CN105048499A - 基于模型预测控制的风电并网实时调度方法及装置 - Google Patents
基于模型预测控制的风电并网实时调度方法及装置 Download PDFInfo
- Publication number
- CN105048499A CN105048499A CN201510441034.9A CN201510441034A CN105048499A CN 105048499 A CN105048499 A CN 105048499A CN 201510441034 A CN201510441034 A CN 201510441034A CN 105048499 A CN105048499 A CN 105048499A
- Authority
- CN
- China
- Prior art keywords
- mrow
- msub
- fan
- mtd
- alpha
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/60—Planning or developing urban green infrastructure
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/76—Power conversion electric or electronic aspects
Landscapes
- Supply And Distribution Of Alternating Current (AREA)
- Wind Motors (AREA)
Abstract
本发明公开一种基于模型预测控制的风电并网实时调度方法及装置,能够提高风电并网实时调度的准确度,从而能够提升风电并网的稳定性。所述方法包括:计算大电网中各台风机的发电量指标;建立风机功率预测模型,以及风机出力计划与所述风机功率预测模型的功率预测结果的关系,通过对所述风机功率预测模型进行滚动优化,对风机出力计划与所对应的发电量指标之间的误差进行反馈校正,使风机出力计划与所对应的发电量指标之间的误差在预设的误差范围内。
Description
技术领域
本发明涉及电力系统运行与控制技术领域,具体涉及一种基于模型预测控制的风电并网实时调度方法及装置。
背景技术
新能源发电在不可再生资源日益枯竭的状况下发展迅速,其中风能的发展更为迅速,近几年风电场装机容量在逐渐增大,如何提高风电场有功功率预测的准确度和并网的稳定性以满足大电网调度要求是影响风电并网普及的难题。
风能由于不确定性和间歇性阻碍了对其的利用和推广。目前的风电场功率预测,大多数是在预测算法上进行改进,其中用到了机器学习和概率分布等对风电功率进行预测,选取预测精度高的模型。但是由于预测模型的固化以及在线数据的实时变化,使得单纯使用功率预测模型进行调度的准确度较低,从而导致风电并网的稳定性较差。
发明内容
本发明的目的在于,提供一种基于模型预测控制的风电并网实时调度方法及装置,能够提高风电并网实时调度的准确度,从而能够提升风电并网的稳定性。
为此目的,一方面,本发明提出一种基于模型预测控制的风电并网实时调度方法,包括:
计算大电网中各台风机的发电量指标;
建立风机功率预测模型,以及风机出力计划与所述风机功率预测模型的功率预测结果的关系,通过对所述风机功率预测模型进行滚动优化,对风机出力计划与所对应的发电量指标之间的误差进行反馈校正,使风机出力计划与所对应的发电量指标之间的误差在预设的误差范围内。
另一方面,本发明提出一种基于模型预测控制的风电并网实时调度装置,包括:
发电量指标计算单元,用于计算大电网中各台风机的发电量指标;
模型优化单元,用于建立风机功率预测模型,以及风机出力计划与所述风机功率预测模型的功率预测结果的关系,通过对所述风机功率预测模型进行滚动优化,对风机出力计划与所对应的发电量指标之间的误差进行反馈校正,使风机出力计划与所对应的发电量指标之间的误差在预设的误差范围内。
本发明实施例所述的基于模型预测控制的风电并网实时调度方法及装置,延续了对功率预测模型的算法改进,加上对其中误差、负荷调度的考虑,通过预测控制技术即功率预测模型的滚动优化和误差的反馈校正,使得功率预测较之现有的预测方法在精度上有所提高,相较于传统的风电并网仅利用预测模型进行调度,具有超前消除预测偏差、降低风电并网调度不确定性因素影响的优点,能够提高风电并网实时调度的准确度,从而能够提升风电并网的稳定性。
附图说明
图1为本发明基于模型预测控制的风电并网实时调度方法一实施例的流程示意图;
图2为本发明基于模型预测控制的风电并网实时调度方法另一实施例的流程示意图;
图3为本发明基于模型预测控制的风电并网实时调度装置一实施例的方框结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,本实施例公开一种基于模型预测控制的风电并网实时调度方法,包括:
S1、计算大电网中各台风机的发电量指标;
S2、建立风机功率预测模型,以及风机出力计划与所述风机功率预测模型的功率预测结果的关系,通过对所述风机功率预测模型进行滚动优化,对风机出力计划与所对应的发电量指标之间的误差进行反馈校正,使风机出力计划与所对应的发电量指标之间的误差在预设的误差范围内。
本发明实施例所述的基于模型预测控制的风电并网实时调度方法,延续了对功率预测模型的算法改进,加上对其中误差、负荷调度的考虑,通过预测控制技术即功率预测模型的滚动优化和误差的反馈校正,使得功率预测较之现有的预测方法在精度上有所提高,相较于传统的风电并网仅利用预测模型进行调度,具有超前消除预测偏差、降低风电并网调度不确定性因素影响的优点,能够提高风电并网实时调度的准确度,从而能够提升风电并网的稳定性。
可选地,在本发明基于模型预测控制的风电并网实时调度方法的实施例中,所述计算大电网中各台风机的发电量指标,包括:
获取大电网的历史负荷数据,根据所述历史负荷数据建立负荷预测模型,对未来预设时段的负荷进行预测,得到所述未来预设时段大电网的负荷预测值,并确定出分配给风电场发电机组的发电量指标;
将所述风电场发电机组的发电量指标分配给风电场的各台风机,得到所述各台风机的发电量指标。
本发明实施例中,在得到未来预设时段大电网的负荷预测值之后,可以依照一定的比例给传统发电机组和风力发电机组分配发电量指标。在将风电场发电机组的发电量指标分配给风电场的各台风机时,可以依据当前各个风机的指标(比如风机所处环境的风速、湿度等)进行分配。
可选地,在本发明基于模型预测控制的风电并网实时调度方法的实施例中,所述建立风机功率预测模型,包括:
计算非线性风电功率预测拓扑在希尔伯特空间的线性系数α(*),计算公式为
其中,l为待建模的风机的历史数据数量,i为2和l之间的整数,α=(α1,α2,…,αl),xi(i∈(1,2,…,l))为此风机第i个历史指标值,yi(i∈(1,2,…,l))为此风机对应第i个历史指标值的历史真实功率输出值,K(x,x)为映射核函数,ε为常数;
测时间段数值天气预报所预测的此风机的指标值,P为此风机的功率预测结果。
本发明实施例中,和α=(α1,α2,…,αl)是非线性风电功率预测拓扑在希尔伯特空间的两组线性系数,当选择线性系数时,当选择线性系数α=(α1,α2,…,αl)时,
可选地,在本发明基于模型预测控制的风电并网实时调度方法的实施例中,所述风机出力计划与所述风机功率预测模型的功率预测结果的关系为
其中,Pi wp为第i个风机的出力计划,Pi为第i个风机的功率预测结果,kmax、kmin分别为风电场的机组调整裕度的上、下限的系数,Cwp是风电场机组的容量。
可选地,在本发明基于模型预测控制的风电并网实时调度方法的实施例中,所述对所述风机功率预测模型进行滚动优化,包括:
按照公式计算所述风机功率预测模型的功率预测结果的控制增量,计算公式为
其中,是风机功率预测模型的功率预测结果;N1、N2分别为优化时域的始值和终值,NU是控制时域,u为控制变量,Δ是差分算子,Δu是控制增量,yE是风机的期望输出功率,y是风机的实际输出功率,α和c为常数;
将所述控制增量和所述风机功率预测模型的功率预测结果进行加法运算,并将所述加法运算的结果作为所述风机功率预测模型的功率预测结果的修正值。
本发明利用控制增量对风机功率预测模型的功率预测结果进行修正,以实现对风机功率预测模型的滚动优化,保证了利用风机功率预测模型进行风机功率预测的准确度,有助于实现风电并网的稳定运行。
可选地,在本发明基于模型预测控制的风电并网实时调度方法的实施例中,所述对风机出力计划与所对应的发电量指标之间的误差进行反馈校正,包括:
计算风机出力计划与所述风机功率预测模型的功率预测结果之间的误差,根据计算出的所述误差计算出风机的指标调整量,并将风机的指标按照所述指标调整量进行相应的调整。
本发明实施例中,可以通过风机控制器对风机的指标进行调整,已知风电场出力计划,反馈校正风机控制器,从而达到满足整体发电计划的要求,通过对模型的滚动优化、风机控制器的反馈校正来进一步提高各个风电场风机输出功率预测的准确度并且满足大电网调度需求。
图2为本发明的一具体流程图,下面结合图2对本发明的具体实施例进行详细描述。
参看图2,本发明基于模型预测控制的风电并网实时调度方法,具体包括如下步骤:
(1)在当前时刻采样时刻t0,搜集某地历史负荷数据,建立超短期负荷预测模型,计算得到大电网的未来设定时间段的负荷输出;据此来分配传统发电机组和风机发电机组的发电指标;
(2)计算得到区域各个风电场各台风机的发电分配目标值;
(3)以风电场各台风机的历史指标数据作为训练集,构建风机的功率预测模型,将依据数值天气预报数据得到的各台风机的指标代入风机的功率预测模型,得到各台风机的功率预测值,在此过程中可配合风电场监测设备监测得到的风机的实际输出功率对各台风机的功率预测值进行优化;
(4)根据各台风机的功率预测值计算出各台风机的出力计划;
(5)计算各台风机的发电量指标和出力计划之间的误差,根据误差计算风机的指标调整量,通过对风机的指标进行调整(此调整过程可配合风电场监测设备进行指标监测)使各台风机的发电量指标和出力计划之间的误差尽量的小。
参看图3,本实施例公开一种基于模型预测控制的风电并网实时调度装置,包括:
发电量指标计算单元1,用于计算大电网中各台风机的发电量指标;
模型优化单元2,用于建立风机功率预测模型,以及风机出力计划与所述风机功率预测模型的功率预测结果的关系,通过对所述风机功率预测模型进行滚动优化,对风机出力计划与所对应的发电量指标之间的误差进行反馈校正,使风机出力计划与所对应的发电量指标之间的误差在预设的误差范围内。
本发明实施例所述的基于模型预测控制的风电并网实时调度装置,延续了对功率预测模型的算法改进,加上对其中误差、负荷调度的考虑,通过预测控制技术即功率预测模型的滚动优化和误差的反馈校正,使得功率预测较之现有的预测方法在精度上有所提高,相较于传统的风电并网仅利用预测模型进行调度,具有超前消除预测偏差、降低风电并网调度不确定性因素影响的优点,能够提高风电并网实时调度的准确度,从而能够提升风电并网的稳定性。
可选地,在本发明基于模型预测控制的风电并网实时调度装置的实施例中,所述发电量指标计算单元,包括:
计算子单元,用于获取大电网的历史负荷数据,根据所述历史负荷数据建立负荷预测模型,对未来预设时段的负荷进行预测,得到所述未来预设时段大电网的负荷预测值,并确定出分配给风电场发电机组的发电量指标;
分配子单元,用于将所述风电场发电机组的发电量指标分配给风电场的各台风机,得到所述各台风机的发电量指标。
可选地,在本发明基于模型预测控制的风电并网实时调度装置的实施例中,所述模型优化单元,包括:
线性系数计算子单元,用于计算非线性风电功率预测拓扑在希尔伯特空间的线性系数α(*),计算公式为
其中,l为待建模的风机的历史数据数量,i为2和l之间的整数,α=(α1,α2,…,αl),xi(i∈(1,2,…,l))为此风机第i个历史指标值,yi(i∈(1,2,…,l))为此风机对应第i个历史指标值的历史真实功率输出值,K(x,x)为映射核函数,ε为常数;
测时间段数值天气预报所预测的此风机的指标值,p为此风机的功率预测结果。
可选地,在本发明基于模型预测控制的风电并网实时调度装置的实施例中,所述模型优化单元,用于计算风机出力计划与所述风机功率预测模型的功率预测结果之间的误差,根据计算出的所述误差计算出风机的指标调整量,并将风机的指标按照所述指标调整量进行相应的调整。
虽然结合附图描述了本发明的实施方式,但是本领域技术人员可以在不脱离本发明的精神和范围的情况下做出各种修改和变型,这样的修改和变型均落入由所附权利要求所限定的范围之内。
Claims (10)
1.一种基于模型预测控制的风电并网实时调度方法,其特征在于,包括:
计算大电网中各台风机的发电量指标;
建立风机功率预测模型,以及风机出力计划与所述风机功率预测模型的功率预测结果的关系,通过对所述风机功率预测模型进行滚动优化,对风机出力计划与所对应的发电量指标之间的误差进行反馈校正,使风机出力计划与所对应的发电量指标之间的误差在预设的误差范围内。
2.根据权利要求1所述的基于模型预测控制的风电并网实时调度方法,其特征在于,所述计算大电网中各台风机的发电量指标,包括:
获取大电网的历史负荷数据,根据所述历史负荷数据建立负荷预测模型,对未来预设时段的负荷进行预测,得到所述未来预设时段大电网的负荷预测值,并确定出分配给风电场发电机组的发电量指标;
将所述风电场发电机组的发电量指标分配给风电场的各台风机,得到所述各台风机的发电量指标。
3.根据权利要求1所述的基于模型预测控制的风电并网实时调度方法,其特征在于,所述建立风机功率预测模型,包括:
计算非线性风电功率预测拓扑在希尔伯特空间的线性系数α (*),计算公式为
其中,l为待建模的风机的历史数据数量,i为2和l之间的整数,α=(α1,α2,…,αl),xi(i∈(1,2,…,l))为此风机第i个历史指标值,yi(i∈(1,2,…,l))为此风机对应第i个历史指标值的历史真实功率输出值,K(x,x)为映射核函数,ε为常数;
确定出风机功率预测模型为其中, 或者 x为当前预测时间段数值天气预报所预测的此风机的指标值,P为此风机的功率预测结果。
4.根据权利要求1所述的基于模型预测控制的风电并网实时调度方法,其特征在于,所述风机出力计划与所述风机功率预测模型的功率预测结果的关系为
其中,为第i个风机的出力计划,Pi为第i个风机的功率预测结果,kmax、kmin分别为风电场的机组调整裕度的上、下限的系数,Cwp是风电场机组的容量。
5.根据权利要求1所述的基于模型预测控制的风电并网实时调度方法,其特征在于,所述对所述风机功率预测模型进行滚动优化,包括:
按照公式计算所述风机功率预测模型的功率预测结果的控制增量,计算公式为
其中,是风机功率预测模型的功率预测结果;N1、N2分别为优化时域的始值和终值,NU是控制时域,u为控制变量,Δ是差分算子,Δu是控制增量,yE是风机的期望输出功率,y是风机的实际输出功率,α和c为常数;
将所述控制增量和所述风机功率预测模型的功率预测结果进行加法运算,并将所述加法运算的结果作为所述风机功率预测模型的功率预测结果的修正值。
6.根据权利要求1所述的基于模型预测控制的风电并网实时调度方法,其特征在于,所述对风机出力计划与所对应的发电量指标之间的误差进行反馈校正,包括:
计算风机出力计划与所述风机功率预测模型的功率预测结果之间的误差,根据计算出的所述误差计算出风机的指标调整量,并将风机的指标按照所述指标调整量进行相应的调整。
7.一种基于模型预测控制的风电并网实时调度装置,其特征在于,包括:
发电量指标计算单元,用于计算大电网中各台风机的发电量指标;
模型优化单元,用于建立风机功率预测模型,以及风机出力计划与所述风机功率预测模型的功率预测结果的关系,通过对所述风机功率预测模型进行滚动优化,对风机出力计划与所对应的发电量指标之间的误差进行反馈校正,使风机出力计划与所对应的发电量指标之间的误差在预设的误差范围内。
8.根据权利要求7所述的基于模型预测控制的风电并网实时调度装置,其特征在于,所述发电量指标计算单元,包括:
计算子单元,用于获取大电网的历史负荷数据,根据所述历史负荷数据建立负荷预测模型,对未来预设时段的负荷进行预测,得到所述未来预设时段大电网的负荷预测值,并确定出分配给风电场发电机组的发电量指标;
分配子单元,用于将所述风电场发电机组的发电量指标分配给风电场的各台风机,得到所述各台风机的发电量指标。
9.根据权利要求7所述的基于模型预测控制的风电并网实时调度装置,其特征在于,所述模型优化单元,包括:
线性系数计算子单元,用于计算非线性风电功率预测拓扑在希尔伯特空间的线性系数α(*),计算公式为
其中,l为待建模的风机的历史数据数量,i为2和l之间的整数,α=(α1,α2,…,αl),xi(i∈(1,2,…,l))为此风机第i个历史指标值,yi(i∈(1,2,…,l))为此风机对应第i个历史指标值的历史真实功率输出值,K(x,x)为映射核函数,ε为常数;
测时间段数值天气预报所预测的此风机的指标值,P为此风机的功率预测结果。
10.根据权利要求7所述的基于模型预测控制的风电并网实时调度装置,其特征在于,所述模型优化单元,用于计算风机出力计划与所述风机功率预测模型的功率预测结果之间的误差,根据计算出的所述误差计算出风机的指标调整量,并将风机的指标按照所述指标调整量进行相应的调整。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510441034.9A CN105048499B (zh) | 2015-07-24 | 2015-07-24 | 基于模型预测控制的风电并网实时调度方法及系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510441034.9A CN105048499B (zh) | 2015-07-24 | 2015-07-24 | 基于模型预测控制的风电并网实时调度方法及系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105048499A true CN105048499A (zh) | 2015-11-11 |
CN105048499B CN105048499B (zh) | 2017-11-03 |
Family
ID=54454821
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510441034.9A Active CN105048499B (zh) | 2015-07-24 | 2015-07-24 | 基于模型预测控制的风电并网实时调度方法及系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105048499B (zh) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105375479A (zh) * | 2015-12-14 | 2016-03-02 | 东南大学 | 一种基于模型预测控制的分布式能源能量管理方法 |
CN106786807A (zh) * | 2016-12-15 | 2017-05-31 | 电子科技大学 | 一种基于模型预测控制的风电场有功功率控制方法 |
CN107276221A (zh) * | 2017-05-23 | 2017-10-20 | 中国农业大学 | 一种优化风电消纳的电力系统调度方法 |
CN107508327A (zh) * | 2017-10-20 | 2017-12-22 | 云南电网有限责任公司 | 基于模型预测控制的配电网自治区域并网功率控制方法 |
CN107979112A (zh) * | 2017-11-30 | 2018-05-01 | 全球能源互联网研究院有限公司 | 一种风机控制方法、系统、终端及可读存储介质 |
CN109376426A (zh) * | 2018-10-23 | 2019-02-22 | 株洲中车时代电气股份有限公司 | 一种风电并网功率调度方法及装置 |
CN109416019A (zh) * | 2016-07-06 | 2019-03-01 | 维斯塔斯风力系统集团公司 | 具有多个风力涡轮发电机和发电厂控制器的风力发电厂 |
CN109657867A (zh) * | 2018-12-25 | 2019-04-19 | 广州汇电云联互联网科技有限公司 | 一种a类机组出力曲线分解方法 |
CN109685271A (zh) * | 2018-12-25 | 2019-04-26 | 广州汇电云联互联网科技有限公司 | 一种统调负荷曲线分解方法 |
CN110474328A (zh) * | 2019-08-20 | 2019-11-19 | 杭州市电力设计院有限公司余杭分公司 | 一种新能源电站的并网控制方法及系统 |
CN111342499A (zh) * | 2020-03-05 | 2020-06-26 | 宁夏嘉泽新能源股份有限公司 | 一种基于风功率预测数据的风电场实时调度方法 |
CN112039132A (zh) * | 2020-08-14 | 2020-12-04 | 中国农业大学 | 一种不确定性电源的有功控制和精细指令分配方法 |
CN112103939A (zh) * | 2019-06-18 | 2020-12-18 | 上海电机学院 | 一种电力系统稳定性分析方法及装置 |
CN114430816A (zh) * | 2019-10-02 | 2022-05-03 | 通用电气公司 | 用于融合风力涡轮机的多种分析以提高效率的系统和方法 |
CN118944144A (zh) * | 2024-07-23 | 2024-11-12 | 南京苏逸实业有限公司 | 一种电源车的优化控制方法、装置、设备以及存储介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102075014A (zh) * | 2011-01-06 | 2011-05-25 | 清华大学 | 消纳风电接入的大电网实时调度方法 |
CN102170170A (zh) * | 2011-04-02 | 2011-08-31 | 清华大学 | 消纳风电接入的大电网调度滚动计划方法 |
CN102738833A (zh) * | 2012-06-20 | 2012-10-17 | 湖北省电力公司 | 一种含风电的电力系统多时间尺度滚动协调调度方法 |
CN103427444A (zh) * | 2013-05-16 | 2013-12-04 | 新疆大学 | 一种减小风电并网调度计划误差的控制方法 |
CN104181895A (zh) * | 2014-08-28 | 2014-12-03 | 国家电网公司 | 适应新能源接入的短期与超短期协调滚动调度优化策略 |
-
2015
- 2015-07-24 CN CN201510441034.9A patent/CN105048499B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102075014A (zh) * | 2011-01-06 | 2011-05-25 | 清华大学 | 消纳风电接入的大电网实时调度方法 |
CN102170170A (zh) * | 2011-04-02 | 2011-08-31 | 清华大学 | 消纳风电接入的大电网调度滚动计划方法 |
CN102738833A (zh) * | 2012-06-20 | 2012-10-17 | 湖北省电力公司 | 一种含风电的电力系统多时间尺度滚动协调调度方法 |
CN103427444A (zh) * | 2013-05-16 | 2013-12-04 | 新疆大学 | 一种减小风电并网调度计划误差的控制方法 |
CN104181895A (zh) * | 2014-08-28 | 2014-12-03 | 国家电网公司 | 适应新能源接入的短期与超短期协调滚动调度优化策略 |
Non-Patent Citations (1)
Title |
---|
张伯明等: "大规模风电接入电网的有功分层模型预测控制方法", 《电力系统自动化》 * |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105375479B (zh) * | 2015-12-14 | 2017-11-17 | 东南大学 | 一种基于模型预测控制的分布式能源能量管理方法 |
CN105375479A (zh) * | 2015-12-14 | 2016-03-02 | 东南大学 | 一种基于模型预测控制的分布式能源能量管理方法 |
CN109416019A (zh) * | 2016-07-06 | 2019-03-01 | 维斯塔斯风力系统集团公司 | 具有多个风力涡轮发电机和发电厂控制器的风力发电厂 |
CN109416019B (zh) * | 2016-07-06 | 2020-05-05 | 维斯塔斯风力系统集团公司 | 具有多个风力涡轮发电机和发电厂控制器的风力发电厂 |
CN106786807A (zh) * | 2016-12-15 | 2017-05-31 | 电子科技大学 | 一种基于模型预测控制的风电场有功功率控制方法 |
CN106786807B (zh) * | 2016-12-15 | 2019-05-28 | 电子科技大学 | 一种基于模型预测控制的风电场有功功率控制方法 |
CN107276221B (zh) * | 2017-05-23 | 2019-12-03 | 中国农业大学 | 一种优化风电消纳的电力系统调度方法 |
CN107276221A (zh) * | 2017-05-23 | 2017-10-20 | 中国农业大学 | 一种优化风电消纳的电力系统调度方法 |
CN107508327A (zh) * | 2017-10-20 | 2017-12-22 | 云南电网有限责任公司 | 基于模型预测控制的配电网自治区域并网功率控制方法 |
CN107979112A (zh) * | 2017-11-30 | 2018-05-01 | 全球能源互联网研究院有限公司 | 一种风机控制方法、系统、终端及可读存储介质 |
CN107979112B (zh) * | 2017-11-30 | 2021-08-27 | 全球能源互联网研究院有限公司 | 一种风机控制方法、系统、终端及可读存储介质 |
CN109376426A (zh) * | 2018-10-23 | 2019-02-22 | 株洲中车时代电气股份有限公司 | 一种风电并网功率调度方法及装置 |
CN109685271A (zh) * | 2018-12-25 | 2019-04-26 | 广州汇电云联互联网科技有限公司 | 一种统调负荷曲线分解方法 |
CN109657867A (zh) * | 2018-12-25 | 2019-04-19 | 广州汇电云联互联网科技有限公司 | 一种a类机组出力曲线分解方法 |
CN109657867B (zh) * | 2018-12-25 | 2023-04-07 | 广州汇电云联互联网科技有限公司 | 一种a类机组出力曲线分解方法 |
CN112103939A (zh) * | 2019-06-18 | 2020-12-18 | 上海电机学院 | 一种电力系统稳定性分析方法及装置 |
CN112103939B (zh) * | 2019-06-18 | 2024-01-26 | 上海电机学院 | 一种电力系统稳定性分析方法及装置 |
CN110474328A (zh) * | 2019-08-20 | 2019-11-19 | 杭州市电力设计院有限公司余杭分公司 | 一种新能源电站的并网控制方法及系统 |
CN114430816A (zh) * | 2019-10-02 | 2022-05-03 | 通用电气公司 | 用于融合风力涡轮机的多种分析以提高效率的系统和方法 |
CN111342499A (zh) * | 2020-03-05 | 2020-06-26 | 宁夏嘉泽新能源股份有限公司 | 一种基于风功率预测数据的风电场实时调度方法 |
CN111342499B (zh) * | 2020-03-05 | 2023-09-08 | 宁夏嘉泽新能源股份有限公司 | 一种基于风功率预测数据的风电场实时调度方法 |
CN112039132A (zh) * | 2020-08-14 | 2020-12-04 | 中国农业大学 | 一种不确定性电源的有功控制和精细指令分配方法 |
CN112039132B (zh) * | 2020-08-14 | 2021-11-30 | 中国农业大学 | 一种不确定性电源的有功控制和精细指令分配方法 |
CN118944144A (zh) * | 2024-07-23 | 2024-11-12 | 南京苏逸实业有限公司 | 一种电源车的优化控制方法、装置、设备以及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN105048499B (zh) | 2017-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105048499B (zh) | 基于模型预测控制的风电并网实时调度方法及系统 | |
CN103279804B (zh) | 超短期风电功率的预测方法 | |
CN105046374B (zh) | 一种基于核极限学习机模型的功率区间预测方法 | |
CN106300394B (zh) | 一种新能源电站的一次调频控制方法及系统 | |
CN107947244B (zh) | 新能源电站并网功率超前控制方法 | |
JP5198386B2 (ja) | 自然エネルギー発電制御システム、制御装置および制御方法 | |
CN106874630A (zh) | 基于电量消纳的区域电网新能源开发潜力评估方法 | |
CN107425520A (zh) | 一种含节点注入功率不确定性的主动配电网三相区间状态估计方法 | |
CN103296701B (zh) | 一种风电场有功功率控制方法 | |
CN104376389A (zh) | 基于负载均衡的主从式微电网功率负荷预测系统及其方法 | |
CN112510703B (zh) | 一种考虑煤耗曲线修正的多能源接入电网优化调度方法 | |
CN110705771A (zh) | 区域电网新能源发电功率预测优化方法和装置 | |
CN105610192A (zh) | 考虑大规模风电接入的在线风险评估方法 | |
CN104156886B (zh) | 一种含可再生能源电力系统的电源灵活性评价方法 | |
CN105741025A (zh) | 基于风电波动在线风险评估的预防控制方法 | |
JP2010130762A (ja) | 自然エネルギー発電装置を含む電力供給システムおよび需給調整方法 | |
CN102509026A (zh) | 基于最大信息熵原理的风电场短期输出功率预测综合模型 | |
CN105490310A (zh) | 一种基于通用分布的含风电电力系统实时动态经济调度方法 | |
CN111950780A (zh) | 一种风电场短期功率预测方法 | |
CN107069835B (zh) | 新能源电站实时有功的分配方法及分配装置 | |
CN103887813A (zh) | 基于风功率预测不确定度的风电系统运行的控制方法 | |
CN105678415A (zh) | 一种分布式电源配电网的净负荷预测方法 | |
CN115640668A (zh) | 基于样板逆变器的光伏电站理论发电功率计算方法及装置 | |
CN107732962B (zh) | 一种基于超短期弃风曲线预测的弃风减量方法 | |
CN112070320B (zh) | 一种基于动态谐波回归的超短期风电功率预测方法及系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |