成分,并且目标回波与地表回波间的时延很小,目标回波易被地表强回波这类杂波所淹没。因此探地雷达抑制杂波是实现探地雷达目标准确定位的首要任务。The two-dimensional echo data detected by ground penetrating radar is called B-Scan data, which is the data basis for subsequent radar signal processing, target recognition and interpretation, and the ground penetrating radar target positioning technology is also based on B-Scan data. The biggest influence on the accurate positioning of the target is the "clutter" in the ground penetrating radar B-Scan data. Ground penetrating radar clutter can be regarded as various echoes other than target echoes, usually including antenna direct waves, surface echoes, echoes generated by underground heterogeneous media, and echoes generated by false targets, etc. Ground penetrating radar clutter makes it difficult to accurately detect underground targets, especially for shallow buried targets, the target echo is a weaker component compared with the surface echo, and the time between the target echo and the surface echo The delay is very small, and the target echo is easily overwhelmed by clutter such as strong surface echo. Therefore, suppressing clutter in GPR is the primary task to achieve accurate positioning of GPR targets.
常见的定位方法主要是基于B扫描图像的双曲线提取,根据提取到的双曲线进行速度计算目标深度。主要有:基于神经网络对双曲线的提取,需要较多的数据进行训练,不易实现在线检测;釆用模糊聚类的模式识别方法,对于金属管线和非金属管线都可能存在的浅层探测而言,容易产生虚警,并且容易漏掉非金属管线目标。基于图像分割和霍夫变换的方法,应用在浅层探测管线的时候,不能有效区分较强的杂波和目标回波;基于图像分割和模板匹配的方法应用在浅层探测管线时候,由于管径的大小可能多变,从而对应的模版也较多,导致算法运算时间较长;基于形态学的曲线检测,是根据图像的灰度值进行检测判断,能够判断目标的区域但是得到是多根曲线,进行下一步计算还需对曲线进行处理。The common positioning method is mainly based on the hyperbola extraction of the B-scan image, and the target depth is calculated according to the speed of the extracted hyperbola. Mainly include: the extraction of hyperbola based on neural network requires more data for training, and it is not easy to realize online detection; the pattern recognition method of fuzzy clustering is used for the shallow detection that may exist in both metal pipelines and non-metal pipelines. In other words, it is easy to generate false alarms, and it is easy to miss non-metallic pipeline targets. The method based on image segmentation and Hough transform cannot effectively distinguish between strong clutter and target echo when applied to shallow detection pipelines; the method based on image segmentation and template matching is applied to shallow detection pipelines, due to the The size of the diameter may change, so there are many corresponding templates, resulting in a long algorithm operation time; the curve detection based on morphology is based on the gray value of the image for detection and judgment, and the target area can be judged but it is multi-root Curve, the next step of calculation also needs to process the curve.
发明内容Contents of the invention
本发明提供一种基于二维经验模态分解的探地雷达地下目标检测方法,旨在解决现有技术中的目标定位方法复杂且定位精度不高的问题。The invention provides a ground-penetrating radar underground target detection method based on two-dimensional empirical mode decomposition, aiming to solve the problems of complex target positioning methods and low positioning accuracy in the prior art.
为解决上述技术问题,本发明的技术方案为:In order to solve the problems of the technologies described above, the technical solution of the present invention is:
1)对探地雷达的B-Scan探测回波数据进行二维经验模态分解,得到K个频率依次递减的二维经验模态函数分量IMF和1个残差;1) Carry out two-dimensional empirical mode decomposition on the B-Scan detection echo data of the ground penetrating radar, and obtain K two-dimensional empirical mode function components IMF and one residual with decreasing frequencies in turn;
2)将前M个(M≤K)二维经验模态函数分量的均值作为探测回波数据的特征值;2) The mean value of the first M (M≤K) two-dimensional empirical mode function components is used as the characteristic value of the detection echo data;
3)获取所述探测回波数据的特征值的极值点,作为地下目标顶点位置的估计值;3) Obtaining the extreme point of the eigenvalue of the detection echo data as the estimated value of the apex position of the underground target;
4)估算电磁波在地下的传播速度;4) Estimate the propagation speed of electromagnetic waves in the ground;
5)根据所述地下目标顶点位置的估计值和电磁波在地下的传播速度,利用探地雷达双曲线数学模型,进行双曲线拟合,完成地下目标位置的定位。5) According to the estimated value of the vertex position of the underground target and the propagation velocity of electromagnetic waves underground, the hyperbolic mathematical model of the ground penetrating radar is used to perform hyperbolic fitting to complete the location of the underground target.
所述步骤1)中对探地雷达的探测回波数据进行二维经验模态分解的具体过程为:The specific process of carrying out two-dimensional empirical mode decomposition to the detection echo data of ground penetrating radar in described step 1) is:
a)首先确定探地雷达的探测回波数据Ires的所有极值点,具体的采用八邻域方法确定Ires图像所有的极大值和极小值;a) First determine all extreme points of the detection echo data I res of the ground penetrating radar, and specifically use the eight-neighborhood method to determine all maximum and minimum values of the I res image;
b)对探地雷达的探测回波数据Ires的所有极值点利用径向基函数进行插值,插值后的极大值点和极小值点分别用EI和ES表示,进行曲线拟合后得到探测回波数据Ires的上、下包络;b) Interpolate all extreme points of the GPR detection echo data I res using the radial basis function, and the interpolated maximum and minimum points are represented by E I and E S respectively, and the curve is fitted After combining, the upper and lower envelopes of the detection echo data I res are obtained;
径向基函数RBF的具体形式是:The specific form of radial basis function RBF is:
其中:s是径向基函数(RBF),pm是低次多项式,如线性或二次或d个变量的mth多项式,||·||表示欧几里德范数。λi是RBF系数,Φ是实值函数,常被称为是径向基函数RBF的中心。Among them: s is the radial basis function (RBF), p m is a low-degree polynomial, such as linear or quadratic or m th polynomial of d variables, || · || represents the Euclidean norm. λ i is the RBF coefficient, Φ is a real-valued function, which is often called the center of the radial basis function RBF.
c)求上、下包络的均值c) Find the mean value of the upper and lower envelopes
EM=(EI+ES)/2; (2)E M = (E I +E S )/2; (2)
d)从原始探测回波数据Ires中减去EM,得到新的探测回波数据d) Subtract E M from the original sounding echo data I res to obtain new sounding echo data
e)根据IMF判定条件判定是否为一个IMF,若是一个IMF,令第一个二维经验模态函数分量(IMF)为残差否则,用代替Ires,重复步骤a)~d)直到判定为一个IMF,令第一个二维经验模态函数分量(IMF)为残差如此重复,直至得到K个频率依次递减的二维经验模态函数分量IMF和1个残差。e) Judgment according to IMF judgment conditions Whether it is an IMF, if it is an IMF, let the first two-dimensional empirical mode function component (IMF) for residual Otherwise, use Instead of I res , repeat steps a)~d) until it is determined is an IMF, let the first two-dimensional empirical mode function component (IMF) for residual This is repeated until K two-dimensional empirical mode function components IMF with decreasing frequencies and one residual are obtained.
所述IMF判定条件为设定SD阈值,The IMF judgment condition is to set the SD threshold,
其中,和为通过第ith个模式的连续两次衰减结果,表示第ith个模式分解的第j次衰减的第m行n列的数值,M、N表示二维探地雷达图像的行数和列数。实际中预设一个阈值T,当SD小于该阈值时停止迭代,即判定是一个IMF。in, with is the result of two consecutive attenuations through the i th mode, Indicates the value of the m-th row and n-column of the j- th attenuation of the ith mode decomposition, and M and N represent the number of rows and columns of the two-dimensional ground-penetrating radar image. In practice, a threshold T is preset, and when the SD is less than the threshold, the iteration is stopped, that is, the judgment is an IMF.
所述步骤3)中根据探地雷达原理得知目标回波有双曲线特征,双曲线顶点的纵坐标表示最短的回波时延,即在这一测点探地雷达距离目标最近。因此,逐列扫描选取的探测回波数据的特征值,选取纵坐标的最小值,确定双曲线顶点的纵坐标。双曲线的横坐标就代表目标对应的水平位置。所述步骤4)中采用频率波束偏移法并结合最小熵技术估算电磁波在地下的传播速度。In the step 3), it is known that the target echo has a hyperbolic feature according to the GPR principle, and the ordinate of the apex of the hyperbola represents the shortest echo time delay, that is, the GPR is the closest to the target at this measuring point. Therefore, the eigenvalues of the selected detection echo data are scanned column by column, and the minimum value of the ordinate is selected to determine the ordinate of the apex of the hyperbola. The abscissa of the hyperbola represents the corresponding horizontal position of the target. In the step 4), the frequency beam shifting method combined with the minimum entropy technique is used to estimate the propagation velocity of the electromagnetic wave underground.
所述步骤5)中的探地雷达双曲线数学模型为:The ground penetrating radar hyperbolic mathematical model in the described step 5) is:
其中,x表示天线位置,x0表示目标顶点位置的水平坐标,v表示电磁波在地下的传播速度,t0表示天线位置为x0的目标反射回波时延,t表示天线位置为x的目标反射回波时延。Among them, x represents the antenna position, x 0 represents the horizontal coordinate of the apex position of the target, v represents the propagation velocity of the electromagnetic wave in the ground, t 0 represents the reflection echo delay of the target at the antenna position x 0 , and t represents the target at the antenna position x Reflected echo delay.
本发明的基于二维经验模态分解的探地雷达地下目标检测方法首先对探地雷达的探测回波数据进行二维经验模态分解,得到若干个单成分信号,然后根据单成分信号提取探测回波数据特征值,估算目标顶点位置,然后结合估算出来的波速和探地雷达原理,进行双曲线拟合,完成目标定位。该方法在较完整保留目标信息的同时提升杂波抑制效果,提高了目标定位的精度。The ground-penetrating radar underground target detection method based on two-dimensional empirical mode decomposition of the present invention first performs two-dimensional empirical mode decomposition on the detection echo data of the ground-penetrating radar to obtain several single-component signals, and then extracts and detects them according to the single-component signals The characteristic value of the echo data is used to estimate the position of the apex of the target, and then combined with the estimated wave velocity and the principle of the ground penetrating radar, the hyperbola fitting is performed to complete the target positioning. This method improves the clutter suppression effect while retaining the target information more completely, and improves the accuracy of target positioning.
附图说明Description of drawings
图1为本实施例中探地雷达地下目标定位方法流程图;Fig. 1 is the flow chart of ground penetrating radar underground target location method in the present embodiment;
图2为本实施例中二维经验模式分解算法流程图;Fig. 2 is the flow chart of two-dimensional empirical mode decomposition algorithm in the present embodiment;
图3为本实施例中探地雷达实测B-Scan回波图像;Fig. 3 is the B-Scan echo image measured by ground penetrating radar in the present embodiment;
图4为本实施例中利用二维经验模式分解提取第一个IMF后的图像;Fig. 4 utilizes two-dimensional empirical mode decomposition to extract the image after the first IMF in the present embodiment;
图5为本实施例中雷达天线与目标B-Scan回波的几何位置关系图;Fig. 5 is the geometric position relationship figure of radar antenna and target B-Scan echo in the present embodiment;
图6为本实施例中拟合曲线绘制在原始B-Scan图像上的效果图。FIG. 6 is an effect diagram of the fitting curve drawn on the original B-Scan image in this embodiment.
具体实施方式detailed description
下面结合附图,对本发明的技术方案进行详细说明。The technical solution of the present invention will be described in detail below in conjunction with the accompanying drawings.
如图1所示,本实施例的基于二维经验模态分解的探地雷达地下目标检测方法包括如下步骤:As shown in Figure 1, the ground penetrating radar underground target detection method based on two-dimensional empirical mode decomposition of the present embodiment includes the following steps:
1)对探地雷达的探测回波数据进行二维经验模态分解,得到K个频率依次递减的二维经验模态函数分量IMF和1个残差;1) Carry out two-dimensional empirical mode decomposition on the detection echo data of the ground penetrating radar, and obtain K two-dimensional empirical mode function components IMF and one residual with decreasing frequencies in turn;
2)将前M个(M≤K)二维经验模态函数分量的均值作为探测回波数据的特征值;2) The mean value of the first M (M≤K) two-dimensional empirical mode function components is used as the characteristic value of the detection echo data;
3)获取所述探测回波数据的特征值的极值点,作为地下目标顶点位置的估计值;3) Obtaining the extreme point of the eigenvalue of the detection echo data as the estimated value of the apex position of the underground target;
4)估算电磁波在地下的传播速度;4) Estimate the propagation speed of electromagnetic waves in the ground;
5)根据所述地下目标顶点位置的估计值和电磁波在地下的传播速度,利用探地雷达双曲线数学模型,进行双曲线拟合,完成地下目标位置的定位。5) According to the estimated value of the vertex position of the underground target and the propagation velocity of electromagnetic waves underground, the hyperbolic mathematical model of the ground penetrating radar is used to perform hyperbolic fitting to complete the location of the underground target.
下面对上述步骤进行详细阐述:The above steps are described in detail below:
步骤1)中对探地雷达B-Scan探测回波数据进行二维经验模态分解,经验模态分解的过程可采用现有技术中的分解过程,如图2所示,本实施例优选如下的二维经验模态分解过程:In step 1), carry out two-dimensional empirical mode decomposition to ground-penetrating radar B-Scan detection echo data, the process of empirical mode decomposition can adopt the decomposition process in the prior art, as shown in Figure 2, present embodiment is preferably as follows The two-dimensional empirical mode decomposition process of :
Step1首先确定探地雷达的探测回波数据Ires的所有极值点,具体的采用八邻域方法确定Ires图像所有的极大值和极小值;Step1 first determines all the extreme points of the detection echo data I res of the ground penetrating radar, and specifically adopts the eight-neighborhood method to determine all the maximum and minimum values of the I res image;
Step2对探地雷达的探测回波数据Ires的所有极值点利用径向基函数进行插值,插值后的极大值点和极小值点分别用EI和ES表示,进行曲线拟合后得到探测回波数据Ires的上、下包络;Step2 Interpolate all the extreme points of the ground-penetrating radar detection echo data I res using the radial basis function, and the interpolated maximum and minimum points are represented by E I and E S respectively, and the curve fitting is carried out After obtaining the upper and lower envelopes of the detection echo data I res ;
径向基函数RBF的具体形式是:The specific form of radial basis function RBF is:
其中:s是径向基函数(RBF),pm是低次多项式,如线性或二次或d个变量的mth多项式,||·||表示欧几里德范数。λi是RBF系数,Φ是实值函数,常被称为是径向基函数RBF的中心。Among them: s is the radial basis function (RBF), p m is a low-degree polynomial, such as linear or quadratic or m th polynomial of d variables, || · || represents the Euclidean norm. λ i is the RBF coefficient, Φ is a real-valued function, which is often called the center of the radial basis function RBF.
Step3求上、下包络的均值EM=(EI+ES)/2;Step3 Calculate the mean value E M of the upper and lower envelopes = (E I +E S )/2;
Step4从原始探测回波数据Ires中减去EM,得到新的探测回波数据 Step4 Subtract E M from the original sounding echo data I res to get new sounding echo data
Step5根据IMF判定条件判定是否为一个IMF,若是一个IMF,令第一个二维经验模态函数分量(IMF)为残差否则,用代替Ires,重复步骤a)~d)直到判定为一个IMF,令第一个二维经验模态函数分量(IMF)为残差如此重复,直至得到K个频率依次递减的二维经验模态函数分量IMF和1个残差。Step5 Judgment based on IMF judgment conditions Whether it is an IMF, if it is an IMF, let the first two-dimensional empirical mode function component (IMF) for residual Otherwise, use Instead of I res , repeat steps a)~d) until it is determined is an IMF, let the first two-dimensional empirical mode function component (IMF) for residual This is repeated until K two-dimensional empirical mode function components IMF with decreasing frequencies and one residual are obtained.
所述IMF判定条件为设定SD阈值,The IMF judgment condition is to set the SD threshold,
其中,和为通过第ith个模式的连续两次衰减结果,M、N表示二维图像的行数和列数,表示第ith个模式分解的第j次衰减的第m行n列的数据。实际中预设一个阈值T,当SD小于该阈值时停止迭代,即判定是一个IMF。in, with is the attenuation result of two consecutive times through the i th mode, M and N represent the number of rows and columns of the two-dimensional image, Represents the data in the mth row and nth column of the jth decay of the ith mode decomposition. In practice, a threshold T is preset, and when the SD is less than the threshold, the iteration is stopped, that is, the judgment is an IMF.
按照上述方法最终获得K个频率由高到低依次递减的二维经验模态函数分量IMF和1个残差。According to the above method, K two-dimensional empirical mode function components IMF with decreasing frequency from high to low and one residual are finally obtained.
对于步骤2)中本实施例优选前M个(M≤K)二维经验模态函数频率分量的均值作为探测回波数据的特征值,如图4所示,该特征值保留目标位置的同时可以抑制杂波。For step 2) in this embodiment, the mean value of the first M (M≤K) two-dimensional empirical mode function frequency components is preferred as the feature value of the detection echo data, as shown in Figure 4, while the feature value retains the target position Can suppress clutter.
所述步骤3)中根据探地雷达原理得知目标回波有双曲线特征,双曲线顶点的纵坐标表示最短的回波时延,即在这一测点探地雷达距离目标最近。因此,逐列扫描选取的探测回波数据的特征值,选取最小值,确定双曲线顶点的纵坐标,双曲线的横坐标就代表目标对应的水平位置。In the step 3), it is known that the target echo has a hyperbolic feature according to the GPR principle, and the ordinate of the apex of the hyperbola represents the shortest echo time delay, that is, the GPR is the closest to the target at this measuring point. Therefore, the eigenvalues of the selected detection echo data are scanned column by column, and the minimum value is selected to determine the ordinate of the apex of the hyperbola, and the abscissa of the hyperbola represents the corresponding horizontal position of the target.
对于步骤4)如图5所示,由探地雷达原理,得到探地雷达双曲线数学模型:For step 4) as shown in Figure 5, by the ground-penetrating radar principle, obtain the ground-penetrating radar hyperbolic mathematical model:
其中,x表示天线位置,x0表示目标顶点位置的水平坐标,v表示电磁波在地下的传播速度,t0表示天线位置为x0的目标反射回波时延,t表示天线位置为x的目标反射回波时延。因此,求出顶点坐标(x0,t0)以及波速v即可准确定位目标,这里有三个参数需要估计分别是求出顶点坐标(x0,t0)以及波速v。Among them, x represents the antenna position, x 0 represents the horizontal coordinate of the apex position of the target, v represents the propagation velocity of the electromagnetic wave in the ground, t 0 represents the reflection echo delay of the target at the antenna position x 0 , and t represents the target at the antenna position x Reflected echo delay. Therefore, the target can be accurately located by obtaining the vertex coordinates (x 0 , t 0 ) and the wave velocity v. Here, there are three parameters to be estimated, which are to obtain the vertex coordinates (x 0 , t 0 ) and the wave velocity v.
在上述步骤3)中已经估计出目标顶点坐标(x0,t0),下面详细介绍对波速v的估算过程:The target vertex coordinates (x 0 ,t 0 ) have been estimated in the above step 3), and the estimation process of the wave velocity v is introduced in detail below:
a)选定一个波速的最小值Vmin,利用频率波数偏移法计算在给定速度值下的偏移结果;a) Select a minimum value V min of the wave velocity, and use the frequency wavenumber migration method to calculate the migration result at a given velocity value;
b)根据下面的公式计算偏移后图像的熵,计为E1;b) Calculate the entropy of the shifted image according to the following formula, count as E 1 ;
c)选择速度步长ΔV,使用Vmin+ΔV,Vmin+2ΔV,Vmin+3ΔV,…,对步骤2)中处理过得到的探测回波数据进行偏移计算,直到速度达到最大的预定值Vmax,设共用n个速度参数,计算偏移后的图像熵,结果记为E2,E3,…,直到En。c) Select the speed step size ΔV, use V min + ΔV, V min + 2ΔV, V min + 3ΔV, ..., and perform offset calculation on the probe echo data processed in step 2) until the speed reaches the maximum predetermined value Value V max , assuming that n speed parameters are shared, the image entropy after migration is calculated, and the results are recorded as E 2 , E 3 ,..., until E n .
d)找到熵值最小点对应的速度值,该值即为最合理的偏移速度参数v。d) Find the velocity value corresponding to the minimum entropy point, which is the most reasonable offset velocity parameter v.
本实施例优选上述方式估算波速v,作为其他实施方式,现有技术中估算波速v的方式有很多,这里不再详细介绍。In this embodiment, the above method is preferred for estimating the wave velocity v. As other implementation manners, there are many methods for estimating the wave velocity v in the prior art, which will not be described in detail here.
对于步骤5)将步骤3)估算出来的目标顶点位置、步骤4)估算出来的速度v带入探地雷达双曲线数学模型中,拟合双曲线,如图6所示,完成探地雷达目标定位。For step 5) bring the target vertex position estimated in step 3) and the velocity v estimated in step 4) into the ground-penetrating radar hyperbolic mathematical model, and fit the hyperbola, as shown in Figure 6, to complete the ground-penetrating radar target position.
以上给出了具体的实施方式,但本发明不局限于所描述的实施方式。本发明的基本思路在于上述基本方案,对本领域普通技术人员而言,根据本发明的教导,设计出各种变形的模型、公式、参数并不需要花费创造性劳动。在不脱离本发明的原理和精神的情况下对实施方式进行的变化、修改、替换和变型仍落入本发明的保护范围内。Specific embodiments have been given above, but the present invention is not limited to the described embodiments. The basic idea of the present invention lies in the above-mentioned basic scheme. For those of ordinary skill in the art, according to the teaching of the present invention, it does not need to spend creative labor to design various deformation models, formulas, and parameters. Changes, modifications, substitutions and variations to the implementations without departing from the principle and spirit of the present invention still fall within the protection scope of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510570738.6A CN105182328B (en) | 2015-09-09 | 2015-09-09 | A kind of GPR buried target detection method based on two-dimensional empirical mode decomposition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510570738.6A CN105182328B (en) | 2015-09-09 | 2015-09-09 | A kind of GPR buried target detection method based on two-dimensional empirical mode decomposition |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105182328A CN105182328A (en) | 2015-12-23 |
CN105182328B true CN105182328B (en) | 2017-08-25 |
Family
ID=54904527
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510570738.6A Expired - Fee Related CN105182328B (en) | 2015-09-09 | 2015-09-09 | A kind of GPR buried target detection method based on two-dimensional empirical mode decomposition |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105182328B (en) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106019257B (en) * | 2016-08-05 | 2018-07-31 | 中国船舶重工集团公司第七一九研究所 | The interpolation method of feature when based on high-frequency ground wave radar Current Observations result sky |
CN106405660A (en) * | 2016-08-26 | 2017-02-15 | 国脉科技股份有限公司 | Buried depth detecting device and method of communication pipeline |
CN106443674B (en) * | 2016-09-23 | 2019-03-22 | 中国地质大学(武汉) | A kind of Ground Penetrating Radar Velocity Estimation based on diffraction and imaging and minimum entropy technique |
CN106772636B (en) * | 2016-11-10 | 2018-07-24 | 中国矿业大学(北京) | The detection method and device of Ground Penetrating Radar discontinuum |
JP6837690B2 (en) * | 2017-01-27 | 2021-03-03 | マサチューセッツ インスティテュート オブ テクノロジー | Vehicle locating method and system using surface penetration radar |
CN107329137B (en) * | 2017-07-04 | 2019-08-23 | 河南工业大学 | Ground Penetrating Radar buried target localization method and system based on box spline wavelets frame |
CN107346023A (en) * | 2017-07-04 | 2017-11-14 | 山东工商学院 | A kind of GPR hyperbolic ripple conspicuousness mapping method based on moment characteristics |
CN107358617B (en) * | 2017-08-07 | 2020-03-20 | 中南大学 | Method for detecting target vertex in ground penetrating radar recording profile |
CN107861164B (en) * | 2017-11-01 | 2020-04-03 | 中国煤炭地质总局勘查研究总院 | Method and device for data processing of three-dimensional ground penetrating radar, three-dimensional ground penetrating radar |
CN107766837A (en) * | 2017-11-07 | 2018-03-06 | 蔡璟 | The gardens maintenance system that a kind of distinguished point based compares |
CN108828027A (en) * | 2018-04-23 | 2018-11-16 | 云南电网有限责任公司临沧供电局 | A kind of saturating ground electromagnetic wave detecting method and device of the inverting of underground utilities multi information |
CN108627875A (en) * | 2018-05-14 | 2018-10-09 | 中国神华能源股份有限公司 | Radar migration velocity determines and migration processing method, storage medium, electronic equipment |
CN108776336B (en) * | 2018-06-11 | 2022-06-03 | 电子科技大学 | EMD-based adaptive through-wall radar static human body target positioning method |
CN108646229A (en) * | 2018-06-14 | 2018-10-12 | 北京师范大学 | Underground column reflector inclination angle detection method |
CN108986083B (en) * | 2018-06-28 | 2020-08-04 | 西安电子科技大学 | SAR image change detection method based on threshold optimization |
CN109669169B (en) * | 2018-12-05 | 2022-11-08 | 南京信息工程大学 | A weak target signal detection method under the background of sea clutter |
CN110471066B (en) * | 2019-07-25 | 2022-04-05 | 东软睿驰汽车技术(沈阳)有限公司 | Position determination method and device |
CN110531351B (en) * | 2019-08-16 | 2023-09-26 | 山东工商学院 | A hyperbolic wave vertex detection method for GPR images based on Fast algorithm |
CN111044975A (en) * | 2019-12-10 | 2020-04-21 | 北京无线电计量测试研究所 | Method and system for positioning earth vibration signal |
CN111257952B (en) * | 2020-01-20 | 2022-07-05 | 广州燃气集团有限公司 | Underground pipeline identification system and method based on wave-absorbing material |
CN112666552B (en) * | 2020-10-29 | 2023-04-25 | 西安交通大学 | Ground penetrating radar data background clutter self-adaptive removing method |
CN113567946B (en) * | 2021-07-20 | 2023-08-29 | 同济大学 | A Real Target and Virtual Image Detection Method for Millimeter Wave Radar |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103954944A (en) * | 2014-05-14 | 2014-07-30 | 武汉大学 | Radio-frequency interference suppression method of high-frequency ground wave radar |
CN104766090A (en) * | 2015-03-17 | 2015-07-08 | 山东工商学院 | Ground penetrating radar data visualization method based on BEMD and SOFM |
-
2015
- 2015-09-09 CN CN201510570738.6A patent/CN105182328B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103954944A (en) * | 2014-05-14 | 2014-07-30 | 武汉大学 | Radio-frequency interference suppression method of high-frequency ground wave radar |
CN104766090A (en) * | 2015-03-17 | 2015-07-08 | 山东工商学院 | Ground penetrating radar data visualization method based on BEMD and SOFM |
Non-Patent Citations (3)
Title |
---|
Texture analysis based on the Bidimensional Empirical Mode Decomposition with Gray-level Co-occurrence models;J.C.Nunes 等;《IEEE》;20031231;633-635 * |
一维HHT变换在探地雷达数据处理中的应用;王超 等;《工程地质学报》;20150425;第23卷(第2期);328-334 * |
基于改进EMD-小波阈值联合去噪的城市地下管线识别与定位;刘晓艳 等;《中国安全生产科学技术》;20150630;第11卷(第6期);56-62 * |
Also Published As
Publication number | Publication date |
---|---|
CN105182328A (en) | 2015-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105182328B (en) | A kind of GPR buried target detection method based on two-dimensional empirical mode decomposition | |
CN105005042B (en) | A kind of GPR buried target localization method | |
CN104020495B (en) | Automatic underground pipeline parameter recognizing method on basis of ground penetrating radar | |
CN108469608B (en) | An Accurate Estimation Method of Radar Doppler Centroid of Moving Platform | |
CN107358617B (en) | Method for detecting target vertex in ground penetrating radar recording profile | |
CN110866545A (en) | Method and system for automatically identifying pipeline target in ground penetrating radar data | |
CN107329137B (en) | Ground Penetrating Radar buried target localization method and system based on box spline wavelets frame | |
CN105403883A (en) | Ground penetrating radar underground target position detection method | |
CN113359101B (en) | Underground target detection method, system and computer storage medium | |
CN106019254B (en) | A kind of UWB impacts the more human body target distances of bioradar to separation discrimination method | |
CN105044785B (en) | A kind of GPR Electromagnetic Survey of Underground Pipelines method based on fuzzy clustering Yu Hough transform | |
CN107390213B (en) | A kind of time lag curve extracting method of the Ground Penetrating Radar record section based on sliding window | |
CN103268496A (en) | SAR Image Target Recognition Method | |
CN108375334A (en) | A kind of GPR multi-story steel mesh parameter detection methods based on SAR | |
Milisavljević et al. | Improving mine recognition through processing and Dempster–Shafer fusion of ground-penetrating radar data | |
CN112083390A (en) | A method and device for dynamic suppression of radar clutter under space-time correlation | |
CN110057328B (en) | Method for measuring thickness of tin coating layer | |
CN109166132B (en) | Side-scan sonar image target identification method with variable initial distance symbolic function | |
Yang et al. | Prediction method of underground pipeline based on hyperbolic asymptote of GPR image | |
CN107861154B (en) | Fault strike recognition methods and device | |
CN105652256A (en) | High-frequency surface wave radar TBD method based on polarization information | |
CN105550514A (en) | Dual-path integration based speed model establishment method and system | |
CN107367730B (en) | Self-focusing method suitable for imaging scene targets by strip synthetic aperture sonar | |
Xiang et al. | An innovative approach to determine rebar depth and size by comparing GPR data with a theoretical database | |
JP6220717B2 (en) | Apparatus and method for estimating moving direction and speed of object |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170825 Termination date: 20190909 |