CN105088035B - A high-conductivity medium-strength non-heat-treated aluminum alloy conductor material and its preparation method - Google Patents
A high-conductivity medium-strength non-heat-treated aluminum alloy conductor material and its preparation method Download PDFInfo
- Publication number
- CN105088035B CN105088035B CN201510460575.6A CN201510460575A CN105088035B CN 105088035 B CN105088035 B CN 105088035B CN 201510460575 A CN201510460575 A CN 201510460575A CN 105088035 B CN105088035 B CN 105088035B
- Authority
- CN
- China
- Prior art keywords
- conductor material
- alloy
- aluminum alloy
- aluminum
- alloy conductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 57
- 239000000463 material Substances 0.000 title claims abstract description 53
- 239000004020 conductor Substances 0.000 title claims abstract description 44
- 238000002360 preparation method Methods 0.000 title claims abstract description 15
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 35
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 26
- 238000005096 rolling process Methods 0.000 claims abstract description 24
- 239000010949 copper Substances 0.000 claims abstract description 21
- 239000011777 magnesium Substances 0.000 claims abstract description 18
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052802 copper Inorganic materials 0.000 claims abstract description 14
- 229910052742 iron Inorganic materials 0.000 claims abstract description 14
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 14
- 239000000203 mixture Substances 0.000 claims abstract description 14
- 239000012535 impurity Substances 0.000 claims abstract description 12
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 11
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910052796 boron Inorganic materials 0.000 claims abstract description 11
- 238000009749 continuous casting Methods 0.000 claims abstract description 8
- 229910000521 B alloy Inorganic materials 0.000 claims abstract description 6
- 238000007670 refining Methods 0.000 claims abstract description 5
- 239000004411 aluminium Substances 0.000 claims abstract 7
- 239000000470 constituent Substances 0.000 claims abstract 2
- 239000000956 alloy Substances 0.000 claims description 65
- 229910045601 alloy Inorganic materials 0.000 claims description 60
- 239000010955 niobium Substances 0.000 claims description 12
- 229910052691 Erbium Inorganic materials 0.000 claims description 11
- 229910052758 niobium Inorganic materials 0.000 claims description 10
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 9
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 9
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 5
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 239000011651 chromium Substances 0.000 claims description 5
- 229910052748 manganese Inorganic materials 0.000 claims description 5
- 239000011572 manganese Substances 0.000 claims description 5
- 239000010936 titanium Substances 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 229910052720 vanadium Inorganic materials 0.000 claims description 5
- 238000013461 design Methods 0.000 claims description 2
- 238000005266 casting Methods 0.000 claims 1
- 238000009413 insulation Methods 0.000 claims 1
- 229920001296 polysiloxane Polymers 0.000 claims 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 9
- 229910000881 Cu alloy Inorganic materials 0.000 abstract description 4
- 229910000640 Fe alloy Inorganic materials 0.000 abstract description 4
- 229910000861 Mg alloy Inorganic materials 0.000 abstract description 4
- 238000010924 continuous production Methods 0.000 abstract description 3
- 238000005516 engineering process Methods 0.000 abstract description 3
- 238000010438 heat treatment Methods 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- DJPURDPSZFLWGC-UHFFFAOYSA-N alumanylidyneborane Chemical compound [Al]#B DJPURDPSZFLWGC-UHFFFAOYSA-N 0.000 description 4
- CYUOWZRAOZFACA-UHFFFAOYSA-N aluminum iron Chemical compound [Al].[Fe] CYUOWZRAOZFACA-UHFFFAOYSA-N 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 4
- WPPDFTBPZNZZRP-UHFFFAOYSA-N aluminum copper Chemical compound [Al].[Cu] WPPDFTBPZNZZRP-UHFFFAOYSA-N 0.000 description 3
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 description 3
- -1 aluminum-erbium Chemical compound 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000011056 performance test Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910001371 Er alloy Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- QNTVPKHKFIYODU-UHFFFAOYSA-N aluminum niobium Chemical compound [Al].[Nb] QNTVPKHKFIYODU-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
Landscapes
- Conductive Materials (AREA)
Abstract
Description
技术领域technical field
本发明涉及电线电缆用导体材料,具体是指一种高导电中强度非热处理型铝合金导体材料及制备方法,属于电工材料制备技术领域。The invention relates to a conductor material for wires and cables, in particular to a high-conductivity medium-strength non-heat-treated aluminum alloy conductor material and a preparation method thereof, belonging to the technical field of electrical material preparation.
背景技术Background technique
随着我国国民经济的发展,电力需求的不断增加,电力能源在传输中的要求越来越高,建设以超、特高压线路为基础的“坚强智能电网”日益受到关注。在“西电东送、南北互供、全国联网”的战略部署下,在“资源节约型、环境友好型和新技术、新材料、新工艺”的“两型三新”电网建设的需求下,提高输电导线的强度、延伸率和电导率,建立高压化、大容量化、远距离化输电导线成为铝合金导线的发展方向。但是铝合金导体材料的强度和电导率是一对矛盾体,两者往往陷入此消彼长的困境,如何更好地兼顾两者的指标成为铝合金发展的关键。非热处理型铝导体材料具有较高的强度和较好的导电性能,可免除热处理工序,降低制造成本,提高制造效率,具有显著的节能环保和经济效益意义。With the development of my country's national economy, the demand for electricity continues to increase, and the requirements for power energy transmission are getting higher and higher. The construction of a "strong smart grid" based on ultra-high voltage and ultra-high voltage lines has attracted increasing attention. Under the strategic deployment of "power transmission from west to east, mutual supply between north and south, and national networking", under the demand of "two types and three new" power grid construction of "resource-saving, environment-friendly and new technologies, new materials, and new processes" , improve the strength, elongation and conductivity of the transmission wire, and establish a high-voltage, large-capacity, and long-distance transmission wire has become the development direction of the aluminum alloy wire. However, the strength and electrical conductivity of aluminum alloy conductor materials are a pair of contradictions, and the two are often caught in the dilemma of trade-offs. How to better balance the two indicators has become the key to the development of aluminum alloys. The non-heat-treated aluminum conductor material has high strength and good electrical conductivity, which can eliminate the heat treatment process, reduce manufacturing costs, improve manufacturing efficiency, and have significant energy-saving, environmental protection and economic benefits.
微合金化是改善合金性能的有效手段,如中国专利CN102816960B、CN101770828B、CN102363849B,均是通过微合金化手段,实现了非热处理型铝导体材料的制备。其中专利CN102816960B开发的非热处理铝合金导体材料的延伸率达到了2%,但是材料的导电率只达到57.5%IACS,抗拉强度为225MPa。专利CN101770828B通过调整合金成分和改善加工工艺获得了导电率大于60%IACS的铝合金导体材料,但是材料的抗拉强度只达到171MPa,而且没有报道材料的延伸率。专利CN102363849B公开的非热处理型高导电铝合金导体材料的导电率大于61%IACS,延伸率大于2.0%,但是材料的抗拉强度只有160-170MPa。随着全铝合金绞线的推广,对铝合金材料的强度指标要求越来越高,如何在相对较高的导电率情况下提升材料的强度指标成为线缆工作者研究的热点。Microalloying is an effective means to improve alloy properties, such as Chinese patents CN102816960B, CN101770828B, and CN102363849B, all realize the preparation of non-heat-treatable aluminum conductor materials by means of microalloying. Wherein patent CN102816960B develops the elongation rate of the non-heat treatment aluminum alloy conductor material to reach 2%, but the electrical conductivity of the material only reaches 57.5% IACS, and the tensile strength is 225MPa. Patent CN101770828B obtained an aluminum alloy conductor material with a conductivity greater than 60% IACS by adjusting the alloy composition and improving the processing technology, but the tensile strength of the material only reached 171MPa, and the elongation of the material was not reported. Patent CN102363849B discloses a non-heat-treated high-conductivity aluminum alloy conductor material with a conductivity greater than 61% IACS and an elongation greater than 2.0%, but the tensile strength of the material is only 160-170 MPa. With the promotion of all-aluminum alloy stranded wires, the requirements for the strength index of aluminum alloy materials are getting higher and higher. How to improve the strength index of materials under the condition of relatively high conductivity has become a hot research topic for cable workers.
发明内容Contents of the invention
本发明的目的在于克服现有技术之不足而提供一种组分配比合理、制备工艺简单的高导电中强度非热处理型铝合金导体材料及制备方法。本发明制备的铝合金导体材料,强度高、导电率较高、延伸率较大,不需热处理就可实现抗拉强度为240MPa,延伸率为2.0%,导电率为59.2%IACS。The purpose of the present invention is to overcome the deficiencies of the prior art and provide a high-conductivity medium-strength non-heat-treatable aluminum alloy conductor material with reasonable component ratio and simple preparation process and a preparation method. The aluminum alloy conductor material prepared by the invention has high strength, high electrical conductivity, and large elongation, and can realize a tensile strength of 240 MPa, an elongation of 2.0%, and an electrical conductivity of 59.2% IACS without heat treatment.
本发明一种高导电中强度非热处理型铝合金导体材料,包括下述组分,按质量百分比组成:A high-conductivity medium-strength non-heat-treated aluminum alloy conductor material of the present invention comprises the following components, which are composed by mass percentage:
Mg 0.10~0.20wt%,Mg 0.10~0.20wt%,
Cu 0.20~0.30wt%,Cu 0.20~0.30wt%,
Fe 0.15~0.30wt%,Fe 0.15~0.30wt%,
B 0.05~0.10wt%,B 0.05~0.10wt%,
不可避免杂质硅含量小于0.05%,杂质钛、钒、铬、锰的含量总和小于0.01%;铝为余量。The unavoidable impurity silicon content is less than 0.05%, the total content of impurity titanium, vanadium, chromium and manganese is less than 0.01%; aluminum is the balance.
本发明一种高导电中强度非热处理型铝合金导体材料还含有铌,铌的质量百分含量大于0小于等于0.20%。The high-conductivity medium-strength non-heat-treatable aluminum alloy conductor material of the present invention also contains niobium, and the mass percentage of niobium is greater than 0 and less than or equal to 0.20%.
本发明一种高导电中强度非热处理型铝合金导体材料还含有铒,铒的质量百分含量大于0小于等于0.10%。The high-conductivity medium-strength non-heat-treatable aluminum alloy conductor material of the present invention also contains erbium, and the mass percentage of erbium is greater than 0 and less than or equal to 0.10%.
本发明一种高导电中强度非热处理型铝合金导体材料的制备方法,是按设计的铝导体材料组分配比分别选取工业纯铝锭,镁、铜、铁、硼的中间合金;将纯度大于99.7%的工业纯铝锭熔化,向熔体中加入镁、铜、铁、硼的中间合金,于740℃~760℃保温,待中间合金完全熔化后,经搅拌、精炼、炉前成分快速分析、成分调整、静置后,连铸连轧成圆形铝合金杆。The preparation method of a kind of high-conductivity medium-strength non-heat-treatable aluminum alloy conductor material of the present invention is to select industrial pure aluminum ingot, magnesium, copper, iron, boron master alloy respectively according to the aluminum conductor material component distribution ratio of design; Melt 99.7% industrial pure aluminum ingots, add magnesium, copper, iron and boron master alloys to the melt, keep warm at 740°C to 760°C, after the master alloys are completely melted, stir, refine, and quickly analyze the components before the furnace , composition adjustment, and standing still, continuous casting and rolling into round aluminum alloy rods.
本发明一种高导电中强度非热处理型铝合金导体材料的制备方法,所述镁、铜、铁、硼的中间合金为铝基镁、铜、铁、硼中间合金。The invention discloses a method for preparing a high-conductivity medium-strength non-heat-treatable aluminum alloy conductor material, wherein the master alloy of magnesium, copper, iron and boron is an aluminum-based master alloy of magnesium, copper, iron and boron.
本发明一种高导电中强度非热处理型铝合金导体材料的制备方法,中间合金完全熔化后,向合金熔液中添加质量百分含量大于0小于等于0.20%的铌和/或质量百分含量大于0小于等于0.10%的铒;所述铌和/或铒以中间合金加入。The invention discloses a method for preparing a high-conductivity medium-strength non-heat-treated aluminum alloy conductor material. After the master alloy is completely melted, niobium and/or niobium with a mass percentage greater than 0 and less than or equal to 0.20% are added to the alloy melt Greater than 0 and less than or equal to 0.10% erbium; said niobium and/or erbium is added as a master alloy.
本发明一种高导电中强度非热处理型铝合金导体材料的制备方法,连铸连轧工艺参数为:进轧温度480℃-530℃,终轧温度200℃-280℃,总变形量≥90%;优选的进轧温度为480-510℃,终轧温度为200-240℃,总变形量≥93%。The invention discloses a method for preparing a high-conductivity medium-strength non-heat-treated aluminum alloy conductor material. The continuous casting and rolling process parameters are as follows: rolling temperature 480°C-530°C, finishing rolling temperature 200°C-280°C, total deformation ≥ 90 %; The preferred rolling temperature is 480-510°C, the finish rolling temperature is 200-240°C, and the total deformation is ≥93%.
本发明所述高导电中强度非热处理型铝合金导体材料,采用铜、镁、铁微合金化,有效提高了该导电铝合金的强度;添加微量的合金元素硼,有效提高该导电铝合金的导电性;复合添加铌和/或铒,可以有效细化该导电铝合金的晶粒、提高合金的耐热性并净化基体。本发明采用上述多组元微量合金元素的添加,通过各组元的协同作用,实现了高导电中强度非热处理型铝合金导体材料的制备,所制备的铝合金材料导电率达到59.2%IACS,抗拉强度大于240MPa,延伸率大于2.0%,较现有技术制备的非热处理型铝合金导体材料的强度、塑性高,导电性能相当。The high-conductivity medium-strength non-heat-treatable aluminum alloy conductor material of the present invention is microalloyed with copper, magnesium and iron, which effectively improves the strength of the conductive aluminum alloy; adding a trace amount of alloy element boron effectively improves the strength of the conductive aluminum alloy. Conductivity; compound addition of niobium and/or erbium can effectively refine the grains of the conductive aluminum alloy, improve the heat resistance of the alloy and purify the matrix. The present invention adopts the addition of the above-mentioned multi-component trace alloy elements, and realizes the preparation of a high-conductivity medium-strength non-heat-treatable aluminum alloy conductor material through the synergistic effect of each component. The conductivity of the prepared aluminum alloy material reaches 59.2% IACS, The tensile strength is greater than 240MPa, and the elongation is greater than 2.0%, which is higher in strength and plasticity than non-heat-treated aluminum alloy conductor materials prepared in the prior art, and has comparable electrical conductivity.
本发明的有益效果为:本发明为电线电缆导体用材料领域提供一种新型材料。本发明通过铝镁合金、铝铜合金和铝铁合金的复合微合金化,获得中强度铝合金,在此基础上,通过加入铝硼和铝铒合金,有效控制杂质形态和数量;通过加入铝铌合金,达到细化合金的晶粒,随后,进行连铸连轧,控制进轧温度为480℃-530℃,终轧温度为200℃-280℃,总变形量≥90%,最终获得强度高、韧性好、导电率高的铝合金材料。本发明制备得到的铝合金材料导电率达到59.2%IACS,抗拉强度大于240MPa,延伸率大于2.0%,较现有技术制备的非热处理型铝合金导体材料的强度、塑性高,导电性能相当。使用本发明的材料制造全铝合金绞线,可以直接采用连铸连轧方式生产,可免除热处理工序,不需要对合金锭材或合金棒材进行均匀化处理,取消了高强度铝合金的时效处理工序,因此可以解决由于热处理而不能连续生产的瓶颈问题降低了铝合金导线的降低制造成本,提高了生产效率,具有显著的节能环保和经济效益意义。The beneficial effects of the invention are: the invention provides a novel material for the field of wire and cable conductor materials. The present invention obtains medium-strength aluminum alloys through composite microalloying of aluminum-magnesium alloys, aluminum-copper alloys and aluminum-iron alloys. On this basis, by adding aluminum-boron and aluminum-erbium alloys, the form and quantity of impurities are effectively controlled; Alloy, to refine the grain of the alloy, followed by continuous casting and rolling, control the rolling temperature at 480°C-530°C, the final rolling temperature at 200°C-280°C, the total deformation ≥ 90%, and finally obtain high strength , aluminum alloy material with good toughness and high conductivity. The electrical conductivity of the aluminum alloy material prepared by the invention reaches 59.2% IACS, the tensile strength is greater than 240 MPa, and the elongation rate is greater than 2.0%, which is higher in strength and plasticity than the non-heat-treated aluminum alloy conductor material prepared in the prior art, and has comparable electrical conductivity. Using the material of the present invention to manufacture all-aluminum alloy stranded wire can be directly produced by continuous casting and rolling, which can avoid the heat treatment process, do not need to homogenize the alloy ingot or alloy bar, and cancel the aging of high-strength aluminum alloy Therefore, it can solve the bottleneck problem of non-continuous production due to heat treatment, reduce the manufacturing cost of aluminum alloy wire, improve production efficiency, and have significant energy-saving, environmental protection and economic benefit significance.
综上所述,本发明组分配比合理、制备工艺简单,连铸连轧即获得具有较高电导率以及较好抗拉强度的非热处理型铝合金导体材料;便于实现连续生产,可有效减低铝合金导线的生产成本以及能源消耗,制造效率高,经济效益显著,适于工业化应用。In summary, the composition ratio of the present invention is reasonable, the preparation process is simple, and continuous casting and rolling can obtain a non-heat-treated aluminum alloy conductor material with high electrical conductivity and good tensile strength; it is convenient for continuous production and can effectively reduce The production cost and energy consumption of the aluminum alloy wire are high in manufacturing efficiency and remarkable in economic benefit, and are suitable for industrial application.
附图说明Description of drawings
附图1为本发明实施例2制备的合金的铸态组织金相照片。Accompanying drawing 1 is the metallographic photograph of the as-cast structure of the alloy prepared in Example 2 of the present invention.
附图2为本发明实施例2制备的合金的X射线衍射图谱。Accompanying drawing 2 is the X-ray diffraction spectrum of the alloy prepared in Example 2 of the present invention.
由图1可知:实施例2制备的合金的铸态组织呈典型的等轴状树枝晶分布,晶粒尺寸在200μm左右。It can be seen from Fig. 1 that the as-cast structure of the alloy prepared in Example 2 presents a typical distribution of equiaxed dendrites, and the grain size is about 200 μm.
由图2可知:实施例2制备的合金中无第二相的衍射峰出现,表明合金元素在基体中主要以固溶态的形式存在,或者以少量化合物的形式存在,但实验仪器难以鉴定其是否存在。It can be seen from Figure 2 that no diffraction peaks of the second phase appear in the alloy prepared in Example 2, indicating that the alloy elements mainly exist in the form of solid solution or a small amount of compounds in the matrix, but it is difficult for experimental instruments to identify them. does it exist.
具体实施方式detailed description
实施例1Example 1
以纯度大于99.7%的工业纯铝锭(其中Si<2.5×10-3%)、Al-11.07%Mg中间合金、Al-37.41%Cu中间合金、Al-5.0%Fe中间合金和Al-2.5%B中间合金为原料,先将工业纯铝放入熔炉中熔化,合金液在740℃-760℃保温,加入铝镁中间合金、铝铜中间合金、铝铁中间合金和铝硼中间合金,使各元素的质量百分比为:镁为0.11%,铜为0.21%,铁为0.17%,硼为0.059%,控制杂质硅含量达到0.034%,控制钛、钒、铬、锰杂质元素含量总和达到0.0058%,铝为余量。待中间合金完全熔化后,经搅拌、精炼、炉前成分快速分析、成分调整、静置后,连铸连轧成圆形铝合金杆,其中进轧温度为500℃,终轧温度为240℃,轧制的变形量为90.3%。对铝导体材料进行导电率和强度性能测试,结果如表1所示。Industrial pure aluminum ingots with a purity greater than 99.7% (where Si<2.5×10 -3 %), Al-11.07% Mg master alloy, Al-37.41% Cu master alloy, Al-5.0% Fe master alloy and Al-2.5% B master alloy is used as raw material, put industrial pure aluminum into the melting furnace to melt, the alloy liquid is kept warm at 740°C-760°C, add aluminum-magnesium master alloy, aluminum-copper master alloy, aluminum-iron master alloy and aluminum-boron master alloy to make each The mass percentage of elements is: 0.11% of magnesium, 0.21% of copper, 0.17% of iron, 0.059% of boron, control the impurity silicon content to 0.034%, control the sum of titanium, vanadium, chromium and manganese impurity elements to 0.0058%, Aluminum is the balance. After the master alloy is completely melted, it is continuously cast and rolled into a round aluminum alloy rod after stirring, refining, rapid composition analysis before the furnace, composition adjustment, and standing. The rolling temperature is 500°C and the final rolling temperature is 240°C. , The rolling deformation is 90.3%. Conduct conductivity and strength performance tests on aluminum conductor materials, and the results are shown in Table 1.
表1 铝合金导体材料综合性能评价表Table 1 Comprehensive performance evaluation table of aluminum alloy conductor materials
实施例2Example 2
以纯度大于99.7%的工业纯铝锭(其中Si<2.5×10-4%)、Al-11.07%Mg中间合金、Al-37.41%Cu中间合金、Al-5.0%Fe中间合金、Al-2.5%B中间合金和Al-9.53%Er中间合金为原料,先将工业纯铝放入熔炉中熔化,合金液在740℃-760℃保温,加入铝镁中间合金、铝铜中间合金、铝铁中间合金、铝硼中间合金和铝铒中间合金,使各元素的质量百分比为:镁为0.13%,铜为0.23%,铁为0.16%,硼为0.087%,铒为0.079%,控制杂质硅含量达到0.028%,控制钛、钒、铬、锰杂质元素含量总和达到0.0071%,铝为余量。待中间合金完全熔化后,经搅拌、精炼、炉前成分快速分析、成分调整、静置后,连铸连轧成圆形铝合金杆,其中进轧温度为530℃,终轧温度为280℃,轧制的变形量为90.8%。对铝导体材料进行导电率和强度性能测试,结果如表2所示。Industrial pure aluminum ingots with a purity greater than 99.7% (where Si<2.5×10 -4 %), Al-11.07% Mg master alloy, Al-37.41% Cu master alloy, Al-5.0% Fe master alloy, Al-2.5% B master alloy and Al-9.53% Er master alloy as raw materials, put industrial pure aluminum into the melting furnace to melt, the alloy liquid is kept at 740°C-760°C, add aluminum-magnesium master alloy, aluminum-copper master alloy, aluminum-iron master alloy , aluminum-boron master alloy and aluminum-erbium master alloy, so that the mass percentage of each element is: magnesium is 0.13%, copper is 0.23%, iron is 0.16%, boron is 0.087%, erbium is 0.079%, and the silicon content of the control impurity reaches 0.028 %, the total content of titanium, vanadium, chromium, and manganese impurity elements is controlled to reach 0.0071%, and aluminum is the balance. After the master alloy is completely melted, after stirring, refining, rapid composition analysis before the furnace, composition adjustment, and standing still, it is continuously cast and rolled into a round aluminum alloy rod. The rolling temperature is 530°C and the final rolling temperature is 280°C. , The rolling deformation is 90.8%. Conduct conductivity and strength performance tests on aluminum conductor materials, and the results are shown in Table 2.
表2 铝合金导体材料综合性能评价表Table 2 Comprehensive performance evaluation table of aluminum alloy conductor materials
实施例3Example 3
以纯度大于99.7%的工业纯铝锭(Si<2.5×10-4%)、Al-11.07%Mg中间合金、Al-37.41%Cu中间合金、Al-5.0%Fe中间合金、Al-2.5%B中间合金、Al-9.53%Er中间合金和Al-9.02%Nb中间合金为原料,先将工业纯铝放入熔炉中熔化,合金液在740℃-760℃保温,加入铝镁中间合金、铝铜中间合金、铝铁中间合金、铝硼中间合金、铝铒中间合金和铝铌中间合金,使各元素的质量百分比为:镁为0.17%,铜为0.22%,铁为0.21%,硼为0.091%,铒为0.029%,铌为0.13%,控制杂质硅含量达到0.03%,控制钛、钒、铬、锰杂质元素含量总和达到0.0063%,铝为余量。待中间合金完全熔化后,经搅拌、精炼、炉前成分快速分析、成分调整、静置后,连铸连轧成圆形铝合金杆,其中进轧温度为480℃,终轧温度为200℃,轧制的变形量为91.3%。对铝导体材料进行导电率和强度性能测试,结果如表3所示。Industrial pure aluminum ingots with a purity greater than 99.7% (Si<2.5×10 -4 %), Al-11.07% Mg master alloy, Al-37.41% Cu master alloy, Al-5.0% Fe master alloy, Al-2.5% B Master alloys, Al-9.53% Er master alloys and Al-9.02% Nb master alloys are used as raw materials. First, industrial pure aluminum is put into a furnace to melt, and the alloy liquid is kept at 740°C-760°C. Master alloys, aluminum-iron master alloys, aluminum-boron master alloys, aluminum-erbium master alloys and aluminum-niobium master alloys, so that the mass percent of each element is: magnesium is 0.17%, copper is 0.22%, iron is 0.21%, boron is 0.091% , 0.029% erbium, 0.13% niobium, control the impurity silicon content to 0.03%, control the total content of titanium, vanadium, chromium, manganese impurity elements to 0.0063%, and aluminum as the balance. After the master alloy is completely melted, after stirring, refining, rapid composition analysis before the furnace, composition adjustment, and standing still, it is continuously cast and rolled into a round aluminum alloy rod. The rolling temperature is 480°C and the final rolling temperature is 200°C. , The rolling deformation is 91.3%. Conduct conductivity and strength performance tests on aluminum conductor materials, and the results are shown in Table 3.
表3 铝合金导体材料综合性能评价表Table 3 Comprehensive performance evaluation table of aluminum alloy conductor materials
从实施例1-3得到的数据可知:本发明制备得到的铝合金材料导电率达到59.2%IACS,抗拉强度大于240MPa,延伸率大于2.0%,较现有技术制备的非热处理型铝合金导体材料的强度、塑性高,导电性能相当。From the data obtained in Examples 1-3, it can be seen that the conductivity of the aluminum alloy material prepared by the present invention reaches 59.2% IACS, the tensile strength is greater than 240MPa, and the elongation is greater than 2.0%, which is higher than that of the non-heat-treated aluminum alloy conductor prepared by the prior art. The strength and plasticity of the material are high, and the electrical conductivity is equivalent.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510460575.6A CN105088035B (en) | 2015-07-30 | 2015-07-30 | A high-conductivity medium-strength non-heat-treated aluminum alloy conductor material and its preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510460575.6A CN105088035B (en) | 2015-07-30 | 2015-07-30 | A high-conductivity medium-strength non-heat-treated aluminum alloy conductor material and its preparation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105088035A CN105088035A (en) | 2015-11-25 |
CN105088035B true CN105088035B (en) | 2017-08-04 |
Family
ID=54569353
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510460575.6A Active CN105088035B (en) | 2015-07-30 | 2015-07-30 | A high-conductivity medium-strength non-heat-treated aluminum alloy conductor material and its preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105088035B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105369077B (en) * | 2015-11-27 | 2017-05-10 | 贵州航天风华精密设备有限公司 | Aluminum alloy conductor material and preparation method thereof |
CN107460378B (en) * | 2017-08-07 | 2019-01-29 | 中南大学 | A kind of Al-Si-Fe-Mg-Cu alloy conductor material and preparation method thereof |
CN107805748A (en) * | 2017-10-30 | 2018-03-16 | 天津市津和双金属线材有限公司 | A kind of high heat-resisting electrical aluminum rod formula |
CN108231238B (en) * | 2018-01-09 | 2020-05-12 | 北京有色金属研究总院 | Aluminum alloy cable for railway and preparation method thereof |
CN109207759B (en) * | 2018-10-31 | 2021-03-19 | 远东电缆有限公司 | Non-aging type high-strength high-conductivity aluminum alloy overhead conductor and preparation method thereof |
CN109778030B (en) * | 2019-03-19 | 2022-03-04 | 苏州铭恒金属科技有限公司 | Novel aluminum alloy material and preparation thereof |
CN115011821B (en) * | 2022-04-25 | 2023-05-16 | 昆明理工大学 | High-conductivity aluminum-based alloy and preparation method thereof |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5684440A (en) * | 1979-12-10 | 1981-07-09 | Dainichi Nippon Cables Ltd | Conductive high-strength aluminum alloy |
JP4777487B1 (en) * | 2008-08-11 | 2011-09-21 | 住友電気工業株式会社 | Method for manufacturing aluminum alloy wire |
JP4609866B2 (en) * | 2009-01-19 | 2011-01-12 | 古河電気工業株式会社 | Aluminum alloy wire |
CN102230113B (en) * | 2011-07-18 | 2013-06-26 | 中南大学 | A kind of heat-resistant aluminum alloy conductor material and preparation method thereof |
CN102634695A (en) * | 2012-04-26 | 2012-08-15 | 远东电缆有限公司 | High-conductivity non-heat-treatment type moderate-intensity aluminum alloy wire and production method thereof |
CN103545010B (en) * | 2012-07-12 | 2016-08-10 | 青岛汉缆股份有限公司 | Non-aged aluminum alloy wire and manufacture method thereof |
CN103045915B (en) * | 2012-12-14 | 2015-02-04 | 国网智能电网研究院 | High conductivity moderately strong heat-resistant aluminum alloy monofilament and preparation method thereof |
CN103627935A (en) * | 2013-12-09 | 2014-03-12 | 国家电网公司 | Non-heat-treated heat-resistant aluminium alloy monofilament and preparation method thereof |
CN103996427B (en) * | 2014-05-30 | 2016-09-07 | 湖南金龙国际铜业有限公司 | Strength aluminium alloy wire and production technology thereof in a kind of non-heat treated |
-
2015
- 2015-07-30 CN CN201510460575.6A patent/CN105088035B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN105088035A (en) | 2015-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105088035B (en) | A high-conductivity medium-strength non-heat-treated aluminum alloy conductor material and its preparation method | |
CN103952605B (en) | A kind of preparation method of middle strength aluminium alloy monofilament | |
CN101418401B (en) | A kind of Al-Er alloy wire material and preparation method thereof | |
CN104946936B (en) | A kind of aerial condutor high conductivity rare earth duralumin monofilament material | |
CN102230113B (en) | A kind of heat-resistant aluminum alloy conductor material and preparation method thereof | |
CN102703770B (en) | Aluminum iron copper magnesium rare earth alloy material for electric wire and cable and preparation method thereof | |
CN103966475B (en) | A kind of copper chromium titanium alloy osculatory and preparation method thereof | |
CN102864345B (en) | Preparation method of carbon nanotube composite aluminum conductor | |
CN104975211B (en) | Strength aluminum alloy conductive monofilament in a kind of high conductivity heat treatment type | |
CN102978490A (en) | High-strength, high-conductivity and heat-resisting aluminum alloy bus and production method thereof | |
CN107675048B (en) | A kind of high-conductivity medium-strength aluminum alloy and preparation method thereof | |
CN106893899A (en) | A kind of built on stilts heat resistant aluminum alloy conductor material and preparation method thereof | |
WO2020232990A1 (en) | Heat-resistant aluminum alloy having high conductivity, preparation method therefor and alloy aluminum rod used for overhead cables | |
CN104532067A (en) | Non-heat treatment medium-strength aluminum alloy conductor material and preparation method thereof | |
CN102766788A (en) | Preparation method of moderate strength Al-Mg-Si alloy rods and alloy wires through natural ageing treatment | |
CN108315602A (en) | A kind of railway rare earth aluminium alloy cable conductor and preparation method | |
CN103556016B (en) | A kind of middle intensity high conductivity electrician aluminum conductor material and preparation method thereof | |
CN103820680B (en) | A kind of high strength heat resistant alloy wire | |
CN104328304B (en) | Copper alloy for high-strength and high-conductivity lead and preparation method of copper alloy | |
CN112662923B (en) | Aluminum alloy conductor and preparation method thereof | |
CN114411001A (en) | Rare earth modified aluminum magnesium silicon alloy and preparation method and application thereof | |
CN114045418A (en) | Aluminum alloy material and preparation method and application thereof | |
CN103789586A (en) | Novel moderate-strength high-conductivity aluminum alloy electrician round bar | |
CN101245429A (en) | Al-Mg-Si-Mn Alloy Added Er | |
CN106929712A (en) | The alloy round aluminum rod and its production method of intensity in a kind of low resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |