CN104977901B - Triaxial movement platform modified cross-coupling control device and method - Google Patents
Triaxial movement platform modified cross-coupling control device and method Download PDFInfo
- Publication number
- CN104977901B CN104977901B CN201510404800.4A CN201510404800A CN104977901B CN 104977901 B CN104977901 B CN 104977901B CN 201510404800 A CN201510404800 A CN 201510404800A CN 104977901 B CN104977901 B CN 104977901B
- Authority
- CN
- China
- Prior art keywords
- msub
- mrow
- mtr
- mtd
- mfrac
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 52
- 238000006880 cross-coupling reaction Methods 0.000 title claims abstract description 47
- 238000013461 design Methods 0.000 claims abstract description 17
- 238000001914 filtration Methods 0.000 claims abstract description 6
- 230000001105 regulatory effect Effects 0.000 claims abstract 2
- 239000013598 vector Substances 0.000 claims description 53
- 238000005070 sampling Methods 0.000 claims description 33
- 230000001360 synchronised effect Effects 0.000 claims description 25
- 238000012545 processing Methods 0.000 claims description 18
- 238000002955 isolation Methods 0.000 claims description 10
- 230000009466 transformation Effects 0.000 claims description 9
- 238000012937 correction Methods 0.000 claims description 8
- 230000006870 function Effects 0.000 claims description 8
- 230000004044 response Effects 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- 238000012546 transfer Methods 0.000 claims description 4
- 230000001133 acceleration Effects 0.000 claims description 3
- 239000002131 composite material Substances 0.000 claims description 3
- 238000013459 approach Methods 0.000 claims 2
- 239000003054 catalyst Substances 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 15
- 238000003754 machining Methods 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 5
- 239000003990 capacitor Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 102100024061 Integrator complex subunit 1 Human genes 0.000 description 2
- 101710092857 Integrator complex subunit 1 Proteins 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 102100028043 Fibroblast growth factor 3 Human genes 0.000 description 1
- 108050002021 Integrator complex subunit 2 Proteins 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/414—Structure of the control system, e.g. common controller or multiprocessor systems, interface to servo, programmable interface controller
Landscapes
- Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Control Of Position Or Direction (AREA)
- External Artificial Organs (AREA)
Abstract
一种三轴运动平台改进型交叉耦合控制装置及方法,其特征在于:该装置包括主电路、控制电路和控制对象三部分;主电路包括交流调压模块、整流滤波模块和IPM逆变模块;本发明在三轴协调控制中采用一种轮廓误差估算法,建立三轴轮廓误差模型,改进了交叉耦合控制的结构,设计出三维空间轮廓误差控制器。
An improved cross-coupling control device and method for a three-axis motion platform, characterized in that: the device includes three parts: a main circuit, a control circuit and a control object; the main circuit includes an AC voltage regulating module, a rectifying and filtering module, and an IPM inverter module; The invention adopts a contour error estimation method in three-axis coordinated control, establishes a three-axis contour error model, improves the structure of cross-coupling control, and designs a three-dimensional space contour error controller.
Description
技术领域:本发明提供一种三轴运动平台改进型交叉耦合控制装置及方法,属于数控技术领域。Technical field: The present invention provides an improved cross-coupling control device and method for a three-axis motion platform, which belongs to the technical field of numerical control.
背景技术:现代数控加工系统中,两轴XY平台轮廓控制已无法满足人们对复杂元件的加工要求,因此引入三轴运动平台轮廓控制技术,以实现对空间三维零件轮廓的精密加工。三轴运动平台是受永磁同步直线电机直接驱动,避免了“滚珠+丝杠”的中间传动环节,提高系统的加工效率。Background technology: In the modern CNC machining system, the contour control of the two-axis XY platform can no longer meet people's processing requirements for complex components. Therefore, the contour control technology of the three-axis motion platform is introduced to realize the precise machining of the contour of the three-dimensional parts in space. The three-axis motion platform is directly driven by the permanent magnet synchronous linear motor, which avoids the intermediate transmission link of "ball + screw", and improves the processing efficiency of the system.
发明内容:Invention content:
发明目的:本发明提供一种三轴运动平台改进型交叉耦合控制装置及方法,其目的是解决以往的方式做存在的问题。Purpose of the invention: The present invention provides an improved cross-coupling control device and method for a three-axis motion platform, and its purpose is to solve the existing problems of the previous methods.
技术方案:本发明是通过以下技术方案实现的:Technical solution: the present invention is achieved through the following technical solutions:
一种三轴运动平台改进型交叉耦合控制装置,其特征在于:该装置包括主电路、控制电路和控制对象三部分;主电路包括交流调压模块、整流滤波模块和IPM逆变模块;控制电路包括DSP处理器、电流采样电路、动子位置采样电路、电压调整电路、IPM隔离驱动电路和IPM保护电路;控制对象为三相永磁直线同步电机,机身装有光栅尺;电流采样电路、动子位置采样电路、电压调整电路、IPM隔离驱动电路和IPM保护电路均与DSP处理器连接,IPM隔离驱动电路和IPM保护电路与IPM逆变模块连接,电流采样电路通过霍尔传感器连接至三相永磁直线同步电机,电压调整电路连接交流调压模块,交流调压模块连接整流滤波模块,整流滤波模块连接IPM逆变模块,IPM逆变模块连接三相永磁直线同步电机,三相永磁直线同步电机上的光栅尺与动子位置采样电路连接。An improved cross-coupling control device for a three-axis motion platform, characterized in that: the device includes three parts: a main circuit, a control circuit, and a control object; the main circuit includes an AC voltage regulation module, a rectification and filtering module, and an IPM inverter module; the control circuit Including DSP processor, current sampling circuit, mover position sampling circuit, voltage adjustment circuit, IPM isolation drive circuit and IPM protection circuit; the control object is a three-phase permanent magnet linear synchronous motor, and the body is equipped with a grating ruler; current sampling circuit, The mover position sampling circuit, voltage adjustment circuit, IPM isolation drive circuit and IPM protection circuit are all connected to the DSP processor, the IPM isolation drive circuit and IPM protection circuit are connected to the IPM inverter module, and the current sampling circuit is connected to the three The phase permanent magnet linear synchronous motor, the voltage adjustment circuit is connected to the AC voltage regulation module, the AC voltage regulation module is connected to the rectification filter module, the rectification filter module is connected to the IPM inverter module, the IPM inverter module is connected to the three-phase permanent magnet linear synchronous motor, and the three-phase permanent magnet linear synchronous motor is connected to the three-phase permanent magnet linear synchronous motor. The grating ruler on the magnetic linear synchronous motor is connected with the mover position sampling circuit.
利用上述的三轴运动平台改进型交叉耦合控制装置实施的三轴运动平台改进型交叉耦合控制方法,其特征在于:该方法采用一种轮廓误差估算法,来建立三轴运动平台的轮廓误差模型,并将单轴跟踪控制与三轴交叉耦合控制相结合,改进了以往的交叉耦合控制结构,从而保证了系统单轴跟踪精度以及轮廓精度均趋近于零。The improved cross-coupling control method of the three-axis motion platform implemented by the above-mentioned improved cross-coupling control device of the three-axis motion platform is characterized in that: the method adopts a contour error estimation method to establish a contour error model of the three-axis motion platform , and combined single-axis tracking control with three-axis cross-coupling control, the previous cross-coupling control structure was improved, thus ensuring that the single-axis tracking accuracy and contour accuracy of the system approached zero.
单轴跟踪控制,单轴跟踪控制采用位置—速度环双闭环控制方式,单轴跟踪控制系统设计。Single-axis tracking control, single-axis tracking control adopts position-speed loop double closed-loop control mode, single-axis tracking control system design.
速度环采用具有前馈的伪微分反馈控制器,即PDFF控制器,其控制算法表示为:The speed loop uses a pseudo-differential feedback controller with feedforward, that is, the PDFF controller, and its control algorithm is expressed as:
其中kf为前馈补偿增益,ki为积分增益,kp为比例增益;速度环控制输入vd(s)与实际输出速度函数va(s)间的关系为:Among them, k f is the feed-forward compensation gain, ki is the integral gain, and k p is the proportional gain; the relationship between the speed loop control input v d (s) and the actual output speed function v a (s) is:
扰动输入ξ(s)与实际输出速度函数va(s)间的关系为:The relationship between the disturbance input ξ(s) and the actual output velocity function v a (s) is:
被控对象采用永磁同步直线电机,其传递函数为The controlled object adopts permanent magnet synchronous linear motor, and its transfer function is
其中,G0(s)=1/(Ms+B)为实际被控对象,Kf为电磁推力系数。Among them, G 0 (s)=1/(Ms+B) is the actual controlled object, and K f is the electromagnetic thrust coefficient.
位置环采用比例控制器,系数为kx,因此整个单轴跟踪控制系统的传递函数可表示为:The position loop adopts a proportional controller, and the coefficient is k x , so the transfer function of the whole single-axis tracking control system can be expressed as:
通过设置固定扰动ξ,能够验证系统具有较强的抗干扰能力以及较快响应能力。By setting a fixed disturbance ξ, it can be verified that the system has strong anti-interference ability and fast response ability.
该方法的步骤如下:The steps of this method are as follows:
本发明包括以下具体步骤:The present invention comprises the following concrete steps:
步骤1:建立三轴运动平台轮廓误差模型:Step 1: Establish the contour error model of the three-axis motion platform:
三轴运动平台采用是由两两垂直的永磁同步直线电机(PMLSM),永磁直线同步电机械方程式为:The three-axis motion platform is made of two vertical permanent magnet synchronous linear motors (PMLSM). The permanent magnet linear synchronous electromechanical equation is:
式中,Fe:电磁推力;M:永磁直线电机的动子和动子所带负载的总质量;iq为动子q轴电流;Kf:电磁推力系数;B:粘滞摩擦系数;F:系统所受的总扰动力。v是动子速度;为动子加速度;In the formula, F e : electromagnetic thrust; M: the total mass of the mover and the load carried by the mover of the permanent magnet linear motor; i q is the q-axis current of the mover; K f : electromagnetic thrust coefficient; B: viscous friction coefficient ; F: The total disturbance force on the system. v is the velocity of the mover; is the mover acceleration;
选取x(t)和v(t)为系统状态变量,即PMLSM的状态方程可改写为Select x(t) and v(t) as system state variables, that is, the state equation of PMLSM can be rewritten as
其中,v(t)是电机动子速度;u=iq表示电机的控制输入量;x(t)则为直线电机的位置输出。Among them, v(t) is the motor mover speed; u=i q represents the control input of the motor; x(t) is the position output of the linear motor.
因此,直接驱动三轴运动平台可以由三个2阶微分方程构成:Therefore, a direct-drive three-axis motion platform can be composed of three second-order differential equations:
即表示成状态空间的形式为:That is, the form of the state space is:
其中,z1(t)=[x1(t) x2(t) x3(t)]T,u=[u1 u2 u3]T,ρ=[F1 F2 F3]T,A11=0,A12=I,A21=0,A22=diag(-Bi/Mi),i=x,y,z,均为3×3矩阵;where z 1 (t)=[x 1 (t) x 2 (t) x 3 (t)] T , u=[u 1 u 2 u 3 ] T , ρ=[F 1 F 2 F 3 ] T , A 11 =0, A 12 =I, A 21 =0, A 22 =diag(-B i /M i ), i=x, y, z, are 3 * 3 matrix;
步骤2:三轴运动平台轮廓误差模型建立:Step 2: The contour error model of the three-axis motion platform is established:
在三轴运动平台中,轮廓误差模型估计的精度直接影响轮廓控制性能。假设三轴运动平台中为命令位置,P为实际位置,位置误差向量为轮廓误差向量为R0、R1为命令位置上的两点,分别记为R0(x0,y0,z0),R1(x1,y1,z1);Q点为命令位置向量上的一点,坐标记为Q(x,y,z)。点P到点R1的距离为位置误差向量表示成数学关系式的形式为:In a three-axis motion platform, the accuracy of contour error model estimation directly affects the contour control performance. Assuming a three-axis motion platform is the command position, P is the actual position, and the position error vector is The contour error vector is R 0 and R 1 are two points on the command position, which are recorded as R 0 (x 0 , y 0 , z 0 ) and R 1 (x 1 , y 1 , z 1 ); Q point is the command position vector At a point on , the coordinates are labeled Q(x,y,z). The distance from point P to point R 1 is the position error vector Expressed in a mathematical relational form:
向量为vector for
由R0、R1和Q这三点推出命令位置线性方程式为:The linear equation of the command position derived from the three points of R 0 , R 1 and Q is:
假设实际位置P到命令位置的最短距离为向量因此向量为Assume actual position P to command position The shortest distance for the vector Therefore the vector for
向量与向量相互垂直,内积为零;即求出参数t代入到方程式(12)后可以得到坐标Q,坐标Q求出后可进一步求出轮廓误差值,最后推出轮廓误差为vector with vector are perpendicular to each other, and the inner product is zero; After finding the parameter t and substituting it into the equation (12), the coordinate Q can be obtained. After the coordinate Q is calculated, the contour error value can be further obtained, and finally the contour error can be deduced for
由式(14)可知轮廓误差在x轴、y轴以及z轴的分量;From formula (14), it can be known that the contour error Components on the x-axis, y-axis and z-axis;
步骤三:轮廓误差的补偿器设计Step 3: Compensator Design for Contour Errors
为了减小轮廓误差,希望实际位置P能够向命令位置向量修正,除了修正位置误差向量在各轴分量Ex,Ey,Ez外,需另外补偿轮廓误差向量因此,选取向量作为实际位置到命令位置间轮廓误差的补偿,补偿量的多少取决于λ的大小。因此,把作为整个系统的补偿量,实际位置到期望位置的补偿关系式为:In order to reduce the contour error, it is hoped that the actual position P can move toward the command position vector corrections, except for corrections to the position error vector In addition to the axis components E x , E y , E z , additional contour error vectors need to be compensated Therefore, choose the vector As contour error between actual position and command position The amount of compensation depends on the size of λ. Therefore, put As the compensation amount of the whole system, the compensation relationship from the actual position to the expected position is:
通过式(15),既可以补偿实际位置点P到期望位置点R1的跟踪误差,又可以补偿两点间的轮廓误差,使其趋近于命令位置。进而得到整个补偿量在各轴的分量:Through formula ( 15 ), it can not only compensate the tracking error from the actual position point P to the expected position point R1, but also compensate the contour error between the two points, making it close to the command position. And then get the whole compensation amount Components on each axis:
通过式(16)可使得合成向量趋近于命令位置路径,其中λ为交叉耦合增益值,影响轮廓误差的修正速度。由合成向量的几何关系可知λ值愈大,愈偏向命令路径,修正轮廓误差向量的量就会大;Formula (16) can make the composite vector Approaching to the command position path, where λ is the cross-coupling gain value, which affects the correction speed of the contour error. by synthetic vector The geometric relationship shows that the larger the value of λ, The more it deviates from the command path, the corrected contour error vector the amount will be large;
步骤4:单轴跟踪控制器设计Step 4: Single-Axis Tracking Controller Design
为了保证三轴的轮廓精度,单轴跟踪控制也是必不可少的,本发明中单轴跟踪控制采用速度环控制器和位置环控制器相结合的控制方式,速度环控制器采用PDFF控制方案,位置环控制器kx采用比例控制方式;In order to ensure the contour accuracy of the three axes, single-axis tracking control is also essential. In the present invention, the single-axis tracking control adopts the control mode combining the speed loop controller and the position loop controller, and the speed loop controller adopts the PDFF control scheme. The position loop controller k x adopts proportional control mode;
步骤5:轮廓控制器设计Step 5: Contour Controller Design
由前面所提到的轮廓误差估计法,可知轮廓误差仅与命令位置和实际位置P有关,属于位置的几何关系,因此所设计的交叉耦合控制器位于控制系统的位置回路部分,改进了以往的交叉耦合控制结构。From the aforementioned contour error estimation method, it can be known that the contour error only with the command position It is related to the actual position P and belongs to the geometric relationship of the position. Therefore, the designed cross-coupling controller is located in the position loop part of the control system, which improves the previous cross-coupling control structure.
交叉耦合控制器的输入为三轴运动平台的给定位置Rx、Ry和Rz和每轴的跟踪误差Ex、Ey和Ez。ex、ey和ez是交叉耦合控制器输出的每一轴的轮廓误差分量。The input of the cross-coupling controller is the given position R x , R y and R z of the three-axis motion platform and the tracking error E x , E y and E z of each axis. ex, ey , and ez are the profile error components for each axis output by the cross-coupled controller.
本发明方法最终由嵌入DSP处理器中的控制程序实现,其控制过程按以下步骤执行:The inventive method is finally realized by the control program embedded in the DSP processor, and its control process is carried out in the following steps:
步骤1 系统初始化;Step 1 System initialization;
步骤2 允许TN1、TN2中断;Step 2 Allow TN1 and TN2 interrupts;
步骤3 启动T1下溢中断;Step 3 Start T1 underflow interrupt;
步骤4 程序数据初始化;Step 4 program data initialization;
步骤5 开总中断;Step 5 Turn on the general interrupt;
步骤6 中断等待;Step 6 interrupt waiting;
步骤7 TN1中断处理子控制程序;Step 7 TN1 interrupt processing sub-control program;
步骤8 结束。Step 8 ends.
其中步骤7中T1中断处理子控制程序按以下步骤:Wherein in the step 7, the T1 interrupt processing sub-control program follows the steps below:
步骤1 T1中断子控制程序;Step 1: T1 interrupts the sub-control program;
步骤2 保护现场;Step 2 protect the site;
步骤3 判断是否已初始定位;是进入步骤4,否则进入步骤10;Step 3 Determine whether the initial positioning has been performed; if yes, go to step 4, otherwise go to step 10;
步骤4 电流采样,CLARK变换,PARK变换;Step 4 Current sampling, CLARK transformation, PARK transformation;
步骤5 判断是否需要位置调节;否则进入步骤7;Step 5 Determine whether position adjustment is required; otherwise, go to step 7;
步骤6 位置调节中断处理子控制程序;Step 6 Position adjustment interrupt processing sub-control program;
步骤7 d q轴电流调节;Step 7 d q-axis current regulation;
步骤8 PARK逆变换;Step 8 PARK inverse transformation;
步骤9 计算CMPPx及PWM输出;Step 9 Calculate CMPPx and PWM output;
步骤10 位置采样;Step 10 position sampling;
步骤11 初始定位程序;Step 11 Initial positioning procedure;
步骤12 恢复现场;Step 12 restore the scene;
步骤13 中断返回。Step 13 Return from interrupt.
其中步骤6中位置调节中断处理子控制程序按以下步骤:Wherein in the step 6, the position adjustment interrupt processing sub-control program follows the steps below:
步骤1 位置调节中断子控制程序;Step 1 Position adjustment interrupt sub-control program;
步骤2 读取编码器值;Step 2 Read the encoder value;
步骤3 判断角度;Step 3 judge the angle;
步骤4 计算已走距离;Step 4 Calculate the distance traveled;
步骤5 执行位置控制器;Step 5 Execute the position controller;
步骤6 计算电流命令并输出;Step 6 Calculate the current command and output it;
步骤7 中断返回。Step 7 interrupt return.
优点及效果:本发明提供一种三轴运动平台改进型交叉耦合控制装置及方法,随着人们对复杂元件要求的增加,多轴运动平台精密轮廓控制相比于以往具有代表性的两轴XY平台轮廓控制来说,多轴运动平台高性能轮廓加工的精密轮廓运动控制研究具有重要的现实意义和广阔的应用前景。并且多轴运动平台采用多个永磁同步直线电机直接驱动方式,避免了“滚珠+丝杠”的中间传动环节,使得负载仅受到直线电机的直接推力,消除了传统传动机构所产生的问题。实现了从直线电机到被控对象的零间隙传动,使直线电机成为高速、高精密伺服控制系统的主要驱动方式。Advantages and effects: The present invention provides an improved cross-coupling control device and method for a three-axis motion platform. With the increase of people's requirements for complex components, the precise contour control of the multi-axis motion platform is compared with the previous representative two-axis XY In terms of platform contour control, the research on precision contour motion control of multi-axis motion platform high-performance contour machining has important practical significance and broad application prospects. And the multi-axis motion platform adopts the direct drive mode of multiple permanent magnet synchronous linear motors, which avoids the intermediate transmission link of "ball + screw", so that the load is only directly thrust by the linear motors, eliminating the problems caused by the traditional transmission mechanism. The zero-gap transmission from the linear motor to the controlled object is realized, making the linear motor the main driving mode of high-speed and high-precision servo control system.
针对现有控制技术中,对于复杂元件的轮廓控制精度存在的问题,本发明在三轴协调控制中采用一种轮廓误差估算法,建立三轴轮廓误差模型,改进了交叉耦合控制的结构,设计出三维空间轮廓误差控制器。Aiming at the problem of the contour control accuracy of complex components in the existing control technology, the present invention adopts a contour error estimation method in the three-axis coordinated control, establishes a three-axis contour error model, improves the structure of the cross-coupling control, and designs A three-dimensional space contour error controller is developed.
本发明所设计的控制器应用到一个直线电机驱动X-Y-Z轴的两两垂直的数控平台中。实验系统如图2所示。该平台的位置被连接到每个驱动轴的线性编码器,线性编码器的传感器分辨率是0.1微米。每个驱动轴的速度被位置测量的反向差计算出来,这个采样周期为2毫秒。The controller designed by the present invention is applied to a two-by-two vertical numerical control platform of X-Y-Z axes driven by a linear motor. The experimental system is shown in Figure 2. The position of the stage is connected to a linear encoder for each drive axis with a sensor resolution of 0.1 micron. The speed of each drive shaft is calculated from the reverse difference of the position measurement, and the sampling period is 2 ms.
本发明包括三轴运动平台轮廓误差模型建立,使得系统能够完成空间的轮廓轨迹跟踪任务;单轴跟踪控制器设计,保证每轴跟踪误差在较小的范围内;轮廓控制器的设计,减小系统的轮廓误差;轮廓误差模型几何关系,如图3所示;轮廓误差补偿量几何关系,如图4所示;单轴跟踪控制器设计,如图1所示;三轴轮廓控制器设计,如图5所示。The invention includes the establishment of a contour error model of a three-axis motion platform, so that the system can complete the spatial contour trajectory tracking task; the design of a single-axis tracking controller ensures that the tracking error of each axis is within a small range; the design of the contour controller reduces The contour error of the system; the geometric relationship of the contour error model, as shown in Figure 3; the geometric relationship of the contour error compensation, as shown in Figure 4; the design of the single-axis tracking controller, as shown in Figure 1; the design of the three-axis contour controller, As shown in Figure 5.
本发明主要以三轴运动平台为研究对象,通过控制三轴整体的轮廓误差来保证零件加工精度。为提高轮廓加工精度,许多学者致力于研究各种前馈、反馈控制策略以提高单轴跟踪精度,从而间接地提高轮廓运动控制精度。如前馈控制器,零相位误差跟踪控制器,PID控制,自适应控制,鲁棒控制等方法均能够减小单轴跟踪误差。但单轴跟踪误差的减小并不能够保证整体的轮廓精度。所以单轴跟踪控制与轴间协调控制是影响三轴运动平台系统轮廓精度的两个重要因素。单轴跟踪控制采用位置环和速度环相结合的控制方法,位置环为比例控制,速度环为PDFF控制,能够保证单轴较快的响应速度及跟踪精度。为了提高轴间的协调性,轴间轮廓控制一般采用交叉耦合控制器(CCC)来协调由于参数不匹配所引起的动态性能差异,减小系统的轮廓误差。针对这一问题,本发明采用一种轮廓误差估算法,建立三轴间的轮廓误差模型。并在此基础上改进了传统的交叉耦合控制结构,设计了三轴交叉耦合控制器,通过验证这种方法可以有效地提高三轴间的轮廓精度。The invention mainly takes the three-axis motion platform as the research object, and ensures the machining accuracy of the parts by controlling the overall contour error of the three axes. In order to improve the precision of contour machining, many scholars are committed to researching various feedforward and feedback control strategies to improve the single-axis tracking precision, thereby indirectly improving the precision of contour motion control. Such as feed-forward controller, zero-phase error tracking controller, PID control, adaptive control, robust control and other methods can reduce single-axis tracking error. However, the reduction of single-axis tracking error cannot guarantee the overall contour accuracy. Therefore, single-axis tracking control and inter-axis coordinated control are two important factors that affect the contour accuracy of the three-axis motion platform system. The single-axis tracking control adopts the control method combining the position loop and the speed loop. The position loop is proportional control, and the speed loop is PDFF control, which can ensure a faster response speed and tracking accuracy of the single axis. In order to improve the coordination between the axes, the cross-coupling controller (CCC) is generally used in the contour control of the axes to coordinate the difference in dynamic performance caused by the mismatch of parameters and reduce the contour error of the system. To solve this problem, the present invention adopts a contour error estimation method to establish a contour error model between three axes. On this basis, the traditional cross-coupling control structure is improved, and a three-axis cross-coupling controller is designed. Through verification, this method can effectively improve the contour accuracy between the three axes.
附图说明:Description of drawings:
图1单轴跟踪控制系统框图Figure 1 Block diagram of single-axis tracking control system
图2为本发明设计的实验系统Fig. 2 is the experimental system designed by the present invention
图3为直线轮廓误差向量几何关系图Figure 3 is a geometric relationship diagram of the linear contour error vector
图4为轮廓误差补偿几何关系图Figure 4 is a geometric relationship diagram of contour error compensation
图5三轴运动平台交叉耦合控制框图Figure 5 Block diagram of cross-coupling control of three-axis motion platform
图6为实现本发明所设计的永磁直线同步电机矢量控制系统硬件结构硬件框图Fig. 6 realizes the designed permanent magnet linear synchronous motor vector control system hardware structure hardware block diagram of the present invention
图7为本发明方法中矢量控制系统程序流程图Fig. 7 is the flow chart of vector control system program in the method of the present invention
图8为本发明方法位置调节中断处理子控制程序流程图Fig. 8 is a flow chart of the position adjustment interrupt processing sub-control program of the method of the present invention
图9为实现本发明的控制系统原理图Fig. 9 is the schematic diagram of the control system realizing the present invention
(a)电机控制系统主电路原理图(a) Schematic diagram of the main circuit of the motor control system
(b)A、B相电流采样电路原理图(b) Schematic diagram of A and B phase current sampling circuits
(c)光栅尺信号采样电路原理图(c) Schematic diagram of grating ruler signal sampling circuit
(d)IPM硬件驱动电路原理图。(d) Schematic diagram of the IPM hardware drive circuit.
具体实施方式:下面结合附图对本发明做进一步的说明:The specific embodiment: the present invention will be further described below in conjunction with accompanying drawing:
如图1所示,本发明提供一种三轴运动平台改进型交叉耦合控制装置及方法,(一)系统硬件结构As shown in Figure 1, the present invention provides an improved cross-coupling control device and method for a three-axis motion platform, (1) system hardware structure
实现本发明控制系统主电路如图9(a)所示,调压电路采用反向调压模块EUV-25A-II,可实现0~220V隔离调压。整流滤波单元采用桥式不可控整流,大电容滤波,配合适当的阻容吸收电路,可以获得IPM工作所需的恒定直流电压。IPM采用富士公司6MBP50RA060智能功率模块,耐压600V,最大电流50A,最高工作频率20kHz。IPM用四组独立的15V驱动电源供电。主电源输入端子(P,N),输出端子(U,V,W),主端子用自带的螺钉固定,可实现电流传输。P、N为变频器的整流变换平滑滤波后的主电源输入端子,P为正端,N为负端,逆变器输出的三相交流电通过输出端子U、V、W接至电机。The main circuit of the control system for realizing the present invention is shown in Fig. 9(a). The voltage regulation circuit adopts the reverse voltage regulation module EUV-25A-II, which can realize 0-220V isolation voltage regulation. The rectification filter unit adopts bridge type uncontrollable rectification, large capacitor filter, and appropriate resistance-capacity absorption circuit, which can obtain the constant DC voltage required for IPM work. The IPM uses Fuji 6MBP50RA060 intelligent power module, with a withstand voltage of 600V, a maximum current of 50A, and a maximum operating frequency of 20kHz. The IPM is powered by four independent 15V drive power supplies. The main power input terminals (P, N), output terminals (U, V, W), and the main terminals are fixed with their own screws, which can realize current transmission. P and N are the input terminals of the main power supply after rectification, transformation and smoothing of the inverter. P is the positive terminal and N is the negative terminal. The three-phase alternating current output by the inverter is connected to the motor through the output terminals U, V, and W.
本发明的控制电路的核心为TMS320F2812处理器,其配套的开发板包括目标只读存储器、模拟接口、eCAN接口、串行引导ROM、用户指示灯、复位电路、可配置为RS232/RS422/RS485的异步串口、SPI同步串口和片外256K*16位RAM。The core of the control circuit of the present invention is the TMS320F2812 processor, and its supporting development board includes target read-only memory, analog interface, eCAN interface, serial boot ROM, user indicator light, reset circuit, and can be configured as RS232/RS422/RS485 Asynchronous serial port, SPI synchronous serial port and off-chip 256K*16-bit RAM.
实际控制系统中电流采样采用LEM公司霍尔电流传感器LT58-S7。由两个霍尔电流传感器检测A、B相电流,得到电流信号,经过电流采样电路,转换成0~3.3V的电压信号,最后由TMS320LF2812的A/D转换模块转换成12位精度的二进制数,并保存在数值寄存器中。A、B相的电流采样电路如图9(b)所示。可调电阻VR2调节信号幅值,可调电阻VR1调节信号偏移量,通过对这两个电阻的调节,可以将信号调整到0~3.3V,再将其送入DSP的AD0、AD1管脚。图中的稳压管是为了防止送入DSP的信号超过3.3V,导致DSP被高压损坏。运算放大器采用OP27,电源接正负15V电压,在电压和地间接去耦电容。电路输入端接电容滤波,以去除高频信号干扰,提高采样精度。The current sampling in the actual control system adopts the Hall current sensor LT58-S7 of LEM Company. The A and B phase currents are detected by two Hall current sensors to obtain current signals, which are converted into 0-3.3V voltage signals through the current sampling circuit, and finally converted into binary numbers with 12-bit precision by the A/D conversion module of TMS320LF2812 , and stored in the value register. A, B-phase current sampling circuit shown in Figure 9 (b). The adjustable resistor VR2 adjusts the signal amplitude, and the adjustable resistor VR1 adjusts the signal offset. By adjusting these two resistors, the signal can be adjusted to 0~3.3V, and then sent to the AD0 and AD1 pins of the DSP. . The regulator tube in the figure is to prevent the signal sent to the DSP from exceeding 3.3V, causing the DSP to be damaged by high voltage. The operational amplifier adopts OP27, the power supply is connected to positive and negative 15V voltage, and the decoupling capacitor is indirect between the voltage and the ground. The input terminal of the circuit is connected with a capacitor filter to remove high-frequency signal interference and improve sampling accuracy.
光栅尺输出的A相和B相脉冲信号要通过快速光耦6N137对信号进行隔离,然后经过分压电路将信号电平由5V转换为3.3V,最后连接到DSP的两路正交编码脉冲接口QEP1和QEP2。电路原理如图9(c)所示。图9(d)给出了六路隔离驱动电路的原理图。需要指出的是IPM故障保护信号针对的是非重复瞬态故障,在本系统中通过如下措施来实现:IPM的故障输出信号通过光耦接到DSP的引脚,以确保IPM发生故障时DSP及时将所有事件管理器输出脚置高阻态。The A-phase and B-phase pulse signals output by the grating ruler should be isolated by a fast optocoupler 6N137, and then the signal level will be converted from 5V to 3.3V through a voltage divider circuit, and finally connected to the two-way orthogonal encoding pulse interface of DSP QEP1 and QEP2. The circuit principle is shown in Fig. 9(c). Figure 9(d) shows the schematic diagram of the six-way isolated drive circuit. It should be pointed out that the IPM fault protection signal is aimed at non-repetitive transient faults, which are realized in this system through the following measures: the fault output signal of IPM is connected to the DSP through optical coupling pins, to ensure that the DSP puts all event manager output pins in a high-impedance state in time when the IPM fails.
(二)系统软件实现(2) System software implementation
本发明方法中矢量控制系统程序流程图如图7所示。图8为本发明方法位置调节中断处理子控制程序流程图。软件的主程序包括系统初始化;开INT1、INT2中断;允许定时器中断;定时器中断处理子程序。其中初始化程序包括关闭所有中断,DSP系统初始化,变量初始化,事件管理器初始化、AD初始化和正交编码脉冲QEP初始化。中断服务子程序包括保护中断子程序和T1下溢中断服务子程序。其他部分如动子初始化定位,PID调节,矢量变换等都在定时器TI下溢中断处理子程序中执行。The program flowchart of the vector control system in the method of the present invention is shown in FIG. 7 . Fig. 8 is a flow chart of the position adjustment interrupt processing sub-control program of the method of the present invention. The main program of the software includes system initialization; opening INT1, INT2 interrupt; allowing timer interrupt; timer interrupt processing subroutine. The initialization procedure includes closing all interrupts, DSP system initialization, variable initialization, event manager initialization, AD initialization and quadrature encoding pulse QEP initialization. The interrupt service subroutine includes the protection interrupt subroutine and the T1 underflow interrupt service subroutine. Other parts such as mover initial positioning, PID adjustment, vector conversion, etc. are all executed in the timer TI underflow interrupt processing subroutine.
IPM保护信号产生的保护中断响应属外部中断,INT1中断优先级比定时器T1的高。IPM会在过流、过压等异常情况自动发出保护信号,这一信号经转换连接到DSP的功率驱动保护引脚一旦有异常情况发生,DSP会进入保护中断子程序,首先禁止所有中断,然后封锁PWM输出使得电机马上停转,起到保护电机和IPM的作用。The protection interrupt response generated by the IPM protection signal is an external interrupt, and the INT1 interrupt priority is higher than that of the timer T1. IPM will automatically send a protection signal in abnormal conditions such as overcurrent and overvoltage, and this signal is converted and connected to the power drive protection pin of DSP Once an abnormal situation occurs, the DSP will enter the protection interrupt subroutine, first prohibit all interrupts, and then block the PWM output to stop the motor immediately, protecting the motor and IPM.
矢量控制系统的顺利启动,需要知道动子的初始位置,利用软件可以给电机的动子通一个幅值恒定的直流电,使定子产生一个恒定的磁场,这个磁场与转子的恒定磁场相互作用,使电机动子运动到两个磁链重合的位置。而动子初始定位、AD采样值的读取、电机动子位置的计算、坐标变换、PID调节、SVPWM波形比较值的产生都在T1下溢中断服务子程序中完成。To start the vector control system smoothly, it is necessary to know the initial position of the mover. Using the software, a DC current with a constant amplitude can be passed through the mover of the motor to make the stator generate a constant magnetic field. This magnetic field interacts with the constant magnetic field of the rotor. The motor mover moves to the position where the two flux linkages coincide. The initial positioning of the mover, the reading of AD sampling values, the calculation of the position of the motor mover, coordinate transformation, PID adjustment, and the generation of SVPWM waveform comparison values are all completed in the T1 underflow interrupt service subroutine.
详细说明如下:The details are as follows:
如图6所示,该装置包括主电路、控制电路和控制对象三部分;主电路包括交流调压模块、整流滤波模块和IPM逆变模块;控制电路包括DSP处理器、电流采样电路、动子位置采样电路、电压调整电路、IPM隔离驱动电路和IPM保护电路;控制对象为三相永磁直线同步电机,机身装有光栅尺;电流采样电路、动子位置采样电路、电压调整电路、IPM隔离驱动电路和IPM保护电路均与DSP处理器连接,IPM隔离驱动电路和IPM保护电路与IPM逆变模块连接,电流采样电路通过霍尔传感器连接至三相永磁直线同步电机,电压调整电路连接交流调压模块,交流调压模块连接整流滤波模块,整流滤波模块连接IPM逆变模块,IPM逆变模块连接三相永磁直线同步电机,三相永磁直线同步电机上的光栅尺与动子位置采样电路连接。As shown in Figure 6, the device includes three parts: main circuit, control circuit and control object; the main circuit includes AC voltage regulation module, rectification and filtering module and IPM inverter module; the control circuit includes DSP processor, current sampling circuit, mover Position sampling circuit, voltage adjustment circuit, IPM isolation drive circuit and IPM protection circuit; the control object is a three-phase permanent magnet linear synchronous motor, and the body is equipped with a grating scale; current sampling circuit, mover position sampling circuit, voltage adjustment circuit, IPM Both the isolated drive circuit and the IPM protection circuit are connected to the DSP processor, the IPM isolation drive circuit and the IPM protection circuit are connected to the IPM inverter module, the current sampling circuit is connected to the three-phase permanent magnet linear synchronous motor through the Hall sensor, and the voltage adjustment circuit is connected to AC voltage regulation module, the AC voltage regulation module is connected to the rectification and filtering module, the rectification and filtering module is connected to the IPM inverter module, the IPM inverter module is connected to the three-phase permanent magnet linear synchronous motor, the grating scale and the mover on the three-phase permanent magnet linear synchronous motor position sampling circuit connection.
三轴运动平台改进型交叉耦合控制方法,该方法采用一种轮廓误差估算法,来建立三轴运动平台的轮廓误差模型,并将单轴跟踪控制与三轴交叉耦合控制相结合,改进了以往的交叉耦合控制结构,从而保证了系统单轴跟踪精度以及轮廓精度均趋近于零。The improved cross-coupling control method of the three-axis motion platform adopts a contour error estimation method to establish the contour error model of the three-axis motion platform, and combines the single-axis tracking control with the three-axis cross-coupling control, which improves the previous The cross-coupling control structure ensures that the single-axis tracking accuracy and contour accuracy of the system are close to zero.
单轴跟踪控制,采用位置环和速度环相结合的控制方式,单轴跟踪控制系统设计如图1,1/(Ms+B)为实际被控对象,Kf为电磁推力系数,xr为输入的参考指令,xp为实际输出位置。单轴跟踪控制采用位置—速度环相结合的控制方式,位置环采用比例控制,速度环采用PDFF控制器,kx为位置环比例增益;速度环中kf为前馈补偿增益,ki为积分增益,kp为比例增益;ξ为外加扰动,通过设置固定扰动,能够验证系统具有较强的抗干扰能力以及较快响应能力。The single-axis tracking control adopts the control mode combining the position loop and the speed loop. The design of the single-axis tracking control system is shown in Figure 1. 1/(Ms+B) is the actual controlled object, K f is the electromagnetic thrust coefficient, and x r is The input reference instruction, x p is the actual output position. The single-axis tracking control adopts the position-speed loop combined control method, the position loop adopts proportional control, the speed loop adopts PDFF controller, k x is the proportional gain of the position loop; k f in the speed loop is the feed-forward compensation gain, and ki is Integral gain, k p is the proportional gain; ξ is the external disturbance, by setting a fixed disturbance, it can be verified that the system has strong anti-interference ability and fast response ability.
传统的轮廓加工中,一般仅针对于XY平面进行轮廓精度控制,很难延伸到三维空间,这对于实际的数控加工存在了很大的局限性。因此,采用一种轮廓误差估算法,建立了三轴运动平台空间轮廓误差模型。并根据权利要求中所述,采用改进的交叉耦合控制方法来改善轮廓跟踪性能,提高轮廓精度。In the traditional contour machining, the contour accuracy control is generally only aimed at the XY plane, and it is difficult to extend to the three-dimensional space, which has great limitations for the actual NC machining. Therefore, a contour error estimation method is used to establish a three-axis motion platform space contour error model. And according to the claims, the improved cross-coupling control method is used to improve the contour tracking performance and the contour accuracy.
该方法的步骤如下:The steps of this method are as follows:
本发明包括以下具体步骤:The present invention comprises the following concrete steps:
步骤1:建立三轴运动平台轮廓误差模型:Step 1: Establish the contour error model of the three-axis motion platform:
三轴运动平台采用是由两两垂直的永磁同步直线电机(PMLSM),永磁直线同步电机械方程式为:The three-axis motion platform is made of two vertical permanent magnet synchronous linear motors (PMLSM). The permanent magnet linear synchronous electromechanical equation is:
式中,Fe:电磁推力;M:永磁直线电机的动子和动子所带负载的总质量;iq为动子q轴电流;Kf:电磁推力系数;B:粘滞摩擦系数;F:系统所受的总扰动力。v是动子速度;为动子加速度;In the formula, F e : electromagnetic thrust; M: the total mass of the mover and the load carried by the mover of the permanent magnet linear motor; i q is the q-axis current of the mover; K f : electromagnetic thrust coefficient; B: viscous friction coefficient ; F: The total disturbance force on the system. v is the velocity of the mover; is the mover acceleration;
选取x(t)和v(t)为系统状态变量,即PMLSM的状态方程可改写为Select x(t) and v(t) as system state variables, that is, the state equation of PMLSM can be rewritten as
其中,v(t)是电机动子速度;u=iq表示电机的控制输入量;x(t)则为直线电机的位置输出。Among them, v(t) is the motor mover speed; u=i q represents the control input of the motor; x(t) is the position output of the linear motor.
因此,直接驱动三轴运动平台可以由三个2阶微分方程构成:Therefore, a direct-drive three-axis motion platform can be composed of three second-order differential equations:
即表示成状态空间的形式为:That is, the form of the state space is:
其中,z1(t)=[x1(t) x2(t) x3(t)]T,u=[u1 u2 u3]T,ρ=[F1 F2 F3]T,A11=0,A12=I,A21=0,A22=diag(-Bi/Mi),i=x,y,z,均为3×3矩阵;where z 1 (t)=[x 1 (t) x 2 (t) x 3 (t)] T , u=[u 1 u 2 u 3 ] T , ρ=[F 1 F 2 F 3 ] T , A 11 =0, A 12 =I, A 21 =0, A 22 =diag(-B i /M i ), i=x, y, z, are 3 * 3 matrix;
步骤2:三轴运动平台轮廓误差模型建立:Step 2: The contour error model of the three-axis motion platform is established:
在三轴运动平台中,轮廓误差模型估计的精度直接影响轮廓控制性能。图3为直线轮廓误差向量几何关系图。其中,为命令位置,P为实际位置,位置误差向量为轮廓误差向量为R0、R1为命令位置上的两点,分别记为R0(x0,y0,z0),R1(x1,y1,z1);实际位置P到命令位置R的最短距离为向量即为实际位置到参考位置的轮廓误差向量Q点坐标记为Q(x,y,z)。点P到点R1的距离为位置误差向量 In a three-axis motion platform, the accuracy of contour error model estimation directly affects the contour control performance. Fig. 3 is a graph of the geometric relation of the linear contour error vector. in, is the command position, P is the actual position, and the position error vector is The contour error vector is R 0 and R 1 are two points on the command position, respectively recorded as R 0 (x 0 ,y 0 ,z 0 ), R 1 (x 1 ,y 1 ,z 1 ); shortest distance as vector That is, the contour error vector from the actual position to the reference position The coordinates of the point Q are labeled Q(x,y,z). The distance from point P to point R 1 is the position error vector
由R0、R1和Q这三点推出命令位置线性方程式为:The linear equation of the command position derived from the three points of R 0 , R 1 and Q is:
由图4可知,向量与向量相互垂直,内积为零;即求出参数t代入到方程式(6)后可以得到坐标Q,坐标Q求出后可进一步求出轮廓误差值,最后推出轮廓误差为It can be seen from Figure 4 that the vector with vector are perpendicular to each other, and the inner product is zero; After finding the parameter t and substituting it into the equation (6), the coordinate Q can be obtained. After the coordinate Q is calculated, the contour error value can be further obtained, and finally the contour error can be deduced for
由式(6)可知轮廓误差在x轴、y轴以及z轴的分量;From formula (6), it can be known that the contour error Components on the x-axis, y-axis and z-axis;
步骤三:轮廓误差的补偿器设计Step 3: Compensator Design for Contour Errors
根据图4,为了减小轮廓误差,希望实际位置P能够向命令位置向量修正,除了修正位置误差向量在各轴分量Ex,Ey,Ez外,需另外补偿轮廓误差向量由向量几何加减法可知,选取向量作为实际位置到命令位置间的补偿,使其趋近于命令位置。整个补偿量在各轴的分量可表示成:According to Figure 4, in order to reduce the contour error, it is hoped that the actual position P can be directed to the command position vector corrections, except for corrections to the position error vector In addition to the axis components E x , E y , E z , additional contour error vectors need to be compensated It can be seen from vector geometric addition and subtraction that the selected vector As a compensation between the actual position and the command position, it is close to the command position. total compensation The components on each axis can be expressed as:
通过式(7)可使得合成向量趋近于命令位置路径,其中λ为交叉耦合增益值,影响轮廓误差的修正速度。由合成向量的几何关系可知λ值愈大,愈偏向命令路径,修正轮廓误差向量的量就会大;Formula (7) can make the composite vector Approaching to the command position path, where λ is the cross-coupling gain value, which affects the correction speed of the contour error. by synthetic vector The geometric relationship shows that the larger the value of λ, The more it deviates from the command path, the corrected contour error vector the amount will be large;
步骤4:单轴跟踪控制器设计Step 4: Single-Axis Tracking Controller Design
为了保证三轴的轮廓精度,单轴跟踪控制也是必不可少的,本发明中单轴跟踪控制采用速度环控制器和位置环控制器相结合的控制方式,速度环控制器采用PDFF控制方案,位置环控制器kx采用比例控制方式;In order to ensure the contour accuracy of the three axes, single-axis tracking control is also essential. In the present invention, the single-axis tracking control adopts the control mode combining the speed loop controller and the position loop controller, and the speed loop controller adopts the PDFF control scheme. The position loop controller k x adopts proportional control mode;
步骤5:轮廓控制器设计Step 5: Contour Controller Design
由前面所提到的轮廓误差估计法,可知轮廓误差e仅与命令位置R和实际位置P有关,属于位置的几何关系,因此所设计的交叉耦合控制器位于控制系统的位置回路部分,改进了以往的交叉耦合控制结构,结构框图如图5。From the contour error estimation method mentioned above, it can be known that the contour error e is only related to the command position R and the actual position P, which belongs to the geometric relationship of the position. Therefore, the designed cross-coupling controller is located in the position loop part of the control system, which improves the The structure block diagram of the previous cross-coupling control structure is shown in Figure 5.
交叉耦合控制器的输入为三轴运动平台的给定位置Rx、Ry和Rz和每轴的跟踪误差Ex、Ey和Ez。ex、ey和ez是交叉耦合控制器输出的每一轴的轮廓误差分量。并且将本发明中所设计的三轴交叉耦合控制器结构框图与以往采用的结构框图相比较,本发明的轮廓误差补偿在位置回路控制器之前就已完成。由轮廓误差补偿量几何关系可知,当调整位置回路控制器内的增益值Kp时,会同时影响到轮廓误差补偿量其效果等同于调整的大小,而非方向,但此时的方向是由交叉耦合增益值λ的大小来决定。因此Kp与λ的调整是各自独立的,分别为大小和方向。而以往的交叉耦合控制器结构则是将补偿量置于控制器之后,当调整Kp时,其效果等同于在图3中仅调整的大小。因此,本发明中所提出的方法将轮廓误差补偿量的方向和大小均同时改变,增加了该结构图中位置回路增益Kp与交叉耦合增益λ间做最适当调整的匹配问题。The input of the cross-coupling controller is the given position R x , R y and R z of the three-axis motion platform and the tracking error E x , E y and E z of each axis. ex, ey , and ez are the profile error components for each axis output by the cross-coupled controller. And comparing the structural block diagram of the three-axis cross-coupling controller designed in the present invention with the structural block diagram used in the past, the contour error compensation of the present invention has been completed before the position loop controller. From the geometric relationship of contour error compensation, it can be seen that when the gain value K p in the position loop controller is adjusted, the contour error compensation will be affected at the same time Its effect is equivalent to adjusting the The magnitude of , rather than the direction, but the direction at this time is determined by the magnitude of the cross-coupling gain value λ. Therefore, the adjustments of K p and λ are independent of each other, which are magnitude and direction respectively. However, in the previous cross-coupled controller structure, the compensation amount is placed after the controller. When adjusting K p , its effect is equivalent to only adjusting the size of. Therefore, the method proposed in the present invention takes the contour error compensation amount The direction and magnitude of are changed at the same time, which increases the matching problem of the most appropriate adjustment between the position loop gain K p and the cross-coupling gain λ in the structure diagram.
交叉耦合控制器的输入为三轴运动平台的给定位置Rx、Ry和Rz和每轴的跟踪误差Ex、Ey和Ez。ex、ey和ez是交叉耦合控制器输出的每一轴的轮廓误差分量。The input of the cross-coupling controller is the given position R x , R y and R z of the three-axis motion platform and the tracking error E x , E y and E z of each axis. ex, ey , and ez are the profile error components for each axis output by the cross-coupled controller.
本发明方法最终由嵌入DSP处理器中的控制程序实现,其控制过程按以下步骤执行:The inventive method is finally realized by the control program embedded in the DSP processor, and its control process is carried out in the following steps:
步骤1 系统初始化;Step 1 System initialization;
步骤2 允许TN1、TN2中断;Step 2 Allow TN1 and TN2 interrupts;
步骤3 启动T1下溢中断;Step 3 Start T1 underflow interrupt;
步骤4 程序数据初始化;Step 4 program data initialization;
步骤5 开总中断;Step 5 Turn on the general interrupt;
步骤6 中断等待;Step 6 interrupt waiting;
步骤7 TN1中断处理子控制程序;Step 7 TN1 interrupt processing sub-control program;
步骤8 结束。Step 8 ends.
其中步骤7中T1中断处理子控制程序按以下步骤:Wherein in the step 7, the T1 interrupt processing sub-control program follows the steps below:
步骤1 T1中断子控制程序;Step 1: T1 interrupts the sub-control program;
步骤2 保护现场;Step 2 protect the site;
步骤3 判断是否已初始定位;是进入步骤4,否则进入步骤10;Step 3 Determine whether the initial positioning has been performed; if yes, go to step 4, otherwise go to step 10;
步骤4 电流采样,CLARK变换,PARK变换;Step 4 Current sampling, CLARK transformation, PARK transformation;
步骤5 判断是否需要位置调节;否则进入步骤7;Step 5 Determine whether position adjustment is required; otherwise, go to step 7;
步骤6 位置调节中断处理子控制程序;Step 6 Position adjustment interrupt processing sub-control program;
步骤7 d q轴电流调节;Step 7 d q-axis current regulation;
步骤8 PARK逆变换;Step 8 PARK inverse transformation;
步骤9 计算CMPPx及PWM输出;Step 9 Calculate CMPPx and PWM output;
步骤10 位置采样;Step 10 position sampling;
步骤11 初始定位程序;Step 11 Initial positioning procedure;
步骤12 恢复现场;Step 12 restore the scene;
步骤13 中断返回。Step 13 Return from interrupt.
其中步骤6中位置调节中断处理子控制程序按以下步骤:Wherein in the step 6, the position adjustment interrupt processing sub-control program follows the steps below:
步骤1 位置调节中断子控制程序;Step 1 Position adjustment interrupt sub-control program;
步骤2 读取编码器值;Step 2 Read the encoder value;
步骤3 判断角度;Step 3 judge the angle;
步骤4 计算已走距离;Step 4 Calculate the distance traveled;
步骤5 执行位置控制器;Step 5 Execute the position controller;
步骤6 计算电流命令并输出;Step 6 Calculate the current command and output it;
步骤7 中断返回。Step 7 interrupt return.
本发明针对直接驱动三轴运动平台,本发明的优点主要在于建立了三维空间轮廓误差模型以及对空间轮廓误差进行控制的方法。解决了在现代加工系统中,人们对复杂元件的需求不断增加,却不能够满足复杂元件加工精度的问题。本发明主要针对减少单轴的跟踪误差以及轮廓误差。单轴跟踪误差利用了位置环控制器与速度环控制器相结合的控制方式,保证了单轴跟踪误差在良好的精度范围。三轴间轮廓误差的控制本发明主要提出了一种新的轮廓误差估计模型来估计轮廓误差,并将其应用到三轴交叉耦合轮廓控制器中,改进了三轴交叉耦合控制器的控制结构。通过上述两部分的结合,最终使得三轴运动平台系统的轮廓误差趋近于零。The invention is aimed at directly driving a three-axis motion platform, and the advantages of the invention mainly lie in establishing a three-dimensional space contour error model and a method for controlling the space contour error. It solves the problem that in the modern processing system, people's demand for complex components is increasing, but the processing accuracy of complex components cannot be met. The present invention is mainly aimed at reducing single-axis tracking errors and contour errors. The single-axis tracking error uses the control method combining the position loop controller and the speed loop controller to ensure that the single-axis tracking error is within a good accuracy range. Control of contour error between three axes This invention mainly proposes a new contour error estimation model to estimate the contour error, and applies it to the three-axis cross-coupling contour controller, improving the control structure of the three-axis cross-coupling controller . Through the combination of the above two parts, the contour error of the three-axis motion platform system is finally approaching zero.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510404800.4A CN104977901B (en) | 2015-07-10 | 2015-07-10 | Triaxial movement platform modified cross-coupling control device and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510404800.4A CN104977901B (en) | 2015-07-10 | 2015-07-10 | Triaxial movement platform modified cross-coupling control device and method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104977901A CN104977901A (en) | 2015-10-14 |
CN104977901B true CN104977901B (en) | 2017-11-07 |
Family
ID=54274500
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510404800.4A Active CN104977901B (en) | 2015-07-10 | 2015-07-10 | Triaxial movement platform modified cross-coupling control device and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104977901B (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106125674B (en) * | 2016-08-03 | 2018-07-13 | 大连理工大学 | A kind of high-precision real time profile error estimation |
CN106961231B (en) * | 2017-03-13 | 2019-04-30 | 江苏大学 | A direct thrust control method of linear permanent magnet motor based on anti-saturation PI controller and duty cycle modulation |
CN107941244B (en) * | 2017-12-21 | 2020-01-17 | 中国电子科技集团公司第二十六研究所 | Cross coupling debugging device and method for triaxial inertial system |
TWI695280B (en) * | 2018-10-08 | 2020-06-01 | 財團法人資訊工業策進會 | Apparatus and method for determining a target adjustment route for a preset control condition set of a production line |
CN109491285B (en) * | 2018-10-31 | 2020-11-06 | 深圳中广核工程设计有限公司 | Control method and system for offline downloading of automatic processing controller in nuclear power joint debugging stage |
CN110488749B (en) * | 2019-09-11 | 2020-08-21 | 台州学院 | A contour error controller of a multi-axis motion system and its control method |
CN111030536B (en) * | 2019-11-28 | 2023-03-07 | 深圳市睿阳精视科技有限公司 | Control system of permanent magnet synchronous motor speed ring |
CN112000011B (en) * | 2020-08-12 | 2022-05-24 | 深圳市烨嘉为技术有限公司 | Electromechanical coupling analysis and optimization method for small gantry numerical control machining center |
CN112596389B (en) * | 2020-12-18 | 2022-05-17 | 杭州电子科技大学 | Crystal grinding control method and system based on closed-loop cross-coupling iterative learning |
CN114102612B (en) * | 2022-01-24 | 2022-05-03 | 河北工业大学 | A control method of robot end path contour error |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102854840A (en) * | 2012-09-24 | 2013-01-02 | 沈阳工业大学 | Direct-driven XY table profile control method based on predictive control and cross coupling |
CN104460518A (en) * | 2014-11-16 | 2015-03-25 | 沈阳工业大学 | Direct-drive XY platform profile control device and method based on fuzzy disturbance compensation |
CN104483897A (en) * | 2014-08-27 | 2015-04-01 | 渤海大学 | Direct-drive gantry type motion platform contour control device and method |
CN204790506U (en) * | 2015-07-10 | 2015-11-18 | 沈阳工业大学 | Triaxial motion platform improved generation cross coupling controlling means |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8473103B2 (en) * | 2009-01-27 | 2013-06-25 | Fanuc Robotics America, Inc. | Secondary position feedback control of a robot |
-
2015
- 2015-07-10 CN CN201510404800.4A patent/CN104977901B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102854840A (en) * | 2012-09-24 | 2013-01-02 | 沈阳工业大学 | Direct-driven XY table profile control method based on predictive control and cross coupling |
CN104483897A (en) * | 2014-08-27 | 2015-04-01 | 渤海大学 | Direct-drive gantry type motion platform contour control device and method |
CN104460518A (en) * | 2014-11-16 | 2015-03-25 | 沈阳工业大学 | Direct-drive XY platform profile control device and method based on fuzzy disturbance compensation |
CN204790506U (en) * | 2015-07-10 | 2015-11-18 | 沈阳工业大学 | Triaxial motion platform improved generation cross coupling controlling means |
Non-Patent Citations (1)
Title |
---|
三轴数控系统的轮廓误差补偿方法研究与实现;周延松;《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》;20140315(第03期);正文第21-39页 * |
Also Published As
Publication number | Publication date |
---|---|
CN104977901A (en) | 2015-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104977901B (en) | Triaxial movement platform modified cross-coupling control device and method | |
CN104460518B (en) | Based on Fuzzy Disturbing compensation direct drive XY platform contours control device and methods | |
Fu et al. | A novel robust super-twisting nonsingular terminal sliding mode controller for permanent magnet linear synchronous motors | |
CN101834554B (en) | Method for improving machining precision by using load disturbance compensator and optimizing setting of load disturbance compensator | |
CN105223809B (en) | The synchronous control system and method for the fuzzy neural network compensator of H-type platform | |
Lin et al. | Robust fuzzy neural network sliding-mode control for two-axis motion control system | |
CN107132759B (en) | An improved repetitive control method based on ESO sliding mode for linear motor drive FTS | |
CN102637011B (en) | Robust control method and control system of direct drive CNC platform based on coordinate transformation and parameter adjustment | |
CN102033508B (en) | Method for improving machining precision of contour of directly driven XY platform | |
CN108021039B (en) | Electromechanical integration modeling method for linear motor feeding system | |
CN103414419A (en) | Double-linear-motor contour compensation device and method based on fuzzy RBF network sliding mode | |
CN102707666B (en) | Motor-driven XY platform contour processing control device and method based on direction field | |
Zou et al. | Tracking and synchronization control strategy of vehicle dual-motor steer-by-wire system via active disturbance rejection control | |
CN108092567A (en) | A kind of Speed control of permanent magnet synchronous motor system and method | |
CN101989080A (en) | Method for realizing contour machining by using variable gain zero phase error tracking and disturbance observation | |
CN105676780B (en) | XY Motion Platform Contour Control Device Based on Fuzzy Cerebellar Model Joint Controller | |
Ma et al. | Chattering suppression fast terminal sliding mode control for aircraft EMA braking system | |
CN107070336A (en) | The two patterns paste fractional order System with Sliding Mode Controller and method of permanent magnet linear synchronous motor | |
CN105929693A (en) | Adaptive sliding-mode compensation synchronous control system of H type precision motion platform and method | |
CN103532442B (en) | Permanent-magnetic electric machine with bearing suspension system optimizes the building method of automatic disturbance rejection controller | |
CN108123648A (en) | Linear servo Position Tracking Control based on linear matrix inequality and sliding formwork control | |
CN105227035B (en) | A kind of permanent-magnetism linear motor control method | |
CN104467595A (en) | Second-order sliding-mode control system directly driving servo system and control method thereof | |
CN104485864B (en) | Second-order sliding mode control system of direct drive servo system and control method of second-order sliding mode control system | |
US20240291409A1 (en) | Nonlinear predictive position control method suitable for biaxial permanent magnet servo system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |