CN104897289A - Landsat 8 satellite data land surface temperature inversion method - Google Patents
Landsat 8 satellite data land surface temperature inversion method Download PDFInfo
- Publication number
- CN104897289A CN104897289A CN201510345435.4A CN201510345435A CN104897289A CN 104897289 A CN104897289 A CN 104897289A CN 201510345435 A CN201510345435 A CN 201510345435A CN 104897289 A CN104897289 A CN 104897289A
- Authority
- CN
- China
- Prior art keywords
- band
- ndvi
- landsat
- sen
- atmospheric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 24
- 238000002834 transmittance Methods 0.000 claims description 18
- 239000002689 soil Substances 0.000 claims description 9
- 230000003595 spectral effect Effects 0.000 claims description 5
- 230000005855 radiation Effects 0.000 claims description 3
- 238000005316 response function Methods 0.000 claims description 3
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Landscapes
- Image Processing (AREA)
- Radiation Pyrometers (AREA)
Abstract
一种Landsat 8数据地表温度反演方法,该方法完全基于Landsat 8数据本身不需要任何外部数据源,克服了传统Landsat数据地表温度反演必须依赖外部数据源造成的局限,该发明对于实现利用Landsat 8数据业务化地生产地表温度产品具有重要的现实意义。A Landsat 8 data surface temperature inversion method, which is completely based on the Landsat 8 data itself does not require any external data sources, overcomes the limitations caused by the traditional Landsat data surface temperature inversion must rely on external data sources, the invention is useful for realizing the use of Landsat 8 It is of great practical significance to commercially produce land surface temperature products from data.
Description
技术领域technical field
本发明涉及一种从Landsat 8卫星数据反演地表温度的方法,能够应用在林业、农业、气象、生态环境等行业部门。The invention relates to a method for retrieving surface temperature from Landsat 8 satellite data, which can be applied in forestry, agriculture, meteorology, ecological environment and other industry sectors.
背景技术Background technique
地表温度是研究区域能量交换和水分循环的关键参数,也是生态、水文和气候等过程模型的一个重要的输入参量。获取区域地表温度是区域资源环境动态监测的重要内容。热红外卫星遥感技术是获取区域地表温度的一个很重要途径。Landsat 8数据是一种新型的卫星数据源,与传统的Landsat系列卫星(Landsat5、7)相比,Landsat 8在波段的数量、波段的光谱范围和影像的辐射分辨率上进行了改进。Landsat8携带了两个传感器:1)Operational LandImager(OLI)和Thermal Infrared Sensor(TIRS)。OLI传感器在可见光、近红外和短波红外区域接收九个光谱波段的数据;TIRS传感器将原来Landsat5、7的热红外波段一分为二,设置成两个热红外通道(Band 10:10.6-11.19μm;Band11:11.5-12.51μm)。对于Landsat5、7地表温度反演,通常利用单通道地表温度反演算法,该算法至少需要两个输入参数:大气水蒸汽含量和比辐射率,比辐射率可以利用NDVI阈值法从Landsat数据本身来获取,而大气水蒸汽含量则必须依赖外部数据源,通常通过气象数据或者MODIS数据来间接获取,然而不管是利用气象数据还是MODIS数据都具有明显的局限性:气象数据是一种点数据,而遥感数据是一种面数据,气象数据以点代面的方式会导致较大的误差,而且对于偏远地区或者历史存档卫星数据,获取对应的气象数据就非常困难;MODIS数据和Landsat数据在成像时间和空间分辨率上存在较大差异,两种数据之间的几何配准和投影转换也会带来误差。更重要的是,对于中国大部分地区,Landsat数据和MODIS数据之间的地理重叠区域往往非常小(小于三分之一),甚至找不到与Landsat数据对应的MODIS数据。以上这些缺陷给传统的Landsat地表温度反演造成了非常大的困难。幸运的是,Landsat8的波段设置给基于Landsat8数据本身、无需利用外部数据源来反演地表温度带来了可能。对于Landsat8数据,比辐射率同样可以利用NDVI阈值法从Landsat8数据本身来获取,而大气水蒸汽含量可以利用Landsat8的两个热红外通道基于劈窗协方差-方差比算法来反演,这样就可以实现完全基于Landsat8数据本身不需要任何外源数据来反演地表温度。该发明对于实现利用Landsat8数据业务化地生产地表温度产品具有重要的现实意义。Surface temperature is a key parameter for studying regional energy exchange and water cycle, and it is also an important input parameter for process models such as ecology, hydrology and climate. Obtaining regional surface temperature is an important part of dynamic monitoring of regional resources and environment. Thermal infrared satellite remote sensing technology is an important way to obtain regional surface temperature. Landsat 8 data is a new type of satellite data source. Compared with the traditional Landsat series satellites (Landsat5, 7), Landsat 8 has improved the number of bands, the spectral range of the bands and the radiometric resolution of the images. Landsat8 carries two sensors: 1) Operational LandImager (OLI) and Thermal Infrared Sensor (TIRS). The OLI sensor receives data from nine spectral bands in the visible light, near-infrared and short-wave infrared regions; the TIRS sensor divides the original Landsat5 and 7 thermal infrared bands into two, and sets them into two thermal infrared channels (Band 10: 10.6-11.19μm ; Band 11: 11.5-12.51 μm). For Landsat5 and 7 surface temperature retrieval, a single-channel surface temperature retrieval algorithm is usually used. This algorithm requires at least two input parameters: atmospheric water vapor content and specific emissivity. The specific emissivity can be obtained from the Landsat data itself using the NDVI threshold method. However, atmospheric water vapor content must rely on external data sources, usually obtained indirectly through meteorological data or MODIS data. However, both meteorological data and MODIS data have obvious limitations: meteorological data is a kind of point data, and Remote sensing data is a kind of surface data, and the method of replacing meteorological data with points will lead to large errors, and it is very difficult to obtain corresponding meteorological data for remote areas or historical archived satellite data; There is a large difference in spatial resolution and geometric registration and projection transformation between the two data will also bring errors. What's more, for most of China, the geographic overlap area between Landsat data and MODIS data is often very small (less than one-third), and even MODIS data corresponding to Landsat data cannot be found. These defects have caused great difficulties to the traditional Landsat surface temperature retrieval. Fortunately, the band setting of Landsat8 makes it possible to invert the land surface temperature based on the Landsat8 data itself without using external data sources. For Landsat8 data, the specific emissivity can also be obtained from the Landsat8 data itself using the NDVI threshold method, and the atmospheric water vapor content can be inverted using the two thermal infrared channels of Landsat8 based on the split window covariance-variance ratio algorithm, so that The realization is completely based on Landsat8 data itself does not need any external data to invert the surface temperature. This invention has important practical significance for realizing the commercial production of land surface temperature products using Landsat8 data.
发明内容Contents of the invention
本发明的目的在于提供一种Landsat 8卫星数据地表温度反演方法,该方法完全基于Landsat8数据本身不需要任何外部数据,实用性非常强。The purpose of the present invention is to provide a method for inversion of land surface temperature from Landsat 8 satellite data, which is completely based on Landsat 8 data itself and does not require any external data, and has very strong practicability.
为实现上述目的,本发明提出的方法包括以下步骤:To achieve the above object, the method proposed by the present invention comprises the following steps:
第一步、计算Landsat 8第10波段和第11波段的星上辐射亮度和星上亮度温度The first step is to calculate the on-board radiance and on-board brightness temperature of the 10th and 11th bands of Landsat 8
Lsen=MLQcal+AL L sen =M L Q cal +A L
Tsen=K2/ln(1+K1/Lsen)T sen =K 2 /ln(1+K 1 /L sen )
其中,Lsen是星上辐射亮度,Tsen是星上亮度温度,ML为波段的增益,AL为波段的偏置,Qcal为影像DN值,K1和K2为常数,ML,AL及K1和K2从Landsat 8头文件获得;Among them, L sen is the radiance of the star, T sen is the brightness temperature of the star, M L is the gain of the band, AL is the offset of the band, Q cal is the DN value of the image, K1 and K2 are constants, M L , A L and K1 and K2 are obtained from the Landsat 8 header file;
第二步、利用NDVI(Normalized Difference Vegetation Index)阈值法来获取比辐射率ε:The second step is to use the NDVI (Normalized Difference Vegetation Index) threshold method to obtain the specific emissivity ε:
其中DNband5和DNband4分别表示Landsat8第5波段和第4波段影像的DN值;Among them, DN band5 and DN band4 represent the DN values of Landsat8's 5th band and 4th band images respectively;
当NDVI<NDVIs时,ε=εs,其中NDVIs是纯裸土区域的NDVI,εs是土壤的比辐射率;When NDVI<NDVI s , ε=ε s , where NDVI s is the NDVI of the pure bare soil area, and ε s is the specific emissivity of the soil;
当NDVI>NDVIv时,ε=εv,其中NDVIv是纯植被区域的NDVI,εv是植被的比辐射率;When NDVI > NDVI v , ε = ε v , where NDVI v is the NDVI of the pure vegetation area, and ε v is the specific emissivity of vegetation;
当NDVIs≤NDVI≤NDVIv时,ε=εs(1-FVC)+εvFVCWhen NDVI s ≤ NDVI ≤ NDVI v , ε = ε s (1-FVC) + ε v FVC
FVC是植被覆盖度:FVC is vegetation coverage:
NDVIs和NDVIv可以从图像上选取均质的裸土区域和植被区域来获取;εs和εv通过MODIS UCSB比辐射率库和Landsat 8 TIRS波谱响应函数计算得到;NDVI s and NDVI v can be obtained by selecting homogeneous bare soil areas and vegetation areas from the image; ε s and ε v are calculated by MODIS UCSB specific emissivity library and Landsat 8 TIRS spectral response function;
第三步:计算大气水蒸汽含量wStep 3: Calculate the atmospheric water vapor content w
w=a(τj/τi)+bw=a(τ j /τ i )+b
其中,τi为i波段的大气透过率,τj为j波段的大气透过率,εi为i波段的比辐射率,εj为j波段的比辐射率,k表示第k个像元,Ti,k为第k个像元i波段的星上亮度温度,Tj,k为第k个像元j波段的星上亮度温度,为N个像元i波段的平均星上亮度温度,为N个像元j波段的平均星上亮度温度,对于Landsat8数据,i,j分别为10,11,N表示窗口大小,取20像元*20像元;Among them, τ i is the atmospheric transmittance of the i-band, τ j is the atmospheric transmittance of the j-band, ε i is the specific emissivity of the i-band, ε j is the specific emissivity of the j-band, k represents the kth image element, T i, k is the on-board brightness temperature of the k-th pixel in band i, T j, k is the on-board brightness temperature of the k-th pixel in j-band, is the average on-star brightness temperature of the i-band of N pixels, is the average on-star brightness temperature of N pixel j-band, for Landsat8 data, i, j are 10, 11 respectively, N represents the window size, take 20 pixels*20 pixels;
系数a和b利用MODTRAN4.0大气辐射传输模型和TIGR数据库来模拟大气水蒸汽含量w与Landsat8热红外波段大气透过率比值τ11/τ10之间的关系得到:The coefficients a and b use the MODTRAN4.0 atmospheric radiative transfer model and the TIGR database to simulate the relationship between the atmospheric water vapor content w and the Landsat8 thermal infrared band atmospheric transmittance ratio τ 11 /τ 10 to get:
w=-18.973(τ11/τ10)+19.13 R2=0.9663,τ11/τ10>0.9w=-18.973(τ 11 /τ 10 )+19.13 R 2 =0.9663, τ 11 /τ 10 >0.9
w=-13.412(τ11/τ10)+14.158 R2=0.9366,τ11/τ10<0.9w=-13.412(τ 11 /τ 10 )+14.158 R 2 =0.9366, τ 11 /τ 10 <0.9
第四步:计算地表温度Step 4: Calculate the surface temperature
其中Ts是地表温度,ε是比辐射率,Lsen是Landsat8第10波段的星上辐射亮度,(γ,δ)可以表达为:Where T s is the surface temperature, ε is the specific emissivity, L sen is the radiance of the star in the 10th band of Landsat8, (γ, δ) can be expressed as:
其中Tsen是Landsat8第10波段的星上亮度温度,bγ等于1324K,ψ1,ψ2,和ψ3是大气函数,可以利用以下公式从大气水蒸汽含量(w)来近似得到:Where T sen is the brightness temperature of the star in the 10th band of Landsat8, b γ is equal to 1324K, ψ 1 , ψ 2 , and ψ 3 are atmospheric functions, which can be approximated from the atmospheric water vapor content (w) by the following formula:
ψ1=0.04019w2+0.02916w+1.01523ψ 1 =0.04019w 2 +0.02916w+1.01523
ψ2=-0.38333w2-1.50294w+0.20324ψ 2 =-0.38333w 2 -1.50294w+0.20324
ψ3=0.00918w2+1.36072w-0.27514ψ 3 =0.00918w 2 +1.36072w-0.27514
附图说明Description of drawings
图1 Landsat 8热红外波段大气透过率比值和大气水蒸汽含量的关系Figure 1 The relationship between the ratio of atmospheric transmittance in the thermal infrared band of Landsat 8 and the content of atmospheric water vapor
具体实施方式Detailed ways
本发明利用单通道地表温度反演方法从Landsat 8第10波段来反演地表温度,单通道方法基于热波段辐射传输方程简化得到,可以表达为:The present invention uses the single-channel surface temperature inversion method to invert the surface temperature from the 10th band of Landsat 8. The single-channel method is obtained based on the simplification of the thermal band radiation transfer equation, which can be expressed as:
其中Ts是地表温度,ε是比辐射率,Lsen是星上辐射亮度,(γ,δ)可以表达为:Where T s is the surface temperature, ε is the specific emissivity, L sen is the radiance of the star, (γ, δ) can be expressed as:
其中Tsen是星上亮度温度,bγ等于1324K,ψ1,ψ2,和ψ3是大气函数,可以利用以下公式从大气水蒸汽含量(w)来近似得到(Jiménez-J.C.,Sobrino,J.A.,D,Mattar C,andJ.(2014).Land Surface Temperature Retrieval Methods From Landsat-8 ThermalInfrared Sensor Data.IEEE Geoscience and Remote Sensing Letters,11(10),1840-1843.):where T sen is the brightness temperature on the star, b γ is equal to 1324K, ψ 1 , ψ 2 , and ψ 3 are atmospheric functions, which can be approximated from the atmospheric water vapor content (w) using the following formula (Jiménez- JC, Sobrino, JA, D, Mattar C, and J. (2014). Land Surface Temperature Retrieval Methods From Landsat-8 Thermal Infrared Sensor Data. IEEE Geoscience and Remote Sensing Letters, 11(10), 1840-1843.):
ψ1=0.04019w2+0.02916w+1.01523ψ 1 =0.04019w 2 +0.02916w+1.01523
ψ2=-0.38333w2-1.50294w+0.20324ψ 2 =-0.38333w 2 -1.50294w+0.20324
ψ3=0.00918w2+1.36072w-0.27514ψ 3 =0.00918w 2 +1.36072w-0.27514
Lsen=MLQcal+AL L sen =M L Q cal +A L
ML为波段的增益,AL为波段的偏置,ML和AL从Landsat 8头文件获得,Qcal为影像DN值。 ML is the gain of the band, AL is the offset of the band, ML and AL are obtained from the Landsat 8 header file, and Q cal is the DN value of the image.
Tsen=K2/ln(1+K1/Lsen)T sen =K 2 /ln(1+K 1 /L sen )
K1和K2为常数,从Landsat 8头文件获取。K1 and K2 are constants obtained from Landsat 8 header files.
比辐射率利用NDVI(Normalized Difference Vegetation Index)阈值法来获取:The specific emissivity is obtained using the NDVI (Normalized Difference Vegetation Index) threshold method:
其中DNband5和DNband4分别表示Landsat8第5波段和第4波段影像的DN值。Among them, DN band5 and DN band4 represent the DN values of Landsat8's 5th band and 4th band images, respectively.
当NDVI<NDVIs时,ε=εs,其中NDVIs是纯裸土区域的NDVI,εs是土壤的比辐射率;When NDVI<NDVI s , ε=ε s , where NDVI s is the NDVI of the pure bare soil area, and ε s is the specific emissivity of the soil;
当NDVI>NDVIv时,ε=εv,其中NDVIv是纯植被区域的NDVI,εv是植被的比辐射率;When NDVI > NDVI v , ε = ε v , where NDVI v is the NDVI of the pure vegetation area, and ε v is the specific emissivity of vegetation;
当NDVIs≤NDVI≤NDVIv时,ε=εs(1-FVC)+εvFVCWhen NDVI s ≤ NDVI ≤ NDVI v , ε = ε s (1-FVC) + ε v FVC
FVC是植被覆盖度:FVC is vegetation coverage:
NDVIs和NDVIv可以从图像上选取均质的裸土区域和植被区域来获取。εs和εv通过MODIS UCSB比辐射率库和Landsat 8 TIRS波谱响应函数计算得到。NDVI s and NDVI v can be obtained by selecting homogeneous bare soil areas and vegetation areas from the image. ε s and ε v are calculated by MODIS UCSB specific emissivity library and Landsat 8 TIRS spectral response function.
大气水蒸汽含量(w)基于劈窗协方差-方差比算法(SOBRINO J A,Li Z L,Stoll MP,et al.Improvements in the split-window technique for land surface temperature determination[J].Geoscience and Remote Sensing,IEEE Transactions on,1994,32(2):243-253.)来反演,该算法假设在无云条件下,N个相邻像元区域内(对于Landsat 8,N可以取值为20,即窗口大小为20像元*20像元),大气条件和比辐射率不发生改变,仅地表温度发生改变,w按下式计算:Atmospheric water vapor content (w) based on split window covariance-variance ratio algorithm (SOBRINO J A, Li Z L, Stoll MP, et al. Improvements in the split-window technique for land surface temperature determination[J]. Geoscience and Remote Sensing, IEEE Transactions on, 1994, 32(2): 243-253.) to invert, the algorithm assumes that under cloudless conditions, within N adjacent pixel areas (for Landsat 8, N can take a value of 20 , that is, the window size is 20 pixels*20 pixels), the atmospheric conditions and specific emissivity do not change, only the surface temperature changes, and w is calculated by the following formula:
w=a(τj/τi)+b (1)w=a(τ j /τ i )+b (1)
其中,τi为i波段的大气透过率,τj为j波段的大气透过率,εi为i波段的比辐射率,εj为j波段的比辐射率,k表示第k个像元,Ti,k为第k个像元i波段的星上亮度温度,Tj,k为第k个像元j波段的星上亮度温度,为N个像元i波段的平均星上亮度温度,为N个像元j波段的平均星上亮度温度。对于Landsat8数据,i,j分别为10,11。Among them, τ i is the atmospheric transmittance of the i-band, τ j is the atmospheric transmittance of the j-band, ε i is the specific emissivity of the i-band, ε j is the specific emissivity of the j-band, k represents the kth image element, T i, k is the on-board brightness temperature of the k-th pixel in band i, T j, k is the on-board brightness temperature of the k-th pixel in j-band, is the average on-star brightness temperature of the i-band of N pixels, is the average on-star brightness temperature of the j-band of N pixels. For Landsat8 data, i, j are 10, 11 respectively.
针对Landsat8 TIRS数据,采用式(1)和(2)反演大气水汽含量,需要确定系数a和b,系数a和b可以通过大气辐射传输模型模拟大气水蒸汽含量与热红外波段大气透过率比值的关系求解得到。For the Landsat8 TIRS data, formulas (1) and (2) are used to invert the atmospheric water vapor content, and the coefficients a and b need to be determined. The coefficients a and b can simulate the atmospheric water vapor content and the thermal infrared band atmospheric transmittance through the atmospheric radiation transfer model The relationship of the ratio is solved.
利用MODTRAN4.0大气辐射传输模型和TIGR(Thermodynamic Initial Guess Retrieval,TIGR)数据库来模拟大气水蒸汽含量w与Landsat8热红外波段大气透过率比值τ11/τ10之间的关系。TIGR数据库是一个由2311条大气剖面组成的气象数据库;其中每条剖面数据都包含了从地表到大气层顶部每层的气压、气温、水汽含量和臭氧含量。TIGR数据库中包括了872条热带大气剖面,742条中纬度大气剖面和697条高纬度大气剖面。TIGR数据库中包含了一个广泛的大气水蒸汽含量范围(从0.066到7.833g/cm2)。将TIGR数据库作为MODTRAN4.0模型的输入来模拟大气水蒸汽含量w与热红外波段大气透过率比值τ11/τ10之间的关系。图1表示基于2311条TIGR大气剖面和MODTRAN4.0大气辐射传输模型得到的Landsat 8热红外波段大气透过率比值和大气水蒸汽含量的关系。The MODTRAN4.0 atmospheric radiative transfer model and the TIGR (Thermodynamic Initial Guess Retrieval, TIGR) database were used to simulate the relationship between the atmospheric water vapor content w and the Landsat8 thermal infrared band atmospheric transmittance ratio τ 11 /τ 10 . The TIGR database is a meteorological database consisting of 2311 atmospheric profiles; each profile data contains the pressure, air temperature, water vapor content and ozone content of each layer from the surface to the top of the atmosphere. The TIGR database includes 872 tropical atmospheric profiles, 742 mid-latitude atmospheric profiles and 697 high-latitude atmospheric profiles. A wide range of atmospheric water vapor contents (from 0.066 to 7.833 g/cm 2 ) is included in the TIGR database. The TIGR database is used as the input of the MODTRAN4.0 model to simulate the relationship between the atmospheric water vapor content w and the thermal infrared band atmospheric transmittance ratio τ 11 /τ 10 . Figure 1 shows the relationship between the Landsat 8 thermal infrared band atmospheric transmittance ratio and atmospheric water vapor content based on 2311 TIGR atmospheric profiles and the MODTRAN4.0 atmospheric radiative transfer model.
图1 Landsat 8热红外波段大气透过率比值和大气水蒸汽含量的关系Figure 1 The relationship between the ratio of atmospheric transmittance in the thermal infrared band of Landsat 8 and the content of atmospheric water vapor
如图1所示,Landsat8数据11波段和10波段大气透过率比值和大气水蒸汽含量有很好的相关性。从图1中可以看出,在透过率比值为0.9处存在一个拐点,为了更好地拟合大气透过率比值和大气水蒸汽含量之间的关系式,以0.9为分界点将大气透过率比值分成两段进行拟合,得到大气透过率比值和大气水蒸汽含量之间的关系式:As shown in Figure 1, there is a good correlation between the atmospheric transmittance ratio of the 11th band and the 10th band of Landsat8 data and the atmospheric water vapor content. It can be seen from Figure 1 that there is an inflection point at the transmittance ratio of 0.9. In order to better fit the relationship between the atmospheric transmittance ratio and atmospheric water vapor content, the The rate ratio is divided into two sections for fitting, and the relationship between the atmospheric transmittance ratio and the atmospheric water vapor content is obtained:
w=-18.973(τ11/τ10)+19.13 R2=0.9663,τ11/τ10>0.9 (3)w=-18.973(τ 11 /τ 10 )+19.13 R 2 =0.9663, τ 11 /τ 10 >0.9 (3)
w=-13.412(τ11/τ10)+14.158 R2=0.9366,τ11/τ10<0.9 (4)w=-13.412(τ 11 /τ 10 )+14.158 R 2 =0.9366, τ 11 /τ 10 <0.9 (4)
由式3和式4可以得到系数a和b。The coefficients a and b can be obtained from formula 3 and formula 4.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510345435.4A CN104897289B (en) | 2015-06-23 | 2015-06-23 | A kind of satellite data Surface Temperature Retrieval methods of Landsat 8 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510345435.4A CN104897289B (en) | 2015-06-23 | 2015-06-23 | A kind of satellite data Surface Temperature Retrieval methods of Landsat 8 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104897289A true CN104897289A (en) | 2015-09-09 |
CN104897289B CN104897289B (en) | 2017-08-18 |
Family
ID=54030096
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510345435.4A Active CN104897289B (en) | 2015-06-23 | 2015-06-23 | A kind of satellite data Surface Temperature Retrieval methods of Landsat 8 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104897289B (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105841819A (en) * | 2016-03-23 | 2016-08-10 | 中国科学院遥感与数字地球研究所 | Estimation method and device of land surface temperature under cloudy condition |
CN107389198A (en) * | 2017-05-23 | 2017-11-24 | 三亚中科遥感研究所 | It is a kind of that window Surface Temperature Retrieval method is split based on radiance |
CN107462331A (en) * | 2017-08-07 | 2017-12-12 | 中国科学院遥感与数字地球研究所 | Iron and steel enterprise's production history remote-sensing monitoring method and system |
CN107560734A (en) * | 2017-03-06 | 2018-01-09 | 太原理工大学 | A kind of Landsat8 remote-sensing inversions surface temperature method |
CN107941344A (en) * | 2017-11-15 | 2018-04-20 | 中国科学院遥感与数字地球研究所 | A kind of steel plant based on surface temperature remote-sensing inversion go formulation experiment method |
CN108613933A (en) * | 2018-06-13 | 2018-10-02 | 中南林业科技大学 | Forest land arid space-time dynamic monitoring method based on multi-sources RS data fusion |
CN108985959A (en) * | 2018-08-09 | 2018-12-11 | 安徽大学 | Wheat powdery mildew remote sensing monitoring method based on surface temperature inversion technology |
CN112800857A (en) * | 2021-01-07 | 2021-05-14 | 北京中云伟图科技有限公司 | Bare land rapid extraction method based on high-resolution satellite data |
CN114812822A (en) * | 2022-03-08 | 2022-07-29 | 南通大学 | Irregular urban heat island footprint extraction method based on angle segmentation |
CN114838827A (en) * | 2022-05-23 | 2022-08-02 | 河北地质大学 | Earth surface temperature inversion channel selection method based on MERSI-II remote sensing data |
CN115077719A (en) * | 2022-06-17 | 2022-09-20 | 南通大学 | Urban heat island footprint extraction method based on rotary scanning |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101629850A (en) * | 2009-08-24 | 2010-01-20 | 中国农业科学院农业资源与农业区划研究所 | Method for inversing land surface temperature from MODIS data |
CN102736128A (en) * | 2011-09-21 | 2012-10-17 | 中国科学院地理科学与资源研究所 | Method and device for processing unmanned plane optical remote sensing image data |
CN103293522A (en) * | 2013-05-08 | 2013-09-11 | 中国科学院光电研究院 | Intermediate infrared two-channel remote sensing data surface temperature inversion method and device |
CN103398780A (en) * | 2013-06-26 | 2013-11-20 | 北京师范大学 | Near-surface temperature inversion method based on FY-2C thermal-infrared waveband |
-
2015
- 2015-06-23 CN CN201510345435.4A patent/CN104897289B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101629850A (en) * | 2009-08-24 | 2010-01-20 | 中国农业科学院农业资源与农业区划研究所 | Method for inversing land surface temperature from MODIS data |
CN102736128A (en) * | 2011-09-21 | 2012-10-17 | 中国科学院地理科学与资源研究所 | Method and device for processing unmanned plane optical remote sensing image data |
CN103293522A (en) * | 2013-05-08 | 2013-09-11 | 中国科学院光电研究院 | Intermediate infrared two-channel remote sensing data surface temperature inversion method and device |
CN103398780A (en) * | 2013-06-26 | 2013-11-20 | 北京师范大学 | Near-surface temperature inversion method based on FY-2C thermal-infrared waveband |
Non-Patent Citations (2)
Title |
---|
JUAN C.JIMENEZ-MUNOZ ET AL: "Land Surface Temperature Retrieval Methods From Landsat-8 Thermal Infrared Sensor Data", 《IEEE GEOSCIENCE AND REMOTE SENSING LETTERS》 * |
JUAN C.JIMENEZ-MUNOZ ET AL: "Revision of the Single-Channel Algorithm for Land Surface Temperature Retrieval From Landsat Thermal-Infrared Data", 《IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING》 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105841819A (en) * | 2016-03-23 | 2016-08-10 | 中国科学院遥感与数字地球研究所 | Estimation method and device of land surface temperature under cloudy condition |
CN105841819B (en) * | 2016-03-23 | 2018-06-08 | 中国科学院遥感与数字地球研究所 | A kind of evaluation method and device for having the surface temperature under the conditions of cloud |
CN107560734A (en) * | 2017-03-06 | 2018-01-09 | 太原理工大学 | A kind of Landsat8 remote-sensing inversions surface temperature method |
CN107389198A (en) * | 2017-05-23 | 2017-11-24 | 三亚中科遥感研究所 | It is a kind of that window Surface Temperature Retrieval method is split based on radiance |
CN107462331B (en) * | 2017-08-07 | 2019-09-27 | 中国科学院遥感与数字地球研究所 | Method and system for remote sensing monitoring of production capacity changes in iron and steel enterprises |
CN107462331A (en) * | 2017-08-07 | 2017-12-12 | 中国科学院遥感与数字地球研究所 | Iron and steel enterprise's production history remote-sensing monitoring method and system |
CN107941344B (en) * | 2017-11-15 | 2020-01-10 | 中国科学院遥感与数字地球研究所 | Steel plant capacity-removing monitoring method based on surface temperature remote sensing inversion |
CN107941344A (en) * | 2017-11-15 | 2018-04-20 | 中国科学院遥感与数字地球研究所 | A kind of steel plant based on surface temperature remote-sensing inversion go formulation experiment method |
CN108613933A (en) * | 2018-06-13 | 2018-10-02 | 中南林业科技大学 | Forest land arid space-time dynamic monitoring method based on multi-sources RS data fusion |
CN108985959A (en) * | 2018-08-09 | 2018-12-11 | 安徽大学 | Wheat powdery mildew remote sensing monitoring method based on surface temperature inversion technology |
CN108985959B (en) * | 2018-08-09 | 2021-05-28 | 安徽大学 | A remote sensing monitoring method for wheat powdery mildew based on surface temperature inversion technology |
CN112800857A (en) * | 2021-01-07 | 2021-05-14 | 北京中云伟图科技有限公司 | Bare land rapid extraction method based on high-resolution satellite data |
CN114812822A (en) * | 2022-03-08 | 2022-07-29 | 南通大学 | Irregular urban heat island footprint extraction method based on angle segmentation |
CN114838827A (en) * | 2022-05-23 | 2022-08-02 | 河北地质大学 | Earth surface temperature inversion channel selection method based on MERSI-II remote sensing data |
CN115077719A (en) * | 2022-06-17 | 2022-09-20 | 南通大学 | Urban heat island footprint extraction method based on rotary scanning |
Also Published As
Publication number | Publication date |
---|---|
CN104897289B (en) | 2017-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104897289B (en) | A kind of satellite data Surface Temperature Retrieval methods of Landsat 8 | |
CN108985959B (en) | A remote sensing monitoring method for wheat powdery mildew based on surface temperature inversion technology | |
Vani et al. | Comparative study of NDVI and SAVI vegetation indices in Anantapur district semi-arid areas | |
CN106226260A (en) | A kind of combination microwave and the Soil Moisture Inversion method of infrared remote sensing image | |
CN115031854B (en) | Thermal infrared hyperspectral surface temperature emissivity spectrum inversion method and device | |
Czajkowski et al. | Thermal remote sensing of near surface environmental variables: Application over the Oklahoma Mesonet | |
CN106778516B (en) | A method and device for determining surface temperature using remote sensing data of China Fengyun-3 satellite | |
CN101634711B (en) | Method for estimating temperature of near-surface air from MODIS data | |
CN110186822B (en) | A remote sensing inversion method for aerosol optical depth | |
CN102034337B (en) | System and method for prairie snow disaster remote sensing monitoring and disaster situation evaluation | |
Aslan et al. | Analysis of relationship between urban heat island effect and land use/cover type using Landsat 7 ETM+ and Landsat 8 OLI images | |
CN103398780B (en) | Based on the temperature inversion method near the ground of FY-2C Thermal infrared bands | |
CN109297605B (en) | Surface temperature inversion method based on mid-infrared and thermal infrared data | |
CN116486931B (en) | Method and system for producing full-coverage atmospheric methane concentration data coupled with physical mechanisms | |
CN111737913A (en) | A Brightness Temperature Selection Method for MWHTS Clear Sky Observation Based on Cloud Water Content Inversion | |
CN109596223B (en) | A multi-spectral spaceborne sensor channel device and method for direct inversion of surface temperature | |
CN105183989B (en) | A method for inversion of surface albedo from Landsat8 satellite data | |
CN105224915A (en) | A kind of mixed pixel of hyper-spectral image decomposition method | |
CN104457985A (en) | On-orbit spectrum calibrating method of dispersion type hyperspectral imaging remote sensor | |
CN114677579A (en) | A real-time calculation method of cloud top height based on satellite infrared detection element parameters | |
CN107230186A (en) | A kind of even color method of satellite remote-sensing image physics | |
CN102901563A (en) | Method and device for determining land surface emissivity of narrow band and broad band simultaneously | |
CN104156530A (en) | Channel radiation quantity reconstructing method of high temperature target | |
CN106324614A (en) | New TAVI combination algorithm | |
CN103808413A (en) | Method and device for temperature-emissivity separation based on noise separation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |