CN105137513A - Broadband photon screen based on phase coding - Google Patents
Broadband photon screen based on phase coding Download PDFInfo
- Publication number
- CN105137513A CN105137513A CN201510610910.6A CN201510610910A CN105137513A CN 105137513 A CN105137513 A CN 105137513A CN 201510610910 A CN201510610910 A CN 201510610910A CN 105137513 A CN105137513 A CN 105137513A
- Authority
- CN
- China
- Prior art keywords
- sieve
- broadband
- photon
- photon sieve
- aperture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000758 substrate Substances 0.000 claims abstract description 11
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 239000011651 chromium Substances 0.000 claims description 3
- 239000011521 glass Substances 0.000 claims description 3
- 238000003384 imaging method Methods 0.000 description 17
- 238000013461 design Methods 0.000 description 14
- 238000012360 testing method Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 239000010408 film Substances 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 5
- 230000004075 alteration Effects 0.000 description 4
- 238000005286 illumination Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000000701 chemical imaging Methods 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/18—Diffraction gratings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/42—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
- G02B27/44—Grating systems; Zone plate systems
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
- Eye Examination Apparatus (AREA)
- Optical Filters (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种光学元件,具体涉及一种光子筛,尤其是一种位相编码的宽带光子筛。 The invention relates to an optical element, in particular to a photon sieve, in particular to a phase-coded broadband photon sieve.
背景技术 Background technique
现有技术中,光子筛是由Kipp在2001年提出的一种衍射光学元件,和菲涅耳波带片相似,都是使奇数或偶数菲涅耳波带透光,而使相邻的波带不透光。光子筛将透光的波带设计成透光的微孔,微孔位于波带上,光波通过各微孔中心到达焦点的距离与通过光轴到达焦点的距离之差为波长的整数倍,可以实现聚焦和成像,用于高分辨率显微镜,光谱成像,X射线成像,UV光刻等。 In the prior art, a photon sieve is a diffractive optical element proposed by Kipp in 2001, which is similar to a Fresnel zone plate, which allows odd or even Fresnel zone plates to transmit light while allowing adjacent wave zones to pass through. With opaque. The photon sieve designs the light-transmitting wave bands into light-transmitting microholes, and the microholes are located on the wave bands. The difference between the distance of light waves passing through the center of each microhole to the focus and the distance from the optical axis to the focus is an integer multiple of the wavelength, which can be Achieve focusing and imaging for high-resolution microscopy, spectral imaging, X-ray imaging, UV lithography, etc.
作为衍射光学元件,光子筛具有很大的色差。一般而言,对于一个焦距f的光子筛,只对设计波长λ清晰成像。因此,当入射光波长为λ+Δλ时,将聚焦到f+Δf位置,在原始焦平面位置产生背景噪音。 As diffractive optical elements, photon sieves have large chromatic aberrations. Generally speaking, for a photon sieve with a focal length f, only the design wavelength λ is clearly imaged. Therefore, when the incident light wavelength is λ+Δλ, it will be focused to f+Δf position, and background noise will be generated at the original focal plane position.
为解决上述问题,Gimenez等在文献“F.Giménez,J.A.Monsoriu,W.D.Furlan,andA.Pons,“Fractalphotonsieve,”Opt.Express14(25),11958–11963(2006)”中提出了一种分形光子筛去拓展焦深并且减小色差。但是,该光子筛是以降低设计波长在对焦位置的分辨率为代价的。Andersen等人在文献“G.Andersen,andD.Tullson,“Broadbandantiholephotonsievetelescope,”Appl.Opt.46(18),3706–3708(2007)”中提出了一种由光子筛作为主镜的望远系统。在系统中,另一个衍射光学元件被设计去补偿光子筛的色差特性,达到了一定的宽光谱成像效果。但其有两个大于光子筛主镜的反射镜用于准直光路并聚焦,这种方式结构相对复杂。周等人在文献“C.X.Zhou,X.C.Dong,L.F.Shi,C.T.Wang,andC.L.Du,“Experimentalstudyofamultiwavelengthphotonsievedesignedbyrandom-area-dividedapproach,”Appl.Opt.48(8),1619–1623(2009)”中设计并加工了一块三波长光子筛。该光子筛的设计对于三个不同的波长分别设计三套不重叠的孔,用于对三个波长成像。但是,其具有较低的衍射效率并且只对设计的三个波长成像。申请公布号CN104865627A的中国专利公开了一种基于波前编码技术的宽带光子筛,该宽带光子筛具有一位相编码板,位相编码板的一个表面为位相编码面,另一个表面为平面,平面后紧贴有光子筛。在该光子筛之前设置位相编码板,结构略微复杂。 In order to solve the above problems, Gimenez et al. proposed a fractal photon sieve in the literature "F.Giménez, J.A.Monsoriu, W.D.Furlan, and A.Pons, "Fractalphotonsieve," Opt.Express14(25), 11958-11963(2006)" To extend the depth of focus and reduce chromatic aberration. However, this photonic sieve comes at the expense of reducing the resolution of the design wavelength at the in-focus position. Andersen et al. proposed a telescopic system using a photon sieve as the primary mirror in the literature "G.Andersen, and D.Tullson, "Broadbandantiholephotonsievetelescope," Appl.Opt.46(18), 3706-3708(2007)". In the system, another diffractive optical element is designed to compensate the chromatic aberration characteristics of the photon sieve, achieving a certain wide-spectrum imaging effect. However, it has two mirrors larger than the primary mirror of the photon sieve to collimate and focus the light path, and the structure of this method is relatively complicated. Design by Zhou et al. in the literature "C.X.Zhou, X.C.Dong, L.F.Shi, C.T.Wang, and C.L.Du, "Experimental study of multiwave length photos sieve designed by random-area-divided approach," Appl. Opt. 48(8), 1619–1623 (2009)" And processed a three-wavelength photon sieve. The photon sieve is designed with three sets of non-overlapping holes for three different wavelengths, for imaging the three wavelengths. However, it has low diffraction efficiency and only images the designed three wavelengths. The Chinese patent application publication number CN104865627A discloses a broadband photon sieve based on wavefront encoding technology. The broadband photon sieve has a phase encoding plate. There is a photon sieve attached. The phase encoding plate is set before the photon sieve, and the structure is slightly complicated.
因此,为了上述现有技术中的缺点,开发一种宽带光子筛,使其不仅具有传统光子筛的聚焦功能,同时还具备了位相编码板的编码功能,而且结构简单,显然具有积极的现实意义。 Therefore, for the above-mentioned shortcomings in the prior art, it is obviously of positive practical significance to develop a broadband photon sieve, which not only has the focusing function of the traditional photon sieve, but also has the encoding function of the phase encoding plate, and has a simple structure. .
发明内容 Contents of the invention
本发明的发明目的是提供一种位相编码的宽带光子筛,在不影响光子筛分辨率的前提下,拓宽光子筛的带宽。 The object of the present invention is to provide a phase-coded broadband photon sieve, which can widen the bandwidth of the photon sieve without affecting the resolution of the photon sieve.
为达到上述发明目的,本发明采用的技术方案是:一种位相编码的宽带光子筛,直径为D,包括透明平面基底和镀在该透明平面基底上的不透光金属薄膜,所述不透光金属薄膜上设有环带状分布的通光小孔,所述通光小孔的位置分布满足方程,式中,f为宽带光子筛的焦距,n为通光环带的环带序号,λ为光子筛的工作波长,R为宽带光子筛的半径,α为三次编码系数,k为波数,xm和ym是第n个通光环带上第m个小孔的中心位置,m=1,2,3,…,num,其中,,小孔半径。 In order to achieve the purpose of the above invention, the technical solution adopted by the present invention is: a phase-coded broadband photon sieve with a diameter of D, comprising a transparent plane substrate and an opaque metal film plated on the transparent plane substrate, the opaque The light metal thin film is provided with ring-like distribution of light-through holes, and the position distribution of the light-through holes satisfies the equation , where f is the focal length of the broadband photon sieve, n is the ring number of the light-passing ring, λ is the working wavelength of the photon sieve, R is the radius of the broadband photon sieve, α is the cubic encoding coefficient, k is the wave number, x m and y m is the center position of the mth small hole on the nth light-passing ring, m=1, 2, 3, ..., num, where , , hole radius .
上述技术方案中,所述三次编码系数α>20。 In the above technical solution, the three-time encoding coefficient α>20.
进一步的技术方案中,所述三次编码系数α=20π。 In a further technical solution, the three-time encoding coefficient α=20π.
上述技术方案中,所述透明平面基底为玻璃,其厚度为2mm。 In the above technical solution, the transparent flat substrate is glass with a thickness of 2 mm.
上述技术方案中,所述不透光金属薄膜为不透光铬膜,其厚度为100nm。 In the above technical solution, the opaque metal thin film is an opaque chromium film with a thickness of 100 nm.
由于上述技术方案运用,本发明与现有技术相比具有下列优点: Due to the use of the above-mentioned technical solutions, the present invention has the following advantages compared with the prior art:
1.本发明创造性的在传统光子筛聚焦公式中引入了位相编码相,设计了一种同时具有位相编码板编码功能和传统光子筛聚焦功能的宽度光子筛,很大程度上减小了光子筛对波长的敏感性,且在不影响光子筛分辨率的情况下,拓宽了光子筛的带宽,同时提高了能量效率; 1. The invention creatively introduces the phase encoding phase into the traditional photon sieve focusing formula, and designs a width photon sieve with both the phase encoding plate encoding function and the traditional photon sieve focusing function, which greatly reduces the photon sieve Sensitivity to wavelength, and without affecting the resolution of the photon sieve, it broadens the bandwidth of the photon sieve and improves the energy efficiency at the same time;
2.本发明结构简单、轻便,易于加工。 2. The structure of the present invention is simple, portable and easy to process.
附图说明 Description of drawings
图1是实施例一中宽带光子筛的结构示意图; Fig. 1 is the structural representation of broadband photon sieve in embodiment one;
图2是图1宽带光子筛的小孔分布示意图; Fig. 2 is a schematic diagram of the small hole distribution of the broadband photonic sieve of Fig. 1;
图3是传统光子筛的小孔分布示意图; Fig. 3 is a schematic diagram of the small hole distribution of a traditional photonic sieve;
图4是测试传统光子筛的成像性能的装置示意图; Fig. 4 is a schematic diagram of a device for testing the imaging performance of a traditional photonic sieve;
图5是传统光子筛在设计波长632.8nm的实验测试结果; Figure 5 is the experimental test results of the traditional photonic sieve at the design wavelength of 632.8nm;
图6是测试宽带光子筛的成像性能的装置示意图; Fig. 6 is a schematic diagram of a device for testing the imaging performance of a broadband photon sieve;
图7是图6中带通滤光片的透过率曲线 Figure 7 is the transmittance curve of the bandpass filter in Figure 6
图8是传统光子筛在宽带光源下的成像结果; Figure 8 is the imaging result of a traditional photon sieve under a broadband light source;
图9是宽带光子筛在宽带光源下的成像结果; Figure 9 is the imaging result of a broadband photon sieve under a broadband light source;
图10是实施例一传统光子筛和宽带光子筛在(α=20Π)的PSF对比图; Fig. 10 is a PSF comparison diagram of a traditional photon sieve and a broadband photon sieve at (α=20Π);
图11为传统光子筛和宽带光子筛在不同波长下的MTF曲线图; Fig. 11 is the MTF curve diagram of traditional photon sieve and broadband photon sieve at different wavelengths;
图12为传统光子筛在不同波长λ=625.8~639.8nm下的成像结果图; Figure 12 is the imaging results of traditional photonic sieves at different wavelengths λ=625.8-639.8nm;
图13为宽带光子筛在不同波长λ=625.8~639.8nm的中间模糊图像; Figure 13 is the intermediate blurred image of the broadband photonic sieve at different wavelengths λ=625.8-639.8nm;
图14为宽带光子筛在不同波长λ=625.8~639.8nm的最终复原图像。 Fig. 14 is the final restored image of the broadband photonic sieve at different wavelengths λ=625.8-639.8nm.
其中:1、透明平面基底;2、不透光金属薄膜;3、波长为632.8nm的激光器;4、扩束镜;5、滤波器;6、散射转盘;7、平行光管;8、传统光子筛;9、CCD;10、显示器;11、宽带光源;12、带通滤光片;13、宽带光子筛。 Among them: 1. Transparent flat substrate; 2. Opaque metal film; 3. Laser with a wavelength of 632.8nm; 4. Beam expander; 5. Filter; 6. Scattering turntable; 7. Collimator; 8. Traditional Photon sieve; 9. CCD; 10. Display; 11. Broadband light source; 12. Bandpass filter; 13. Broadband photon sieve.
具体实施方式 Detailed ways
下面结合附图及实施例对本发明作进一步描述: The present invention will be further described below in conjunction with accompanying drawing and embodiment:
实施例一:参见图1所示,一种位相编码的宽带光子筛,直径为D,包括透明平面基底和镀在该透明平面基底上的不透光金属薄膜,不透光金属薄膜上设有环带状分布的通光小孔,通光小孔的位置分布满足方程,式中,f为宽带光子筛的焦距,n为通光环带的环带序号,λ为光子筛的工作波长,R为宽带光子筛的半径,α为三次编码系数,k为波数,xm和ym是第n个通光环带上第m个小孔的中心位置,m=1,2,3…num,其中,,小孔半径。 Embodiment 1: Referring to Fig. 1, a broadband photon sieve of phase encoding, with a diameter of D, includes a transparent plane substrate and an opaque metal film plated on the transparent plane substrate, and the opaque metal film is provided with The light-through holes are distributed in a ring shape, and the position distribution of the light-through holes satisfies the equation , where f is the focal length of the broadband photon sieve, n is the ring number of the light-passing ring, λ is the working wavelength of the photon sieve, R is the radius of the broadband photon sieve, α is the cubic encoding coefficient, k is the wave number, x m and y m is the center position of the mth small hole on the nth light-passing ring, m=1,2,3 ... num, where , , hole radius .
本实施例中,三次编码系数α为20π。 In this embodiment, the three-time encoding coefficient α is 20π.
本实施例中,透明平面基底为玻璃,其厚度为2mm。 In this embodiment, the transparent planar substrate is glass with a thickness of 2mm.
本实施例中,不透光金属薄膜为不透光铬膜,其厚度为100nm。 In this embodiment, the opaque metal thin film is an opaque chromium film with a thickness of 100 nm.
在上述公开内容的基础上,设计具体的光子筛,如图2所示是本实施例宽带光子筛的小孔分布示意图。 On the basis of the above disclosure, a specific photonic sieve is designed, as shown in FIG. 2 , which is a schematic diagram of the small hole distribution of the broadband photonic sieve of this embodiment.
如图3所示,是传统光子筛的小孔分布示意图,可以看出传统光子筛的结构是同心圆环,而本实施例宽带光子筛从图1可以看出不再是同心圆环,而是关于y=x对称的结构形式,由于本实施例中引入的编码项在数值上相对较小,所以图像关于y=x对称不是很明显。 As shown in Figure 3, it is a schematic diagram of the small hole distribution of the traditional photon sieve. It can be seen that the structure of the traditional photon sieve is concentric rings, but the broadband photon sieve of this embodiment is no longer concentric rings as can be seen from Figure 1, but It is a structural form that is symmetrical about y=x. Since the coding items introduced in this embodiment are relatively small in value, it is not obvious that the image is symmetrical about y=x.
利用UV光刻技术加工设计一个焦距500nm,直径50mm,工作中心波长632.8nm,编码系数20π的宽带光子筛。 A broadband photon sieve with a focal length of 500nm, a diameter of 50mm, a working center wavelength of 632.8nm, and a coding coefficient of 20π is designed by using UV lithography technology.
对上述获得的宽带光子筛与传统光子筛进行性能测试对比,其中传统光子筛的设计波长为632.8nm。 A performance test was performed on the broadband photonic sieve obtained above and a traditional photonic sieve. The design wavelength of the traditional photonic sieve is 632.8nm.
作为对比,图4是测试传统光子筛的成像性能的装置示意图,波长为632.8nm的激光器3发出的入射激光束通过扩束镜4聚焦到滤波器5的小孔进行滤波,经过小孔滤波后的激光束通过散射转盘6消除块。使用一个焦距550mm,口径55mm的平行光管7和像元大小为4.54μm(AVTProsilicaGX2750C)的CCD9进行成像测试,在显示器10上进行显示。 As a comparison, Figure 4 is a schematic diagram of a device for testing the imaging performance of a traditional photonic sieve. The incident laser beam emitted by a laser 3 with a wavelength of 632.8nm is focused by a beam expander 4 to a small hole in a filter 5 for filtering. The laser beam passes through the scattering turntable 6 to remove blocks. A collimator 7 with a focal length of 550 mm and an aperture of 55 mm and a CCD 9 with a pixel size of 4.54 μm (AVT Prosilica GX2750C) were used for imaging testing and displayed on a monitor 10 .
图5给出了传统光子筛在设计波长632.8nm的实验测试结果,图中,(a)为PSF特性,(b)为分辨率耙测试结果,(c)为测试结果(b)的中心区域的放大。仔细检查后,光子筛的分辨率极限约为50lp/mm。 Figure 5 shows the experimental test results of the traditional photonic sieve at the design wavelength of 632.8nm. In the figure, (a) is the PSF characteristic, (b) is the resolution rake test result, and (c) is the central area of the test result (b) zoom in. Upon careful inspection, the resolution limit of photonic sieves is about 50lp/mm.
如图6所示,为测试宽带光子筛的成像性能的装置示意图,宽带光源11发出的光束通过中心波长632.8nm,FWHM10nm的带通滤光片12(THORLABScompanyFL632.8-10),使用相同的平行光管7照射宽带光子筛13,用CCD9进行成像测试,在显示器10上进行显示。图7是图6中带通滤光片的透过率曲线。 As shown in Figure 6, it is a schematic diagram of the device for testing the imaging performance of the broadband photonic sieve. The beam emitted by the broadband light source 11 passes through the band-pass filter 12 (THORLABScompanyFL632.8-10) with a center wavelength of 632.8nm and FWHM10nm, using the same parallel The light pipe 7 irradiates the broadband photon sieve 13 , and the imaging test is performed by the CCD 9 and displayed on the display 10 . FIG. 7 is a transmittance curve of the bandpass filter in FIG. 6 .
用传统光子筛替换图6中的宽带光子筛,成像结果如图8所示,其中(a)为PSF特性,(b)为分辨率耙测试结果,(c)为分辨率耙(b)的中心区域放大图,显然传统光子筛具有很大的色差。当中心波长632.8nm,FWHM10nm的带宽入射时,使得传统光子筛在成像平面产生了很强的背景噪音。 Replace the broadband photon sieve in Figure 6 with the traditional photon sieve, and the imaging results are shown in Figure 8, where (a) is the PSF characteristic, (b) is the resolution rake test result, (c) is the resolution rake (b) The enlarged picture of the central area shows that the traditional photon sieve has a large chromatic aberration. When the central wavelength is 632.8nm and the bandwidth of FWHM10nm is incident, the traditional photon sieve produces strong background noise on the imaging plane.
图9给出了宽带光子筛在中心波长632.8nm,FWHM10nm的带宽入射下测试结果。实验结果图9(a)表明,实验室测得的PSF图像具有相同的“L”形特征,图9(b)给出了宽带光子筛的中间模糊图像,图9(c)为最终复原图像,图9(d)为复原图像图9(c)的中心区域的放大。中间模糊图像通过适当的滤波函数复原成清晰图像,达到和传统光子筛在设计波长632.8nm基本相同的分辨率。在中心波长632.8nm,FWHM10nm照明下,宽带光子筛的分辨率为501p/nm。 Figure 9 shows the test results of the broadband photonic sieve under the central wavelength of 632.8nm and the incident bandwidth of FWHM10nm. Experimental results Figure 9(a) shows that the PSF images measured in the laboratory have the same "L"-shaped features, Figure 9(b) shows the intermediate blurred image of the broadband photon sieve, and Figure 9(c) is the final restored image , Figure 9(d) is an enlargement of the central area of the restored image Figure 9(c). The blurred image in the middle is restored to a clear image through an appropriate filter function, and the resolution is basically the same as that of the traditional photon sieve at the design wavelength of 632.8nm. Under the central wavelength of 632.8nm and FWHM10nm illumination, the resolution of the broadband photonic sieve is 501p/nm.
为了进一步验证本发明获得的光子筛的宽带性能,分别在不同波长照片照明下对本实施例的传统光子筛和宽带光子筛进行对比,对比采用计算机模拟仿真进行,结果如下: In order to further verify the broadband performance of the photonic sieve obtained by the present invention, the traditional photonic sieve of the present embodiment and the broadband photonic sieve were compared under different wavelength photo illuminations, and the comparison was carried out by computer simulation, and the results were as follows:
图10显示了不同波长照明下(λ=625.8~639.8nm)传统光子筛和宽带光子筛(α=20Π)的PSF情况。从图10(a)中可以看出,传统光子筛在设计波长λ=632.8nm处具有较强的聚焦能力,但随着波长的偏离,聚焦能力大大减弱,不能清晰成像。然而,图10(b)中宽带光子筛的PSF在波长λ=625.8nm~639.8nm范围内保持了很好的一致性。当λ<627.8nm和λ>637.8nm时,PSF一致性略微发生了偏离。 Figure 10 shows the PSF of traditional photonic sieves and broadband photonic sieves (α=20Π) under illumination of different wavelengths (λ=625.8~639.8nm). It can be seen from Figure 10(a) that the traditional photonic sieve has a strong focusing ability at the design wavelength λ=632.8nm, but as the wavelength deviates, the focusing ability is greatly weakened and cannot be clearly imaged. However, the PSF of the broadband photonic sieve in Fig. 10(b) maintains a good consistency in the range of wavelength λ = 625.8nm ~ 639.8nm. When λ<627.8nm and λ>637.8nm, the PSF consistency deviates slightly.
图11分别展示了传统光子筛和宽带光子筛在不同波长下的MTF(PSF的傅里叶变换)曲线。随着波长偏离于设计波长,传统光子筛的MTF曲线迅速下降,并出现零点,造成空间频率丧失。相反,宽带光子筛在波长λ=625.8~639.8nm范围内保持很好的一致性,当λ<627.8nm和λ>637.8nm时略微降低。由于MTF在不同波长具有很好的一致性,并且从高频到低频没有出现零点,所以,可以通过设计适当的滤波器将中间模糊图像复原。因此,光子筛聚焦公式中位相编码项的引入能够很大程度上减小光子筛对波长的敏感性,达到拓展带宽的目的。 Figure 11 shows the MTF (Fourier transform of PSF) curves of traditional photon sieves and broadband photon sieves at different wavelengths. As the wavelength deviates from the design wavelength, the MTF curve of traditional photonic sieves drops rapidly, and a zero point appears, resulting in the loss of spatial frequency. On the contrary, the broadband photonic sieve maintains good consistency in the range of wavelength λ=625.8~639.8nm, and slightly decreases when λ<627.8nm and λ>637.8nm. Since the MTF has good consistency at different wavelengths, and there is no zero point from high frequency to low frequency, the intermediate blurred image can be restored by designing an appropriate filter. Therefore, the introduction of the phase encoding term in the focusing formula of the photon sieve can greatly reduce the sensitivity of the photon sieve to wavelength and achieve the purpose of expanding the bandwidth.
图12给出了传统光子筛在不同波长λ=625.8~639.8nm下的成像结果。随着波长偏离于设计波长632.8nm,成像模糊加剧。传统光子筛的带宽为。 Figure 12 shows the imaging results of traditional photonic sieves at different wavelengths λ=625.8-639.8nm. As the wavelength deviates from the design wavelength of 632.8nm, the imaging blur increases. The bandwidth of traditional photon sieve is .
图13给出了宽带光子筛在不同波长(λ=625.8~639.8nm)下的中间模糊图像,所有图像在不同的波长下具有几乎相同的模糊特性。 Figure 13 shows the intermediate blurred images of broadband photonic sieves at different wavelengths (λ=625.8-639.8nm), and all images have almost the same blurring characteristics at different wavelengths.
图14给出了宽带光子筛在不同波长(λ=625.8~639.8nm)的最终复原图像。所有波长下的中间模糊图像都能够得到很好的复原,具有和传统光子筛在设计波长基本相同的分辨率。当波长很大程度的偏离于设计波长(λ<627.8nm和λ>637.8nm)时,MTF略有下降,导致最终复原图像略有偏离。对于以口径50mm,焦距500mm,编码系数α=20Π制备的本实施例的宽带光子筛的带宽约经测试为14nm,宽带光子筛带宽约为传统光子筛带宽的88倍。 Figure 14 shows the final restoration images of broadband photonic sieves at different wavelengths (λ=625.8-639.8nm). The intermediate blurred images at all wavelengths can be well restored, and have basically the same resolution as the traditional photon sieve at the design wavelength. When the wavelength deviates greatly from the design wavelength (λ<627.8nm and λ>637.8nm), the MTF decreases slightly, resulting in a slight deviation of the final restored image. For the broadband photon sieve of this embodiment prepared with a diameter of 50 mm, a focal length of 500 mm, and an encoding coefficient α=20Π, the bandwidth of the broadband photon sieve is about 14 nm after testing, and the bandwidth of the broadband photon sieve is about 88 times that of the traditional photon sieve.
Claims (5)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510610910.6A CN105137513B (en) | 2015-09-23 | 2015-09-23 | A kind of broadband photon sieve of phase coding |
PCT/CN2016/077040 WO2017049886A1 (en) | 2015-09-23 | 2016-03-22 | Phase encoding broadband photon sieve |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510610910.6A CN105137513B (en) | 2015-09-23 | 2015-09-23 | A kind of broadband photon sieve of phase coding |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105137513A true CN105137513A (en) | 2015-12-09 |
CN105137513B CN105137513B (en) | 2018-06-26 |
Family
ID=54722918
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510610910.6A Active CN105137513B (en) | 2015-09-23 | 2015-09-23 | A kind of broadband photon sieve of phase coding |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105137513B (en) |
WO (1) | WO2017049886A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105404017A (en) * | 2015-12-21 | 2016-03-16 | 哈尔滨工业大学 | Photon sieve main mirror double-color imaging optical system and application thereof |
CN106054297A (en) * | 2016-08-01 | 2016-10-26 | 苏州大学 | Large field diffraction photon sieve |
WO2017049886A1 (en) * | 2015-09-23 | 2017-03-30 | 苏州大学张家港工业技术研究院 | Phase encoding broadband photon sieve |
CN107152998A (en) * | 2017-04-20 | 2017-09-12 | 苏州大学 | A kind of photon screen alignment methods based on detection Wavefront Coding system |
CN108761606A (en) * | 2018-05-30 | 2018-11-06 | 苏州大学 | A kind of production method of splicing large-diameter photon sieve |
CN110501768A (en) * | 2018-05-17 | 2019-11-26 | 苏州大学 | A multi-spectral, wide-bandwidth photon sieve |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050068632A1 (en) * | 2003-09-25 | 2005-03-31 | Holloway Paul H. | High resolution multi-lens imaging device |
CN101694532A (en) * | 2009-10-22 | 2010-04-14 | 中国科学院光电技术研究所 | Phase type photon sieve |
CN103293677A (en) * | 2012-02-24 | 2013-09-11 | 中国科学院微电子研究所 | Light homogenizer and manufacturing method thereof |
CN104865627A (en) * | 2015-05-30 | 2015-08-26 | 苏州大学 | Broadband photon sieve based on wavefront coding technology |
CN205003310U (en) * | 2015-09-23 | 2016-01-27 | 苏州大学 | Broadband photon sieve of phase code |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101430427B (en) * | 2008-11-25 | 2010-11-10 | 中国科学院微电子研究所 | Manufacturing method of super-resolution photon sieve |
CN101923182A (en) * | 2009-06-17 | 2010-12-22 | 中国科学院微电子研究所 | Method for making phase-type photon sieve based on HSQ process |
CN103018808B (en) * | 2011-09-23 | 2015-05-13 | 中国科学院微电子研究所 | Photon sieve and manufacturing method thereof |
CN105137513B (en) * | 2015-09-23 | 2018-06-26 | 苏州大学 | A kind of broadband photon sieve of phase coding |
-
2015
- 2015-09-23 CN CN201510610910.6A patent/CN105137513B/en active Active
-
2016
- 2016-03-22 WO PCT/CN2016/077040 patent/WO2017049886A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050068632A1 (en) * | 2003-09-25 | 2005-03-31 | Holloway Paul H. | High resolution multi-lens imaging device |
CN101694532A (en) * | 2009-10-22 | 2010-04-14 | 中国科学院光电技术研究所 | Phase type photon sieve |
CN103293677A (en) * | 2012-02-24 | 2013-09-11 | 中国科学院微电子研究所 | Light homogenizer and manufacturing method thereof |
CN104865627A (en) * | 2015-05-30 | 2015-08-26 | 苏州大学 | Broadband photon sieve based on wavefront coding technology |
CN205003310U (en) * | 2015-09-23 | 2016-01-27 | 苏州大学 | Broadband photon sieve of phase code |
Non-Patent Citations (2)
Title |
---|
XIAONAN ZHAO ET.: "Broadband photon sieves imaging with", 《OPTICS EXPRESS》 * |
潘一鸣等: "复合型光子筛及其在大口径成像中的应用", 《光电工程》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017049886A1 (en) * | 2015-09-23 | 2017-03-30 | 苏州大学张家港工业技术研究院 | Phase encoding broadband photon sieve |
CN105404017A (en) * | 2015-12-21 | 2016-03-16 | 哈尔滨工业大学 | Photon sieve main mirror double-color imaging optical system and application thereof |
CN106054297A (en) * | 2016-08-01 | 2016-10-26 | 苏州大学 | Large field diffraction photon sieve |
CN107152998A (en) * | 2017-04-20 | 2017-09-12 | 苏州大学 | A kind of photon screen alignment methods based on detection Wavefront Coding system |
CN107152998B (en) * | 2017-04-20 | 2019-09-20 | 苏州大学 | A Photonic Sieve Alignment Method Based on Detecting Wavefront Encoding System |
CN110501768A (en) * | 2018-05-17 | 2019-11-26 | 苏州大学 | A multi-spectral, wide-bandwidth photon sieve |
CN108761606A (en) * | 2018-05-30 | 2018-11-06 | 苏州大学 | A kind of production method of splicing large-diameter photon sieve |
Also Published As
Publication number | Publication date |
---|---|
WO2017049886A1 (en) | 2017-03-30 |
CN105137513B (en) | 2018-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105137513B (en) | A kind of broadband photon sieve of phase coding | |
CN111699415B (en) | Metasurfaces and systems for full color imaging and methods of imaging | |
Huang et al. | Design and analysis of extended depth of focus metalenses for achromatic computational imaging | |
JP5195656B2 (en) | Color separation optical device and image device using the same | |
TWI467226B (en) | Microscope system for phase object | |
US20180129018A1 (en) | Compact non-mechanical zoom lens | |
JP2020514809A (en) | Four-dimensional multi-plane broadband imaging system based on non-reentrant second-order distorted (NRQD) grating and grating prism | |
CN109656006A (en) | A kind of non-focusing all-sky airglow imager of wide spectrum | |
CN205003310U (en) | Broadband photon sieve of phase code | |
CN103743484B (en) | A kind of spectrum coding imaging device | |
CN205787191U (en) | A kind of phase coding folding diffraction element | |
CN101398493A (en) | Amplitude-type zone plate photonic sieve | |
CN104865627B (en) | A kind of broadband photon sieve based on wavefront coding technology | |
CN109143426B (en) | Phase coding Fresnel lens | |
CN101470269A (en) | Super-resolution Squeezed Amplitude Light Modulator for Long-distance Laser Transmission Central Spot | |
Fontbonne et al. | Theoretical and experimental analysis of co-designed binary phase masks for enhancing the depth of field of panchromatic cameras | |
CN101430427B (en) | Manufacturing method of super-resolution photon sieve | |
TWI521242B (en) | An optical filter element that corrects spectral aberration | |
Deng et al. | Enhancement of image quality in planar airy light-sheet microscopy via subtraction method | |
CN205941963U (en) | Big visual field diffraction photon sieve | |
CN110501768A (en) | A multi-spectral, wide-bandwidth photon sieve | |
CN106054297A (en) | Large field diffraction photon sieve | |
CN113504627B (en) | Compact ultraviolet optical system with same material, large view field and small F number | |
CN115343791B (en) | A device for high-resolution imaging in a wide spectrum | |
CN110275232A (en) | A Zoom Imaging Method Based on Greek Ladder Photon Sieve |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |