CN105101408A - Indoor Positioning Method Based on Distributed AP Selection Strategy - Google Patents
Indoor Positioning Method Based on Distributed AP Selection Strategy Download PDFInfo
- Publication number
- CN105101408A CN105101408A CN201510437949.2A CN201510437949A CN105101408A CN 105101408 A CN105101408 A CN 105101408A CN 201510437949 A CN201510437949 A CN 201510437949A CN 105101408 A CN105101408 A CN 105101408A
- Authority
- CN
- China
- Prior art keywords
- node
- rss
- signal strength
- subregion
- location
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 33
- 238000012549 training Methods 0.000 claims abstract description 31
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 19
- 239000013598 vector Substances 0.000 claims description 26
- 101000742844 Homo sapiens RNA-binding motif protein, Y chromosome, family 1 member A1 Proteins 0.000 claims description 23
- 102100038040 RNA-binding motif protein, Y chromosome, family 1 member A1 Human genes 0.000 claims description 23
- 238000013528 artificial neural network Methods 0.000 claims description 21
- 101001046999 Homo sapiens Kynurenine-oxoglutarate transaminase 3 Proteins 0.000 claims description 12
- 239000011159 matrix material Substances 0.000 claims description 7
- 239000000284 extract Substances 0.000 claims description 5
- 210000002569 neuron Anatomy 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 5
- 238000003062 neural network model Methods 0.000 claims description 3
- 230000001537 neural effect Effects 0.000 claims 7
- 229940123361 Quorum sensing inhibitor Drugs 0.000 claims 1
- 230000006870 function Effects 0.000 description 14
- 238000010586 diagram Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000013480 data collection Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 238000012706 support-vector machine Methods 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/18—Network planning tools
- H04W16/20—Network planning tools for indoor coverage or short range network deployment
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W64/00—Locating users or terminals or network equipment for network management purposes, e.g. mobility management
- H04W64/003—Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W64/00—Locating users or terminals or network equipment for network management purposes, e.g. mobility management
- H04W64/006—Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种室内定位方法,具体地涉及一种基于分布式AP选择策略的WIFI的室内定位方法。 The invention relates to an indoor positioning method, in particular to a WIFI indoor positioning method based on a distributed AP selection strategy.
背景技术 Background technique
室内定位是一种用于获取室内目标物体位置信息的技术,在民用和军用领域具有广泛的应用前景。常见的定位算法主要基于接收信号强度指示(ReceivedSignalStrengthIndication,RSSI)、到达时间(TimeofArrival,TOA)、到达时间差(TimeDifferenceofArrival,TDOA)、到达角度(AngleofArrival,AOA)等技术。其中,基于RSSI的定位算法具有低功耗,低成本且易实现的优点,被广泛应用于无线室内定位。 Indoor positioning is a technology used to obtain the location information of indoor target objects, and has broad application prospects in civilian and military fields. Common positioning algorithms are mainly based on Received Signal Strength Indication (RSSI), Time of Arrival (TOA), Time Difference of Arrival (TDOA), Angle of Arrival (AOA) and other technologies. Among them, the positioning algorithm based on RSSI has the advantages of low power consumption, low cost and easy implementation, and is widely used in wireless indoor positioning.
使用RSSI的定位算法通常分为:基于信号传播模型的定位算法和基于指纹模型的定位算法。传统的基于信号传播模型的定位算法主要通过获取大量的样本数据,利用传统路径损耗模型建立接收信号强度指示(RSSI)和节点间距离的函数关系,然后估计出目标的位置信息。由于无线信号在传播过程中较易受室内环境变化的影响,导致RSSI值具有明显的波动性,同时传统路径损耗模型中路径衰减指数以及环境因子难以确定,这些因素将影响模型的测距精度,进而导致定位误差增大。 The positioning algorithm using RSSI is generally divided into: a positioning algorithm based on a signal propagation model and a positioning algorithm based on a fingerprint model. The traditional location algorithm based on the signal propagation model mainly obtains a large number of sample data, uses the traditional path loss model to establish the functional relationship between the received signal strength indicator (RSSI) and the distance between nodes, and then estimates the location information of the target. Since the wireless signal is easily affected by indoor environment changes during the propagation process, the RSSI value has obvious fluctuations. At the same time, it is difficult to determine the path attenuation index and environmental factors in the traditional path loss model. These factors will affect the ranging accuracy of the model. This leads to an increase in positioning error.
基于指纹模型的定位算法是在大量实际样本数据的基础上根据统计分析方法建立定位模型,其中学习模型作为统计分析方法的一种被广泛用于训练定位预测模型,最后用该定位预测模型对目标位置进行预测。该方法的实质是将一组无线信号强度与目标位置建立映射关系。Zhou等人采用人工神经网络(ArtificialNeuralNetwork,ANN)作为学习预测工具,并融合区域划分技术对目标位置进行预测,取得了较优的定位预测效果。桑楠等人将RSSI与位置信息建立非线性关系,利用支持向量机(SupportVectorMachine,SVM)学习并预测位置信息,有效地降低定位误差。 The positioning algorithm based on the fingerprint model is based on a large number of actual sample data to establish a positioning model according to the statistical analysis method, in which the learning model is widely used as a statistical analysis method to train the positioning prediction model, and finally use the positioning prediction model to target The location is predicted. The essence of the method is to establish a mapping relationship between a group of wireless signal strengths and target positions. Zhou et al. used Artificial Neural Network (ANN) as a learning and prediction tool, combined with region division technology to predict the target position, and achieved better positioning prediction results. Sang Nan and others established a nonlinear relationship between RSSI and location information, and used Support Vector Machine (SupportVectorMachine, SVM) to learn and predict location information, effectively reducing positioning errors.
其中基于指纹模型的定位算法具有定位精度高,充分利用现有设施,升级和维护对用户影响小等优点,得到了广泛应用,位置指纹定位算法主要分为离线测量阶段和在线定位阶段两个步骤。 Among them, the positioning algorithm based on the fingerprint model has the advantages of high positioning accuracy, full use of existing facilities, and little impact on users for upgrades and maintenance, and has been widely used. The location fingerprint positioning algorithm is mainly divided into two steps: offline measurement stage and online positioning stage .
在具有大量AP节点部署的无线网络中,为了获得目标位置,上述方法所处理的数据都是高维向量(AP节点的个数)。同时,由于物体的遮挡以及节点故障等因素,导致将所有AP节点作为特征输入的定位效果并不一定最优,冗余的AP节点增加了位置估计的难度,容易造成过度拟合的问题,并增加了时间和空间的复杂度。针对该问题,采用合适的选择机制筛选AP节点,获得较优的AP节点作为特征输入,既达到降维的作用,又提高了定位精度。传统方法通常根据接收的某一AP的平均信号强度来判断AP的定位能力,信号强度均值越大,则认为该AP的定位能力越强。实际中发现,这种AP选择方法是不正确的,如一个AP在定位区域内各处的信号强度都比较大但其波动较小,虽然该AP信号强度平均值很大,但是定位能力较弱。同时传统方法并没有考虑到某AP对于定位环境中不同的位置有不同的定位贡献,比如一个AP可能对某一区域定位能力很好,但对其他区域定位能力较差。 In a wireless network with a large number of AP nodes deployed, in order to obtain the target position, the data processed by the above methods are all high-dimensional vectors (the number of AP nodes). At the same time, due to factors such as occlusion of objects and node failures, the positioning effect of using all AP nodes as feature input is not necessarily optimal. Redundant AP nodes increase the difficulty of position estimation, easily causing overfitting problems, and Increased time and space complexity. To solve this problem, an appropriate selection mechanism is used to screen AP nodes, and better AP nodes are obtained as feature inputs, which not only achieves the effect of dimensionality reduction, but also improves the positioning accuracy. In traditional methods, the positioning capability of an AP is usually judged according to the average signal strength received from an AP. The greater the average signal strength, the stronger the positioning capability of the AP. In practice, it is found that this AP selection method is incorrect. For example, the signal strength of an AP is relatively large everywhere in the positioning area, but its fluctuation is small. Although the average signal strength of this AP is large, its positioning ability is weak. . At the same time, the traditional method does not take into account that an AP has different positioning contributions to different locations in the positioning environment. For example, an AP may have a good positioning ability for a certain area, but poor positioning ability for other areas.
发明内容 Contents of the invention
为了解决上述技术问题,本发明目的是:提供一种基于分布式AP选择策略的室内定位方法,可以避免较大噪声以及位置分辨能力弱的AP节点的影响,同时减少定位所需的运算时间并提高定位精度。 In order to solve the above technical problems, the object of the present invention is to provide an indoor positioning method based on a distributed AP selection strategy, which can avoid the influence of relatively large noise and AP nodes with weak position resolution capabilities, and at the same time reduce the calculation time required for positioning and Improve positioning accuracy.
本发明的技术方案是: Technical scheme of the present invention is:
一种基于分布式AP选择策略的室内定位方法,包括以下步骤: An indoor positioning method based on a distributed AP selection strategy, comprising the following steps:
S01:在室内环境布置D个AP节点,保证室内环境中任意位置点被三个或三个以上的AP节点发出的信号覆盖,同时将该目标区域划分为N个小区域,以小区域中心为信号强度采集点,共N个参考点,用于离线阶段采集样本数据; S01: Arrange D AP nodes in the indoor environment to ensure that any point in the indoor environment is covered by signals from three or more AP nodes, and at the same time divide the target area into N small areas, with the center of the small area as Signal strength collection points, a total of N reference points, used to collect sample data in the offline phase;
S02:对目标区域建立二维直角坐标系,获得N个参考点的坐标位置,并在每个参考点上利用移动设备采集k次AP节点的信号强度,并对数据进行处理; S02: Establish a two-dimensional rectangular coordinate system for the target area, obtain the coordinate positions of N reference points, and use the mobile device to collect the signal strength of the AP node for k times at each reference point, and process the data;
S03:将目标区域利用等面积的方法划分为m个子区域,将不同子区域的指纹信息进行分类,利用指纹信息库训练分区域模块,根据RSS指纹信息选择对应的子区域; S03: Divide the target area into m sub-areas by means of an equal area, classify the fingerprint information of different sub-areas, use the fingerprint information database to train the sub-area module, and select the corresponding sub-area according to the RSS fingerprint information;
S04:计算每个AP节点与各个子区域的相关性,并将相关性系数排序,选择相关性系数大于Pτ的AP节点,作为该子区域的定位节点,其中,Pτ表示相关性系数的阈值; S04: Calculate the correlation between each AP node and each sub-region, sort the correlation coefficients, and select the AP node with a correlation coefficient greater than P τ as the positioning node of the sub-region, where P τ represents the correlation coefficient threshold;
S05:在每个子区域中,利用选取的定位节点作为DBN模型的输入,对应的位置点作为DBN模型的输出,训练DBN模型,构建定位预测模型; S05: In each sub-region, use the selected positioning node as the input of the DBN model, and the corresponding position point as the output of the DBN model, train the DBN model, and build a positioning prediction model;
S06:在线预测阶段,获取移动设备接收的RSS指纹信息并作为分区域模块的输入向量,分区域模块的输出向量为该RSS指纹信息所属的子区域; S06: In the online prediction stage, obtain the RSS fingerprint information received by the mobile device and use it as the input vector of the sub-region module, and the output vector of the sub-region module is the sub-region to which the RSS fingerprint information belongs;
S07:利用步骤S06中获取的子区域对应的AP节点的信号强度作为DBN模型的输入向量,利用已训练的DBN模型获取目标的位置。 S07: Use the signal strength of the AP node corresponding to the sub-region obtained in step S06 as an input vector of the DBN model, and use the trained DBN model to obtain the position of the target.
优选的,所述步骤S02具体包括如下步骤: Preferably, the step S02 specifically includes the following steps:
S21:在每个参考点接收每一个AP节点的信号强度RSS值,构成D维信号向量RSSD;每个参考点采集k次信号强度值,构成了k*D的信号强度矩阵,其矩阵的第i行第j列表示第i次采集中接收第j个AP节点的信号强度RSS值;i为小于或等于k的正整数;j为小于或等于D的正整数; S21: Receive the signal strength RSS value of each AP node at each reference point to form a D-dimensional signal vector RSS D ; each reference point collects signal strength values k times to form a k*D signal strength matrix, and the matrix Row i and column j represent the signal strength RSS value of the jth AP node received in the i-th collection; i is a positive integer less than or equal to k; j is a positive integer less than or equal to D;
RSSD=(rss1,rss2,rss3,…,rssj,…,rssD)(1) RSS D =(rss 1 ,rss 2 ,rss 3 ,...,rss j ,...,rss D )(1)
式中:rssj∈[-100,0]表示参考点处接收到第j个AP节点的信号强度。 In the formula: rss j ∈ [-100,0] represents the signal strength of the jth AP node received at the reference point.
S22:构建指纹数据库,训练数据集中包含N条记录,每条记录表示为向量r,向量中包含可用AP节点的信号强度和采样点的位置: S22: Build a fingerprint database. The training data set contains N records, each record is expressed as a vector r, and the vector contains the signal strength of the available AP nodes and the location of the sampling point:
r=(RSSi,Li)=(rss1,rss2,rss3,…,rssD,Li)(2) r=(RSS i ,L i )=(rss 1 ,rss 2 ,rss 3 ,... , rss D ,L i )(2)
式中:RSSi表示第i次采集中接收的RSS集合,D表示AP节点的个数,Li表示对应于RSSD向量的位置标签。 In the formula: RSS i represents the RSS set received in the i-th collection, D represents the number of AP nodes, L i represents the location label corresponding to the RSS D vector.
优选的,所述步骤S03具体包括以下步骤: Preferably, the step S03 specifically includes the following steps:
S31:将定位区域S划分为m个子区域,子区域定义如下所示: S31: Divide the positioning area S into m sub-areas, and the sub-areas are defined as follows:
式中:c表示第c个子区域,k表示该子区域中位置点的个数,Rc表示第c个子区域中参考位置点集合;表示第c个子区域中第k个位置点的信息; In the formula: c represents the cth sub-region, k represents the number of position points in the sub-region, and R c represents the set of reference position points in the c-th sub-region; Represents the information of the kth position point in the cth subregion;
S32:将指纹数据库中信号强度根据不同的子区域进行分类,建立子区域与信号强度的记录信息表。 S32: Classify the signal strength in the fingerprint database according to different sub-regions, and establish a record information table of sub-regions and signal strength.
S33:构建分区域模块,确定BP神经网络模型并根据子区域标识与信号强度的记录信息训练建立的BP神经网络,以信号强度RSSI作为输入,对应的子区域标识area作为输出训练BP神经网络,并在训练中修改BP神经网络的参数使其反映RSSI-area的关系; S33: Construct a sub-area module, determine the BP neural network model and train the established BP neural network according to the record information of the sub-area identification and signal strength, use the signal strength RSSI as input, and use the corresponding sub-area identification area as an output to train the BP neural network, And modify the parameters of the BP neural network during training to reflect the RSSI-area relationship;
S34:用实际接收的信号强度值RSSI与对应的子区域标识area去反复训练并验证所建立的BP神经网络,将训练完的BP神经网络封装成一个固定的函数,该函数输入为接收信号强度RSSI,输出即为对应的子区域标识。 S34: Use the actual received signal strength value RSSI and the corresponding sub-area identification area to repeatedly train and verify the established BP neural network, and encapsulate the trained BP neural network into a fixed function, and the input of this function is the received signal strength RSSI, the output is the corresponding sub-area identifier.
优选的,所述BP神经网络为五层神经网络,隐含层的层数为2层,输入层的节点数目为D,输出层的节点数目为1,隐含层的节点数目分别为6,4,即采用D:6:4:1的BP神经网络结构,训练函数为traincgf算法,训练次数和目标误差分别设置为100和0.00004。 Preferably, the BP neural network is a five-layer neural network, the number of hidden layers is 2 layers, the number of nodes in the input layer is D, the number of nodes in the output layer is 1, and the number of nodes in the hidden layer is 6, respectively. 4. The BP neural network structure of D: 6: 4: 1 is adopted, the training function is the traincgf algorithm, and the number of training times and the target error are set to 100 and 0.00004 respectively.
优选的,所述步骤S04具体包括以下步骤: Preferably, the step S04 specifically includes the following steps:
S41:在该子区域中,扫描区域中k个位置点上第j个AP节点的信号,该AP节点在此子区域的相关性系数定义如下: S41: In this sub-area, scan the signals of the jth AP node at k positions in the area, and the correlation coefficient of the AP node in this sub-area is defined as follows:
式中:Pj表示第j个AP节点与该子区域的相关性,xi表示第i个位置点的X轴坐标,x表示该区域中k个位置点的X轴坐标的均值,yi表示第i个位置点的Y轴坐标,y表示该区域中k个位置点的Y轴坐标的均值,rssji表示第i个位置点接收到第j个AP节点的信号强度的均值,rssj表示k个位置点接收的第j个AP节点的信号强度均值,k表示该子区域中位置点的个数,D表示定位区域中AP节点的个数; In the formula: P j represents the correlation between the jth AP node and the sub-region, x i represents the X-axis coordinate of the i-th position point, x represents the mean value of the X-axis coordinates of the k position points in the region, and y i Represents the Y-axis coordinate of the i-th location point, y represents the mean value of the Y-axis coordinates of the k location points in the area, rss ji represents the mean value of the signal strength received by the i-th location point from the j-th AP node, rss j Indicates the mean value of the signal strength of the jth AP node received by k position points, k represents the number of position points in the sub-area, and D represents the number of AP nodes in the positioning area;
S42:在每个子区域中,D个AP节点的相关性系数向量表示为: S42: In each sub-region, the correlation coefficient vectors of D AP nodes are expressed as:
P(AP)=[P1,P2,...,PD](5) P(AP)=[P 1 ,P 2 ,...,P D ](5)
若Pj>Pτ表示第j个AP节点与该子区域相关,反之则不相关,Pτ表示相关性系数的阈值。 If P j >P τ , it means that the jth AP node is related to the sub-region, otherwise, it is not related, and P τ represents the threshold of the correlation coefficient.
优选的,所述步骤S05具体包括以下步骤: Preferably, the step S05 specifically includes the following steps:
S51:在指纹数据库中获取该子区域中所有位置点信息以及对应的AP节点的信号强度,作为该子区域的训练数据集; S51: Obtain all position point information in the sub-area and the signal strength of the corresponding AP node in the fingerprint database, as the training data set of the sub-area;
S52:确定DBN模型并用该子区域的训练数据集去训练并建立DBN模型,以接收的对应AP节点的信号强度RSSI作为输入,对应的位置点Location作为输出去训练所建立的DBN模型,并在训练中修改DBN模型的参数,使最终的定位模型能正确反映RSSI-Location的关系; S52: Determine the DBN model and use the training data set of the sub-region to train and establish the DBN model, use the received signal strength RSSI of the corresponding AP node as input, and the corresponding location point Location as output to train the established DBN model, and in Modify the parameters of the DBN model during training, so that the final positioning model can correctly reflect the relationship between RSSI-Location;
S53:用实际接收的对应AP节点的信号强度值RSSI与对应的位置点Location去反复训练并验证所建立的DBN模型;通过可见层和隐含层之间的能量函数来调整神经元之间的权值,最后通过反向传播算法来微调网络间的权值。 S53: Use the received signal strength value RSSI of the corresponding AP node and the corresponding location point Location to repeatedly train and verify the established DBN model; adjust the relationship between neurons through the energy function between the visible layer and the hidden layer Weights, and finally through the backpropagation algorithm to fine-tune the weights between the networks.
优选的,所述DBN模型为5层网络,其中隐含层的层数为3层,输入层的节点数目为选取的AP节点的个数,输出层的节点数据为2,隐含层的节点数目分别为10,6,4。 Preferably, the DBN model is a 5-layer network, wherein the number of layers in the hidden layer is 3 layers, the number of nodes in the input layer is the number of selected AP nodes, the node data in the output layer is 2, and the number of nodes in the hidden layer The numbers are 10, 6, 4 respectively.
优选的,DBN模型包括RBM1和RBM2,RBM1模块和RBM2模块都包括可见层和隐含层,当AP节点的信号强度集合输入到RBM1的可见层,隐含层将通过连接的权值提取输入数据的特征,并通过可见层和隐含层之间的能量函数来调整神经元之间的权值;RBM1隐含层的输出将作为RBM2可见层的输入,RBM2隐含层进一步提取分类数据的深层次特征,将训练完的DBN模型封装成一个固定的函数,该函数输入是接收信号强度RSSI,输出即为目标的位置点。 Preferably, the DBN model includes RBM1 and RBM2, and both the RBM1 module and the RBM2 module include a visible layer and a hidden layer. When the signal strength set of the AP node is input to the visible layer of RBM1, the hidden layer will extract the input data through the weight of the connection features, and adjust the weights between neurons through the energy function between the visible layer and the hidden layer; the output of the hidden layer of RBM1 will be used as the input of the visible layer of RBM2, and the hidden layer of RBM2 will further extract the depth of the classified data Hierarchical features, the trained DBN model is encapsulated into a fixed function, the input of this function is the received signal strength RSSI, and the output is the location point of the target.
本发明的优点是: The advantages of the present invention are:
1、该方法能够有效去除较大噪声以及位置分辨能力弱的AP节点。通过将室内区域划分为若干个单独的子区域,并计算子区域与所有AP节点的相关性,选取相关性优的AP节点作为该子区域的训练节点,最后通过深度置信网络(DeepBeliefNetwork,DBN)模型进行定位模型训练。有效提高了整个WIFI室内定位系统的定位精度。 1. This method can effectively remove AP nodes with large noise and weak position resolution ability. By dividing the indoor area into several separate sub-areas, and calculating the correlation between the sub-area and all AP nodes, the AP node with excellent correlation is selected as the training node of the sub-area, and finally through the deep belief network (DeepBeliefNetwork, DBN) The model performs positioning model training. Effectively improve the positioning accuracy of the entire WIFI indoor positioning system.
2、简化了算法且减少了算法运行时间。 2. The algorithm is simplified and the running time of the algorithm is reduced.
附图说明 Description of drawings
下面结合附图及实施例对本发明作进一步描述: The present invention will be further described below in conjunction with accompanying drawing and embodiment:
图1是本发明定位实现的流程图; Fig. 1 is the flow chart that positioning realizes of the present invention;
图2是本发明提出的分布式AP选择策略的室内定位算法的大体框架图; Fig. 2 is the general frame diagram of the indoor positioning algorithm of the distributed AP selection strategy that the present invention proposes;
图3是本发明的室内场景示意图; Fig. 3 is a schematic diagram of an indoor scene of the present invention;
图4是DBN模型结构框图。 Figure 4 is a block diagram of the DBN model structure.
其中:1、工位,2、AP节点,3、柱子。 Among them: 1. Station, 2. AP node, 3. Pillar.
具体实施方式 Detailed ways
为使本发明的目的、技术方案和优点更加清楚明了,下面结合具体实施方式并参照附图,对本发明进一步详细说明。应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。 In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with specific embodiments and with reference to the accompanying drawings. It should be understood that these descriptions are exemplary only, and are not intended to limit the scope of the present invention. Also, in the following description, descriptions of well-known structures and techniques are omitted to avoid unnecessarily obscuring the concept of the present invention.
实施例: Example:
如图1所示,一种基于分布式AP选择策略的室内定位方法,包括以下步骤: As shown in Figure 1, an indoor positioning method based on a distributed AP selection strategy includes the following steps:
S01:在室内环境布置D个AP节点,保证室内环境中任意位置点被三个或三个以上的AP节点发出的信号覆盖,同时将该目标区域划分为N个小区域,以小区域中心为信号强度采集点,共N个参考点,用于离线阶段采集样本数据; S01: Arrange D AP nodes in the indoor environment to ensure that any point in the indoor environment is covered by signals from three or more AP nodes, and at the same time divide the target area into N small areas, with the center of the small area as Signal strength collection points, a total of N reference points, used to collect sample data in the offline phase;
S02:对目标区域建立二维直角坐标系,获得N个参考点的坐标位置,并在每个参考点上利用移动设备采集k次AP节点的信号强度,并对数据进行处理; S02: Establish a two-dimensional rectangular coordinate system for the target area, obtain the coordinate positions of N reference points, and use the mobile device to collect the signal strength of the AP node for k times at each reference point, and process the data;
S03:将目标区域利用等面积的方法划分为m个子区域,将不同子区域的指纹信息进行分类,利用指纹信息库训练分区域模块,根据RSS指纹信息选择对应的子区域; S03: Divide the target area into m sub-areas by means of an equal area, classify the fingerprint information of different sub-areas, use the fingerprint information database to train the sub-area module, and select the corresponding sub-area according to the RSS fingerprint information;
S04:计算每个AP节点与各个子区域的相关性,并将相关性系数排序,选择相关性系数大于Pτ的AP节点,作为该子区域的定位节点,Pτ表示相关性系数的阈值; S04: Calculate the correlation between each AP node and each sub-region, and sort the correlation coefficients, select the AP node with a correlation coefficient greater than P τ , as the positioning node of the sub-region, and P τ represents the threshold of the correlation coefficient;
S05:在每个子区域中,利用选取的定位节点作为DBN模型的输入,对应的位置点作为DBN模型的输出,训练DBN模型,构建定位预测模型; S05: In each sub-region, use the selected positioning node as the input of the DBN model, and the corresponding position point as the output of the DBN model, train the DBN model, and build a positioning prediction model;
S06:在线预测阶段,获取移动设备接收的RSS指纹信息并作为分区域模块的输入向量,分区域模块的输出向量为该RSS指纹信息所属的子区域; S06: In the online prediction stage, obtain the RSS fingerprint information received by the mobile device and use it as the input vector of the sub-region module, and the output vector of the sub-region module is the sub-region to which the RSS fingerprint information belongs;
S07:利用步骤S06中获取的子区域对应的AP节点的信号强度作为DBN模型的输入向量,利用已训练的DBN模型获取目标的位置。 S07: Use the signal strength of the AP node corresponding to the sub-region obtained in step S06 as an input vector of the DBN model, and use the trained DBN model to obtain the position of the target.
定位数据的采集实验场景设于综合实验室内,图3所示的室内场景中进行实验,数据采集的终端设备为一部三星智能手机(I9228),操作系统为Android4.1.2。该实验室长约12.8m,宽约12.5m,高约3m,室内布置有工位1,电脑等办公用品,AP节点2高度保持1.6m,AP节点2的布局图如图3所示,在该区域内,能够收集到25个AP节点2的信号,其中,部分AP节点2的信号的传播路径为非视距的,存在柱子3的阻隔。实验时,将该目标区域划分为144个小区域,每个小区域大小为1m×1m,以小区域中心为信号强度采集点,共144个参考点,用于离线阶段采集样本数据。为保证样本数据的准确性,每个信号采集点获取600次AP节点2的信号集,每秒一次。 The experimental scene of positioning data collection is set in the comprehensive laboratory. The experiment is carried out in the indoor scene shown in Figure 3. The terminal device for data collection is a Samsung smart phone (I9228), and the operating system is Android4.1.2. The laboratory is about 12.8m long, 12.5m wide, and 3m high. There are station 1, computers and other office supplies in the room. The height of AP node 2 is kept at 1.6m. The layout of AP node 2 is shown in Figure 3. In this area, the signals of 25 AP nodes 2 can be collected, and the propagation paths of the signals of some AP nodes 2 are non-line-of-sight, and there are pillars 3 blocking them. During the experiment, the target area was divided into 144 small areas, each with a size of 1m×1m, and the center of the small area was used as the signal strength collection point, a total of 144 reference points were used to collect sample data in the offline stage. To ensure the accuracy of sample data, each signal collection point acquires 600 signal sets of AP node 2, once per second.
在每个参考点接收每一个AP节点的信号强度RSS值,构成25维信号向量RSSD;每个参考点采集600次信号强度值,构成了600*25的信号强度矩阵,其矩阵的第i行第j列表示第i次采集中接收第j个AP节点的信号强度RSS值;i为小于或等于k的正整数;j为小于或等于D的正整数; Receive the signal strength RSS value of each AP node at each reference point to form a 25-dimensional signal vector RSS D ; each reference point collects 600 signal strength values to form a 600*25 signal strength matrix, and the i-th matrix of the matrix The jth column of the row indicates the signal strength RSS value of the jth AP node received in the ith acquisition; i is a positive integer less than or equal to k; j is a positive integer less than or equal to D;
RSS25=(rss1,rss2,rss3,…,rss25)(1) RSS 25 = (rss 1 , rss 2 , rss 3 ,..., rss 25 )(1)
式中:rssj∈[-100,0]表示参考点处接收到第j个AP节点的信号强度。 In the formula: rss j ∈ [-100,0] represents the signal strength of the jth AP node received at the reference point.
构建指纹数据库,训练数据集中包含N条记录,每条记录可表示为向量r,向量中包含可用AP节点的信号强度和采样点的位置: Build a fingerprint database. The training data set contains N records. Each record can be expressed as a vector r, which contains the signal strength of the available AP nodes and the location of the sampling point:
式中:D表示AP节点的个数,Li表示对应于RSSD向量的位置标签。若移动设备未接收到某AP节点的信号,默认使用-100填充该AP节点信号强度值。移动设备未接收到某AP节点信号的原因有以下两点:一是该AP节点出现故障;二是该AP节点受到障碍物的遮挡。 In the formula: D represents the number of AP nodes , Li represents the location label corresponding to the RSS D vector. If the mobile device does not receive the signal of an AP node, -100 is used to fill the signal strength value of the AP node by default. There are two reasons why the mobile device does not receive the signal of a certain AP node: one is that the AP node fails; the other is that the AP node is blocked by obstacles.
建立的指纹数据库如表所示: The established fingerprint database is shown in the table:
其中,L1到LN是选取的N个参考点,每个参考点的信息包括位置信息和D个AP的RSS值。 Among them, L 1 to L N are selected N reference points, and the information of each reference point includes location information and RSS values of D APs.
假设将区域划分为4个子区域,子区域定义如式3所示: Assuming that the area is divided into 4 sub-areas, the definition of the sub-areas is shown in Equation 3:
式中:c表示第c个子区域,k表示该子区域中位置点的个数,S表示定位区域(目标区域),Rc表示第c个子区域中参考位置点集合;表示第c个子区域中第k个位置点的信息。 In the formula: c represents the cth sub-region, k represents the number of position points in the sub-region, S represents the positioning area (target region), and R c represents the set of reference position points in the c-th sub-region; Indicates the information of the kth location point in the cth subregion.
根据各个不同的子区域,将指纹数据库中信号强度根据不同的子区域进行分类,子区域与信号强度的记录信息表示为: According to different sub-regions, the signal strength in the fingerprint database is classified according to different sub-regions, and the record information of sub-regions and signal strength is expressed as:
area1表示第1个子区域,rss1表示第1个AP节点的信号强度。 area 1 indicates the first sub-area, and rss 1 indicates the signal strength of the first AP node.
构建分区域模块,确定BP神经网络模型并根据子区域标识与信号强度的记录信息训练所建立的BP神经网络,以信号强度RSSI作为输入,对应的子区域标识area作为输出训练BP神经网络,并在训练中修改BP神经网络的各参数以使其能反映RSSI-area的关系;所采用的BP神经网络为五层神经网络;在采用的五层神经网络中,隐含层的层数为2层,输入层的节点数目为25,输出层的节点数目为1,隐含层的节点数目分别为6,4,即采用25:6:4:1的BP神经网络结构,训练函数为traincgf算法,训练次数和目标误差分别设置为100和0.00004,BP网络分区域模块如图2所示。 Construct the sub-area module, determine the BP neural network model and train the established BP neural network according to the record information of the sub-area identification and signal strength, use the signal strength RSSI as input, and use the corresponding sub-area identification area as the output to train the BP neural network, and Modify the parameters of the BP neural network during training to reflect the RSSI-area relationship; the BP neural network used is a five-layer neural network; in the five-layer neural network used, the number of hidden layers is 2 layer, the number of nodes in the input layer is 25, the number of nodes in the output layer is 1, and the number of nodes in the hidden layer is 6 and 4 respectively, that is, the BP neural network structure of 25:6:4:1 is adopted, and the training function is the traincgf algorithm , the number of training times and the target error are set to 100 and 0.00004 respectively, and the sub-area module of the BP network is shown in Figure 2.
用实际接收的信号强度值RSSI与对应的子区域标识area去反复训练并验证所建立的BP神经网络,将训练完的BP神经网络封装成一个固定的函数,该函数输入为接收信号强度RSSI,输出即为对应的子区域标识。 Use the actual received signal strength value RSSI and the corresponding sub-area identification area to repeatedly train and verify the established BP neural network, and encapsulate the trained BP neural network into a fixed function. The input of this function is the received signal strength RSSI, The output is the corresponding sub-area ID.
假设在该子区域中,扫描区域中k个位置点上第j个AP节点的信号,那么该AP节点在此区域的相关性系数定义如下: Assuming that in this sub-area, the signal of the j-th AP node at k positions in the scanning area is scanned, then the correlation coefficient of the AP node in this area is defined as follows:
式中:Pj表示第j个AP节点与该区域的相关性,xi表示第i个位置点的X轴坐标,x表示该区域中k个位置点的X轴坐标的均值,yi表示第i个位置点的Y轴坐标,y表示该区域中k个位置点的Y轴坐标的均值,rssji表示第i个位置点接收到第j个AP节点的信号强度的均值,rssj表示该区域中k个位置点接收的第j个AP节点的信号强度均值,k表示该子区域中位置点的个数。 In the formula: P j represents the correlation between the jth AP node and the area, x i represents the X-axis coordinate of the i-th position point, x represents the mean value of the X-axis coordinates of the k position points in the area, and y i represents The Y-axis coordinate of the i-th location point, y represents the mean value of the Y-axis coordinates of the k location points in the area, rss ji represents the mean value of the signal strength received by the i-th location point from the j-th AP node, and rss j represents The mean value of the signal strength of the jth AP node received by the k position points in the area, and k represents the number of position points in the sub-area.
在每个子区域中,25个AP节点的相关性系数向量表示为: In each sub-region, the correlation coefficient vector of 25 AP nodes is expressed as:
P(AP)=[P1,P2,...,](5) P(AP)=[P 1 , P 2 , . . . ,] (5)
若Pj>Pτ表示第j个AP节点与该子区域相关,反之则不相关。选取与该区域相关的AP节点作为特征输入,进行定位模型训练。 If P j >P τ , it means that the jth AP node is related to the sub-region, otherwise it is not related. The AP nodes related to this area are selected as feature input for training the localization model.
Pτ表示相关性系数的阈值,采用反复试验的方法进行确定。 P τ represents the threshold value of the correlation coefficient, which is determined by trial-and-error method.
在指纹数据库中获取该子区域中所有位置点信息以及对应的AP节点的信号强度,将其作为该子区域的训练数据集。 Obtain all location point information in the sub-area and the signal strength of the corresponding AP node in the fingerprint database, and use it as the training data set for the sub-area.
确定DBN模型并用该子区域的训练数据集去训练并建立DBN模型,以接收的对应AP节点的信号强度RSSI作为输入,对应的位置点Location作为输出去训练所建立的DBN模型,并在训练中修改DBN模型的各参数,使最终的定位模型能正确反映RSSI-Location的关系;所采用的DBN模型为5层网络,其中隐含层的层数为3层,输入层的节点数目为25,输出层的节点数据为2,隐含层的节点数目分别为10,6,4,其网络结构为25:10:6:4:2。 Determine the DBN model and use the training data set of the sub-area to train and build the DBN model, take the received signal strength RSSI of the corresponding AP node as input, and the corresponding location point Location as the output to train the established DBN model, and in the training Modify the parameters of the DBN model so that the final location model can correctly reflect the relationship between RSSI-Location; the DBN model used is a 5-layer network, in which the number of layers in the hidden layer is 3 layers, and the number of nodes in the input layer is 25. The node data of the output layer is 2, the node numbers of the hidden layer are 10, 6, and 4 respectively, and the network structure is 25:10:6:4:2.
用实际接收的对应AP节点的信号强度值RSSI与对应的位置点Location去反复训练并验证所建立的DBN模型。 Use the actual received signal strength value RSSI of the corresponding AP node and the corresponding location point Location to repeatedly train and verify the established DBN model.
通过可见层和隐含层之间的能量函数来调整神经元之间的权值,最后通过反向传播算法来微调网络间的权值。DBN模型如图4所示,包括RBM1模块和RBM2模块,RBM1模块和RBM2模块都包括可见层和隐含层。其训练过程为:当AP节点的信号强度集合输入到RBM1的可见层,隐含层将通过连接的权值提取输入数据的特征,并通过可见层和隐含层之间的能量函数来调整神经元之间的权值;RBM1隐含层的输出将作为RBM2可见层的输入,新的隐含层进一步提取分类数据的深层次特征。将训练完的DBN模型封装成一个固定的函数,该函数输入是接收信号强度RSSI,输出即为目标的位置点。 The weights between neurons are adjusted through the energy function between the visible layer and the hidden layer, and finally the weights between the networks are fine-tuned through the backpropagation algorithm. The DBN model is shown in Figure 4, including the RBM1 module and the RBM2 module, and both the RBM1 module and the RBM2 module include a visible layer and a hidden layer. The training process is as follows: when the signal strength set of the AP node is input to the visible layer of RBM1, the hidden layer will extract the characteristics of the input data through the weight of the connection, and adjust the neural network through the energy function between the visible layer and the hidden layer. The weight between elements; the output of the hidden layer of RBM1 will be used as the input of the visible layer of RBM2, and the new hidden layer will further extract the deep features of the classification data. Encapsulate the trained DBN model into a fixed function, the input of this function is the received signal strength RSSI, and the output is the position point of the target.
在测试点接收到的RSS指纹信息,作为分区域模块的输入向量,分区域模块的输出向量即为该指纹信息所属的子区域。 The RSS fingerprint information received at the test point is used as the input vector of the sub-region module, and the output vector of the sub-region module is the sub-region to which the fingerprint information belongs.
利用步骤六中获取的子区域,利用该子区域对应的AP节点的信号强度作为DBN模型的输入向量,利用已训练的DBN模型获取最终目标的位置。 Use the sub-region obtained in step 6, use the signal strength of the AP node corresponding to the sub-region as the input vector of the DBN model, and use the trained DBN model to obtain the position of the final target.
应当理解的是,本发明的上述具体实施方式仅仅用于示例性说明或解释本发明的原理,而不构成对本发明的限制。因此,在不偏离本发明的精神和范围的情况下所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。此外,本发明所附权利要求旨在涵盖落入所附权利要求范围和边界、或者这种范围和边界的等同形式内的全部变化和修改例。 It should be understood that the above specific embodiments of the present invention are only used to illustrate or explain the principles of the present invention, and not to limit the present invention. Therefore, any modification, equivalent replacement, improvement, etc. made without departing from the spirit and scope of the present invention shall fall within the protection scope of the present invention. Furthermore, it is intended that the appended claims of the present invention embrace all changes and modifications that come within the scope and metesques of the appended claims, or equivalents of such scope and metes and bounds.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510437949.2A CN105101408B (en) | 2015-07-23 | 2015-07-23 | Indoor orientation method based on distributed AP selection strategy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510437949.2A CN105101408B (en) | 2015-07-23 | 2015-07-23 | Indoor orientation method based on distributed AP selection strategy |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105101408A true CN105101408A (en) | 2015-11-25 |
CN105101408B CN105101408B (en) | 2018-10-23 |
Family
ID=54580665
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510437949.2A Active CN105101408B (en) | 2015-07-23 | 2015-07-23 | Indoor orientation method based on distributed AP selection strategy |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105101408B (en) |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105744472A (en) * | 2016-04-11 | 2016-07-06 | 郑州携能通信技术有限公司 | Method and Device for Establishing RF Fingerprint Database |
CN106154221A (en) * | 2016-04-05 | 2016-11-23 | 苏州市职业大学 | A kind of semi-supervised localization method based on WLAN |
CN106303954A (en) * | 2016-08-05 | 2017-01-04 | 合肥工业大学 | A kind of bluetooth self-help tourist guide apparatus based on zone location distinguished number |
CN106658422A (en) * | 2017-01-09 | 2017-05-10 | 深圳市智开科技有限公司 | Network side positioning method and network side positioning system for aiming at high-sparse WiFi data |
CN106793070A (en) * | 2016-11-28 | 2017-05-31 | 上海斐讯数据通信技术有限公司 | A kind of WiFi localization methods and server based on reinforcement deep neural network |
CN106792507A (en) * | 2016-11-22 | 2017-05-31 | 上海斐讯数据通信技术有限公司 | A kind of WiFi localization methods and server based on network data |
CN106792769A (en) * | 2016-11-22 | 2017-05-31 | 上海斐讯数据通信技术有限公司 | A kind of WiFi localization methods and server and location model method for building up |
CN107071894A (en) * | 2017-02-16 | 2017-08-18 | 广东顺德中山大学卡内基梅隆大学国际联合研究院 | A kind of indoor positioning optimized algorithm based on WiFi |
CN107247260A (en) * | 2017-07-06 | 2017-10-13 | 合肥工业大学 | A kind of RFID localization methods based on adaptive depth confidence network |
CN107490783A (en) * | 2016-06-10 | 2017-12-19 | 天津力芯伟业科技有限公司 | A kind of RFID localization methods based on ELM |
CN107529222A (en) * | 2017-09-15 | 2017-12-29 | 上海交通大学 | A kind of WiFi indoor locating systems based on deep learning |
CN107817466A (en) * | 2017-06-19 | 2018-03-20 | 重庆大学 | Based on the indoor orientation method for stacking limited Boltzmann machine and random forests algorithm |
CN108650628A (en) * | 2018-03-24 | 2018-10-12 | 西安电子科技大学 | The indoor orientation method that ranging and fingerprint based on Wi-Fi network are combined |
CN108712714A (en) * | 2018-04-02 | 2018-10-26 | 北京邮电大学 | The selection method and device of AP in a kind of interior WLAN fingerprint locations |
CN108769969A (en) * | 2018-06-20 | 2018-11-06 | 吉林大学 | A kind of RFID indoor orientation methods based on depth confidence network |
CN108990148A (en) * | 2018-09-01 | 2018-12-11 | 哈尔滨工程大学 | The reference point selection method of co-positioned in faced chamber |
CN109246608A (en) * | 2018-11-16 | 2019-01-18 | 重庆小富农康农业科技服务有限公司 | A kind of point-to-point localization method in interior based on WIFI location fingerprint big data analysis |
CN109341691A (en) * | 2018-09-30 | 2019-02-15 | 百色学院 | An Intelligent Indoor Positioning System Based on Icon Recognition and Its Positioning Method |
CN109597024A (en) * | 2018-11-19 | 2019-04-09 | 南京财经大学 | Indoor zone location method and system based on asynchronous sensing data |
CN109922432A (en) * | 2019-03-28 | 2019-06-21 | 南京邮电大学 | Pass through the object localization method of optimization fingerprint elements number under wireless communications environment |
CN110012428A (en) * | 2019-05-22 | 2019-07-12 | 合肥工业大学 | A WiFi-based indoor positioning method |
CN110225460A (en) * | 2019-06-05 | 2019-09-10 | 三维通信股份有限公司 | A kind of indoor orientation method and device based on deep neural network |
CN110418407A (en) * | 2019-08-27 | 2019-11-05 | 成都市东信德科技有限公司 | Exception luggage bluetooth localization method neural network based and its system |
CN110557716A (en) * | 2019-09-03 | 2019-12-10 | 华南师范大学 | Indoor positioning method based on lognormal model |
CN111263295A (en) * | 2020-01-15 | 2020-06-09 | 广东工业大学 | WLAN indoor positioning method and device |
CN111257830A (en) * | 2018-12-03 | 2020-06-09 | 南京理工大学 | WIFI positioning algorithm based on preset AP location |
US10794983B1 (en) | 2019-07-25 | 2020-10-06 | Cisco Technology, Inc. | Enhancing the accuracy of angle-of-arrival device locating through machine learning |
CN112188385A (en) * | 2019-07-02 | 2021-01-05 | 天津工业大学 | Indoor positioning method for narrowing positioning area based on AP sequence |
CN113822415A (en) * | 2021-08-26 | 2021-12-21 | 西安理工大学 | Probability density prediction method for back propagation neural network of indoor position |
CN114269006A (en) * | 2021-12-24 | 2022-04-01 | 河海大学 | A method and device for indoor AP clustering selection based on information gain rate |
CN115032585A (en) * | 2022-08-11 | 2022-09-09 | 电子科技大学 | A non-line-of-sight scene localization method based on RSS ranging and ray tracing technology |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6104344A (en) * | 1999-03-24 | 2000-08-15 | Us Wireless Corporation | Efficient storage and fast matching of wireless spatial signatures |
US6456239B1 (en) * | 1999-08-25 | 2002-09-24 | Rf Technologies, Inc. | Method and apparatus for locating mobile tags |
US7764231B1 (en) * | 1996-09-09 | 2010-07-27 | Tracbeam Llc | Wireless location using multiple mobile station location techniques |
CN102413564A (en) * | 2011-11-25 | 2012-04-11 | 北京工业大学 | Indoor positioning method based on BP neural network and improved centroid algorithm |
CN102821465A (en) * | 2012-09-07 | 2012-12-12 | 哈尔滨工业大学 | WLAN (Wireless Local Area Network) indoor positioning method based on subregion information entropy gain |
CN103476118A (en) * | 2013-09-29 | 2013-12-25 | 哈尔滨工业大学 | WLAN indoor location fingerprint positioning method used for real-time monitoring |
CN103561463A (en) * | 2013-10-24 | 2014-02-05 | 电子科技大学 | RBF neural network indoor positioning method based on sample clustering |
-
2015
- 2015-07-23 CN CN201510437949.2A patent/CN105101408B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7764231B1 (en) * | 1996-09-09 | 2010-07-27 | Tracbeam Llc | Wireless location using multiple mobile station location techniques |
US6104344A (en) * | 1999-03-24 | 2000-08-15 | Us Wireless Corporation | Efficient storage and fast matching of wireless spatial signatures |
US6456239B1 (en) * | 1999-08-25 | 2002-09-24 | Rf Technologies, Inc. | Method and apparatus for locating mobile tags |
CN102413564A (en) * | 2011-11-25 | 2012-04-11 | 北京工业大学 | Indoor positioning method based on BP neural network and improved centroid algorithm |
CN102821465A (en) * | 2012-09-07 | 2012-12-12 | 哈尔滨工业大学 | WLAN (Wireless Local Area Network) indoor positioning method based on subregion information entropy gain |
CN103476118A (en) * | 2013-09-29 | 2013-12-25 | 哈尔滨工业大学 | WLAN indoor location fingerprint positioning method used for real-time monitoring |
CN103561463A (en) * | 2013-10-24 | 2014-02-05 | 电子科技大学 | RBF neural network indoor positioning method based on sample clustering |
Cited By (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106154221A (en) * | 2016-04-05 | 2016-11-23 | 苏州市职业大学 | A kind of semi-supervised localization method based on WLAN |
CN105744472A (en) * | 2016-04-11 | 2016-07-06 | 郑州携能通信技术有限公司 | Method and Device for Establishing RF Fingerprint Database |
CN105744472B (en) * | 2016-04-11 | 2019-03-12 | 郑州携能通信技术有限公司 | Radio-frequency fingerprint database building method and device |
CN107490783A (en) * | 2016-06-10 | 2017-12-19 | 天津力芯伟业科技有限公司 | A kind of RFID localization methods based on ELM |
CN106303954B (en) * | 2016-08-05 | 2019-04-19 | 合肥工业大学 | A Bluetooth self-guided tour guide device based on regional positioning discrimination algorithm |
CN106303954A (en) * | 2016-08-05 | 2017-01-04 | 合肥工业大学 | A kind of bluetooth self-help tourist guide apparatus based on zone location distinguished number |
CN106792507A (en) * | 2016-11-22 | 2017-05-31 | 上海斐讯数据通信技术有限公司 | A kind of WiFi localization methods and server based on network data |
CN106792769A (en) * | 2016-11-22 | 2017-05-31 | 上海斐讯数据通信技术有限公司 | A kind of WiFi localization methods and server and location model method for building up |
CN106793070A (en) * | 2016-11-28 | 2017-05-31 | 上海斐讯数据通信技术有限公司 | A kind of WiFi localization methods and server based on reinforcement deep neural network |
CN106658422A (en) * | 2017-01-09 | 2017-05-10 | 深圳市智开科技有限公司 | Network side positioning method and network side positioning system for aiming at high-sparse WiFi data |
CN106658422B (en) * | 2017-01-09 | 2019-09-10 | 深圳市智开科技有限公司 | For the network side localization method and system of the sparse WiFi data of height |
CN107071894B (en) * | 2017-02-16 | 2020-04-24 | 广东顺德中山大学卡内基梅隆大学国际联合研究院 | Indoor positioning optimization algorithm based on WiFi |
CN107071894A (en) * | 2017-02-16 | 2017-08-18 | 广东顺德中山大学卡内基梅隆大学国际联合研究院 | A kind of indoor positioning optimized algorithm based on WiFi |
CN107817466B (en) * | 2017-06-19 | 2021-02-19 | 重庆大学 | Indoor positioning method based on stacking limited Boltzmann machine and random forest algorithm |
CN107817466A (en) * | 2017-06-19 | 2018-03-20 | 重庆大学 | Based on the indoor orientation method for stacking limited Boltzmann machine and random forests algorithm |
CN107247260A (en) * | 2017-07-06 | 2017-10-13 | 合肥工业大学 | A kind of RFID localization methods based on adaptive depth confidence network |
CN107529222A (en) * | 2017-09-15 | 2017-12-29 | 上海交通大学 | A kind of WiFi indoor locating systems based on deep learning |
CN108650628B (en) * | 2018-03-24 | 2020-07-03 | 西安电子科技大学 | Indoor positioning method combining distance measurement and fingerprint based on Wi-Fi network |
CN108650628A (en) * | 2018-03-24 | 2018-10-12 | 西安电子科技大学 | The indoor orientation method that ranging and fingerprint based on Wi-Fi network are combined |
CN108712714A (en) * | 2018-04-02 | 2018-10-26 | 北京邮电大学 | The selection method and device of AP in a kind of interior WLAN fingerprint locations |
CN108712714B (en) * | 2018-04-02 | 2020-05-22 | 北京邮电大学 | Method and device for selecting AP in indoor WLAN fingerprint positioning |
CN108769969B (en) * | 2018-06-20 | 2021-10-15 | 吉林大学 | An RFID Indoor Localization Method Based on Deep Belief Network |
CN108769969A (en) * | 2018-06-20 | 2018-11-06 | 吉林大学 | A kind of RFID indoor orientation methods based on depth confidence network |
CN108990148B (en) * | 2018-09-01 | 2020-09-25 | 哈尔滨工程大学 | Reference point selection method for indoor cooperative positioning |
CN108990148A (en) * | 2018-09-01 | 2018-12-11 | 哈尔滨工程大学 | The reference point selection method of co-positioned in faced chamber |
CN109341691A (en) * | 2018-09-30 | 2019-02-15 | 百色学院 | An Intelligent Indoor Positioning System Based on Icon Recognition and Its Positioning Method |
CN109246608A (en) * | 2018-11-16 | 2019-01-18 | 重庆小富农康农业科技服务有限公司 | A kind of point-to-point localization method in interior based on WIFI location fingerprint big data analysis |
CN109597024A (en) * | 2018-11-19 | 2019-04-09 | 南京财经大学 | Indoor zone location method and system based on asynchronous sensing data |
CN109597024B (en) * | 2018-11-19 | 2020-05-12 | 南京财经大学 | Indoor area positioning method and system based on asynchronous sensing data |
CN111257830B (en) * | 2018-12-03 | 2023-08-04 | 南京理工大学 | WIFI positioning algorithm based on preset AP position |
CN111257830A (en) * | 2018-12-03 | 2020-06-09 | 南京理工大学 | WIFI positioning algorithm based on preset AP location |
CN109922432A (en) * | 2019-03-28 | 2019-06-21 | 南京邮电大学 | Pass through the object localization method of optimization fingerprint elements number under wireless communications environment |
CN110012428A (en) * | 2019-05-22 | 2019-07-12 | 合肥工业大学 | A WiFi-based indoor positioning method |
CN110012428B (en) * | 2019-05-22 | 2020-12-29 | 合肥工业大学 | A WiFi-based indoor positioning method |
CN110225460B (en) * | 2019-06-05 | 2021-03-23 | 三维通信股份有限公司 | Indoor positioning method and device based on deep neural network |
CN110225460A (en) * | 2019-06-05 | 2019-09-10 | 三维通信股份有限公司 | A kind of indoor orientation method and device based on deep neural network |
CN112188385A (en) * | 2019-07-02 | 2021-01-05 | 天津工业大学 | Indoor positioning method for narrowing positioning area based on AP sequence |
US10794983B1 (en) | 2019-07-25 | 2020-10-06 | Cisco Technology, Inc. | Enhancing the accuracy of angle-of-arrival device locating through machine learning |
CN110418407A (en) * | 2019-08-27 | 2019-11-05 | 成都市东信德科技有限公司 | Exception luggage bluetooth localization method neural network based and its system |
CN110557716A (en) * | 2019-09-03 | 2019-12-10 | 华南师范大学 | Indoor positioning method based on lognormal model |
CN111263295A (en) * | 2020-01-15 | 2020-06-09 | 广东工业大学 | WLAN indoor positioning method and device |
CN111263295B (en) * | 2020-01-15 | 2021-08-13 | 广东工业大学 | A WLAN indoor positioning method and device |
CN113822415A (en) * | 2021-08-26 | 2021-12-21 | 西安理工大学 | Probability density prediction method for back propagation neural network of indoor position |
CN113822415B (en) * | 2021-08-26 | 2023-09-19 | 西安理工大学 | A backpropagation neural network probability density prediction method for indoor locations |
CN114269006A (en) * | 2021-12-24 | 2022-04-01 | 河海大学 | A method and device for indoor AP clustering selection based on information gain rate |
CN115032585A (en) * | 2022-08-11 | 2022-09-09 | 电子科技大学 | A non-line-of-sight scene localization method based on RSS ranging and ray tracing technology |
CN115032585B (en) * | 2022-08-11 | 2022-11-08 | 电子科技大学 | A non-line-of-sight scene localization method based on RSS ranging and ray tracing technology |
Also Published As
Publication number | Publication date |
---|---|
CN105101408B (en) | 2018-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105101408A (en) | Indoor Positioning Method Based on Distributed AP Selection Strategy | |
CN101639527B (en) | K-Nearest Neighbor Fuzzy Clustering WLAN Indoor Positioning Method Based on RSS-P | |
US10884112B2 (en) | Fingerprint positioning method and system in smart classroom | |
CN101651951B (en) | Establishing method and positioning method of indoor positioning network of support vector machine based on WLAN | |
CN107071743B (en) | Rapid KNN indoor WiFi positioning method based on random forest | |
Zou et al. | An RFID indoor positioning system by using weighted path loss and extreme learning machine | |
CN109951807A (en) | Fusion RSS and CSI indoor positioning method based on WiFi signal | |
Zhang et al. | CSI-based human activity recognition with graph few-shot learning | |
CN106851571A (en) | WiFi localization methods in a kind of quick KNN rooms based on decision tree | |
CN110049549A (en) | More fusion indoor orientation methods and its system based on WiFi fingerprint | |
CN111461251A (en) | Indoor positioning method of WiFi fingerprint based on random forest and self-encoder | |
CN111586605B (en) | KNN indoor target positioning method based on adjacent weighted self-adaptive k value | |
CN109991591A (en) | Localization method, device, computer equipment and storage medium based on deep learning | |
CN106154221B (en) | A kind of semi-supervised localization method based on WLAN | |
CN105718971A (en) | RFID-based multi-target passive-type indoor activity identification method | |
CN111698695A (en) | LTE fingerprint type positioning method based on neural network | |
Ma et al. | SCLA-RTI: A novel device-free multi-target localization method based on link analysis in passive UHF RFID environment | |
Bao et al. | Mobintel: Passive outdoor localization via rssi and machine learning | |
Zhao et al. | Indoor device-free passive localization with DCNN for location-based services | |
Liu et al. | Novel robust indoor device-free moving-object localization and tracking using machine learning with Kalman filter and smoother | |
Mukhtar et al. | Machine learning-enabled localization in 5g using lidar and rss data | |
CN114269014B (en) | Large-scale MIMO dynamic environment fingerprint positioning method based on domain adaptive network | |
Bulugu | Gesture recognition system based on cross-domain CSI extracted from Wi-Fi devices combined with the 3D CNN | |
CN111263295A (en) | WLAN indoor positioning method and device | |
Fan et al. | WiFi based indoor localization with multiple kernel learning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |