CN104810549A - Method for preparing porous gel polymer electrolyte doped with composite nanoparticles - Google Patents
Method for preparing porous gel polymer electrolyte doped with composite nanoparticles Download PDFInfo
- Publication number
- CN104810549A CN104810549A CN201510187329.8A CN201510187329A CN104810549A CN 104810549 A CN104810549 A CN 104810549A CN 201510187329 A CN201510187329 A CN 201510187329A CN 104810549 A CN104810549 A CN 104810549A
- Authority
- CN
- China
- Prior art keywords
- composite
- polymer electrolyte
- gel polymer
- lithium
- methyl methacrylate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 89
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 57
- 239000005518 polymer electrolyte Substances 0.000 title claims abstract description 46
- 238000000034 method Methods 0.000 title claims abstract description 16
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims abstract description 42
- 239000002033 PVDF binder Substances 0.000 claims abstract description 41
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims abstract description 41
- 239000011258 core-shell material Substances 0.000 claims abstract description 32
- 229920000642 polymer Polymers 0.000 claims abstract description 23
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000011244 liquid electrolyte Substances 0.000 claims abstract description 15
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims abstract description 13
- 238000007654 immersion Methods 0.000 claims abstract description 12
- 239000012528 membrane Substances 0.000 claims abstract description 11
- 238000001556 precipitation Methods 0.000 claims abstract description 8
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 7
- PMUKAEUGVCXPDF-UAIGNFCESA-L dilithium;(z)-but-2-enedioate Chemical compound [Li+].[Li+].[O-]C(=O)\C=C/C([O-])=O PMUKAEUGVCXPDF-UAIGNFCESA-L 0.000 claims description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 20
- 238000006243 chemical reaction Methods 0.000 claims description 19
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 18
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 claims description 18
- 239000000243 solution Substances 0.000 claims description 17
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 16
- 239000000843 powder Substances 0.000 claims description 14
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 claims description 12
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 12
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 claims description 11
- 239000002270 dispersing agent Substances 0.000 claims description 10
- -1 lithium hexafluorophosphate Chemical compound 0.000 claims description 10
- 238000003756 stirring Methods 0.000 claims description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 8
- 239000008367 deionised water Substances 0.000 claims description 8
- 229910021641 deionized water Inorganic materials 0.000 claims description 8
- 239000011858 nanopowder Substances 0.000 claims description 8
- 238000002360 preparation method Methods 0.000 claims description 8
- 239000003792 electrolyte Substances 0.000 claims description 7
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 6
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 claims description 6
- 229920003081 Povidone K 30 Polymers 0.000 claims description 6
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 6
- 239000011521 glass Substances 0.000 claims description 6
- 238000009775 high-speed stirring Methods 0.000 claims description 6
- 239000011259 mixed solution Substances 0.000 claims description 6
- 239000000178 monomer Substances 0.000 claims description 6
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 6
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 6
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 6
- 235000012239 silicon dioxide Nutrition 0.000 claims description 6
- 238000002525 ultrasonication Methods 0.000 claims description 3
- 238000004108 freeze drying Methods 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims description 2
- 239000002245 particle Substances 0.000 claims description 2
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 claims description 2
- 229910052939 potassium sulfate Inorganic materials 0.000 claims description 2
- 235000011151 potassium sulphates Nutrition 0.000 claims description 2
- 230000035484 reaction time Effects 0.000 claims description 2
- 238000007334 copolymerization reaction Methods 0.000 claims 1
- XKPJKVVZOOEMPK-UHFFFAOYSA-M lithium;formate Chemical compound [Li+].[O-]C=O XKPJKVVZOOEMPK-UHFFFAOYSA-M 0.000 claims 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 abstract description 12
- 229910001416 lithium ion Inorganic materials 0.000 abstract description 12
- 150000002500 ions Chemical class 0.000 abstract description 8
- 239000008346 aqueous phase Substances 0.000 abstract 1
- 229920001577 copolymer Polymers 0.000 abstract 1
- 238000012674 dispersion polymerization Methods 0.000 abstract 1
- 238000003980 solgel method Methods 0.000 abstract 1
- 239000010408 film Substances 0.000 description 27
- 239000000499 gel Substances 0.000 description 18
- 239000012071 phase Substances 0.000 description 15
- 239000012792 core layer Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000001453 impedance spectrum Methods 0.000 description 4
- 239000003999 initiator Substances 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 239000012074 organic phase Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- UXGNZZKBCMGWAZ-UHFFFAOYSA-N dimethylformamide dmf Chemical compound CN(C)C=O.CN(C)C=O UXGNZZKBCMGWAZ-UHFFFAOYSA-N 0.000 description 2
- 238000003487 electrochemical reaction Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000004502 linear sweep voltammetry Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- CXHHBNMLPJOKQD-UHFFFAOYSA-M methyl carbonate Chemical compound COC([O-])=O CXHHBNMLPJOKQD-UHFFFAOYSA-M 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002114 nanocomposite Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000879 optical micrograph Methods 0.000 description 1
- 230000008855 peristalsis Effects 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0565—Polymeric materials, e.g. gel-type or solid-type
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
- C08F220/14—Methyl esters, e.g. methyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F222/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
- C08F222/04—Anhydrides, e.g. cyclic anhydrides
- C08F222/06—Maleic anhydride
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0085—Immobilising or gelification of electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Manufacturing & Machinery (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Dispersion Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
- Conductive Materials (AREA)
- Cell Separators (AREA)
Abstract
本发明公开了应用于聚合物锂离子电池的一种掺杂复合纳米粒子的多孔凝胶聚合物电解质制备方法。首先水相分散聚合得到甲基丙烯酸甲酯共聚马来酸锂共聚物的有机纳米粒子,再通过溶胶凝胶法将其表面包覆二氧化硅得到核壳形貌的复合纳米粒子,然后将其分散于PVDF的N’N-二甲基甲酰胺溶液,采用浸没沉淀法制备基于PVDF的复合多孔膜,其经真空加热干燥后,再吸附液体电解质以得到复合凝胶聚合物电解质薄膜。本发明获得的薄膜厚度为30~50μm,离子导电率在30℃下达6.31×10-3Scm-1,电化学窗口达5.4V,其性能优于常规普通凝胶聚合物电解质。The invention discloses a method for preparing a porous gel polymer electrolyte doped with composite nanoparticles, which is applied to a polymer lithium ion battery. First, the organic nanoparticles of methyl methacrylate copolymerized lithium maleate copolymer were obtained by aqueous phase dispersion polymerization, and then the surface was coated with silica by sol-gel method to obtain composite nanoparticles with core-shell morphology, and then Dispersed in N'N-dimethylformamide solution of PVDF, the PVDF-based composite porous membrane was prepared by immersion precipitation method, which was heated and dried in vacuum, and then adsorbed with liquid electrolyte to obtain a composite gel polymer electrolyte membrane. The film obtained by the invention has a thickness of 30-50 μm, an ion conductivity of 6.31×10 -3 Scm -1 at 30°C, and an electrochemical window of 5.4V, and its performance is better than that of conventional ordinary gel polymer electrolytes.
Description
技术领域technical field
本发明公开了一种应用于聚合物锂离子电池的一种掺杂复合纳米粒子的多孔凝胶聚合物电解质的制备方法。The invention discloses a preparation method of a porous gel polymer electrolyte doped with composite nano particles, which is applied to a polymer lithium ion battery.
背景技术Background technique
随着环境问题的愈发突出,使用常规化石能源导致严重的大气污染,对新型锂离子电池,燃料电池等环保新能源的需求日益强烈。聚合物锂离子电池以其能量密度大,可再生循环使用而受到广泛关注。聚合物电解质作为聚合物锂离子电池的重要组成部分,在锂离子电池的安全可靠性,充放电等性能上有着重要的决定性影响。As environmental problems become more and more prominent, the use of conventional fossil energy causes serious air pollution, and the demand for new environmentally friendly new energy sources such as new lithium-ion batteries and fuel cells is increasingly strong. Polymer lithium-ion batteries have attracted widespread attention due to their high energy density and recyclable use. As an important part of polymer lithium-ion batteries, polymer electrolytes have an important decisive influence on the safety, reliability, charge and discharge performance of lithium-ion batteries.
以往研究,集中重点是将无机纳米粒子直接掺杂混入有机相聚合物中以制备复合聚合物电解质。由于无机纳米颗粒较小,分散在聚合物母体中容易发生纳米团簇从而导致无法实现纳米颗粒均匀分散的效果。通过化学修饰以制备核壳形貌纳米颗粒,分析其对复合聚合物电解质性能的影响虽有研究,如哈工大唐冬雁教授等通过甲基丙烯酸甲酯在无机纳米颗粒的表面原位聚合以改性无机纳米相。测试发现,聚甲基丙烯酸甲酯并不能均匀包覆于无机纳米颗粒表面,同时接枝率也比较低,无法真正实现均匀核壳形貌的纳米粒子的合成。有必要设计一种新的合成手段,制备一种均匀核壳形貌的复合纳米粒子并将其掺杂于聚合物母体中,以有效掺杂复合聚合物电解质,并使其各项性能有效提升。Previous studies have focused on the direct doping of inorganic nanoparticles into organic phase polymers to prepare composite polymer electrolytes. Due to the small size of inorganic nanoparticles, nanoclusters are prone to occur when dispersed in the polymer matrix, which makes it impossible to achieve the effect of uniform dispersion of nanoparticles. Prepare core-shell nanoparticles by chemical modification, and analyze its influence on the performance of composite polymer electrolytes. nanophase. Tests have found that polymethyl methacrylate cannot uniformly coat the surface of inorganic nanoparticles, and the grafting rate is relatively low, so it is impossible to truly realize the synthesis of nanoparticles with uniform core-shell morphology. It is necessary to design a new synthesis method to prepare a composite nanoparticle with uniform core-shell morphology and dope it into the polymer matrix to effectively dope the composite polymer electrolyte and effectively improve its various properties .
发明内容Contents of the invention
本发明的目的是为克服如上述现有技术的缺陷,提供一种应用于聚合物锂离子电池的一种掺杂复合纳米粒子的多孔凝胶聚合物电解质的制备方法。所述方法是首先合成一种新型壳层为二氧化硅核层的甲基丙烯酸甲酯共聚马来酸锂的核壳形貌复合纳米粒子,然后将其掺杂分散入聚偏氟乙烯聚合物溶液中,通过浸没沉淀发制备复合聚偏氟乙烯多孔膜,薄膜吸附液体电解质凝胶化后,得到一种具有多孔形貌的复合凝胶聚合物电解质。The object of the present invention is to overcome the defects of the above-mentioned prior art, and provide a method for preparing a porous gel polymer electrolyte doped with composite nanoparticles, which is applied to a polymer lithium ion battery. The method is to first synthesize a new type of core-shell morphology composite nanoparticle of methyl methacrylate copolymerized lithium maleate whose shell is a silicon dioxide core layer, and then dope and disperse it into polyvinylidene fluoride polymer In the solution, the composite polyvinylidene fluoride porous membrane is prepared by immersion precipitation, and after the membrane absorbs the liquid electrolyte and gels, a composite gel polymer electrolyte with porous morphology is obtained.
为了达到上述目的,本发明采用的技术方案是:In order to achieve the above object, the technical scheme adopted in the present invention is:
一种掺杂复合纳米粒子的多孔凝胶聚合物电解质的制备方法,包括如下步骤:A preparation method of a porous gel polymer electrolyte doped with composite nanoparticles, comprising the steps of:
步骤一、将混合单体甲基丙烯酸甲酯,顺丁烯二酸酐按照摩尔比1:1~100:1的比例混合,然后加入相对于甲基丙烯酸甲酯与顺丁烯二酸酐总质量的3~10wt%的分散剂,混合物在高速搅拌下分散于去离子水中,单体总量相对于去离子水的质量比例为5~20wt%,加入相对于混合单体质量1~3wt%的过硫酸钾,反应体系升温范围在60~100℃,反应时间控制在6~24小时,反应结束后降至25℃,加入相对顺丁烯二酸酐摩尔量2倍的氢氧化锂到反应体系中,反应6~10小时,得到分散于水相中的甲基丙烯酸甲酯共聚马来酸锂的有机纳米粒子,经过冷冻干燥,得到甲基丙烯酸甲酯共聚马来酸锂的有机纳米粉末;Step 1. Mix the mixed monomers methyl methacrylate and maleic anhydride in a molar ratio of 1:1 to 100:1, and then add 3-10wt% dispersant, the mixture is dispersed in deionized water under high-speed stirring, the mass ratio of the total amount of monomers to deionized water is 5-20wt%, and 1-3wt% of dispersant is added relative to the mass of mixed monomers Potassium sulfate, the temperature rise range of the reaction system is 60-100°C, the reaction time is controlled at 6-24 hours, after the reaction is completed, it is lowered to 25°C, and lithium hydroxide, which is twice the molar amount of maleic anhydride, is added to the reaction system. reacting for 6 to 10 hours to obtain organic nanoparticles of methyl methacrylate copolymerized lithium maleate dispersed in the water phase, and freeze-drying to obtain organic nanometer particles of methyl methacrylate copolymerized lithium maleate;
步骤二、将步骤一得到的甲基丙烯酸甲酯共聚马来酸锂的有机纳米粉末分散于乙醇中,其浓度控制在0.01g/ml~0.5g/ml,超声分散0.5h,按质量比例正硅酸乙酯:甲基丙烯酸甲酯共聚马来酸锂的有机纳米粉末为10:1~1:10加入正硅酸乙酯,滴加氨水使调节体系pH值控制在8~11之间,室温25℃下反应6~24h,得到壳层为二氧化硅的甲基丙烯酸甲酯共聚马来酸锂的核壳形貌复合纳米粒子;Step 2. Disperse the organic nano-powder of methyl methacrylate copolymerized lithium maleate obtained in step 1 in ethanol, control its concentration at 0.01g/ml~0.5g/ml, ultrasonically disperse for 0.5h, and normalize according to the mass ratio Ethyl silicate: organic nano powder of methyl methacrylate copolymerized lithium maleate is 10:1~1:10, add orthosilicate ethyl ester, drop ammonia water to control the pH value of the adjustment system between 8~11, React at room temperature at 25°C for 6 to 24 hours to obtain core-shell morphology composite nanoparticles of methyl methacrylate copolymerized lithium maleate whose shell is silicon dioxide;
步骤三:将聚偏氟乙烯粉末室温下溶解分散于N,N-二甲基甲酰胺溶液中,聚合物溶液浓度控制在0.1~5g/ml,搅拌6~12小时后,然后将步骤二得到的核壳形貌复合纳米粒子按聚偏氟乙烯粉末的掺杂量的0.01~10wt%加入分散到其中超声0.1~1h,再室温搅拌12~24h;再将聚合物溶液静置脱气泡,利用刮刀平整涂刮于玻璃板上,将其浸泡于水相中,采用浸没沉淀法制备得到核壳形貌复合纳米粒子掺杂聚偏氟乙烯的复合多孔薄膜;Step 3: Dissolve and disperse polyvinylidene fluoride powder in N,N-dimethylformamide solution at room temperature, control the concentration of the polymer solution at 0.1-5g/ml, stir for 6-12 hours, and then obtain in step 2 The composite nanoparticles with core-shell morphology are added according to 0.01-10wt% of the doping amount of polyvinylidene fluoride powder and dispersed therein by ultrasonication for 0.1-1h, and then stirred at room temperature for 12-24h; The spatula is evenly coated on the glass plate, soaked in the water phase, and the composite porous film with core-shell morphology composite nanoparticles doped with polyvinylidene fluoride is prepared by immersion precipitation method;
步骤四:将步骤三得到的核壳形貌复合纳米粒子掺杂聚偏氟乙烯的复合多孔薄膜先在40℃~80℃的温度下抽真空干燥8~24小时,然后在手套箱中浸泡液体电解质0.5~1小时,得到所吸附的液体电解质组分占总质量的40~70wt%的具有多孔结构的复合凝胶聚合物电解质薄膜。Step 4: Vacuum-dry the composite porous film of core-shell morphology composite nanoparticles doped polyvinylidene fluoride obtained in step 3 at a temperature of 40°C to 80°C for 8 to 24 hours, and then soak the liquid in a glove box Electrolyte for 0.5-1 hour to obtain a composite gel polymer electrolyte membrane with a porous structure in which the absorbed liquid electrolyte component accounts for 40-70 wt% of the total mass.
上述所述的薄膜的厚度为30μm~50μm。The above-mentioned thin film has a thickness of 30 μm to 50 μm.
上述步骤一中所述的甲基丙烯酸甲酯与顺丁烯二酸酐的摩尔配比优选为5:1~20:1。The molar ratio of methyl methacrylate to maleic anhydride described in the above step 1 is preferably 5:1-20:1.
上述步骤一中所述的分散剂为聚乙烯吡咯烷酮,型号为PVP-K30。The dispersant described in the above step 1 is polyvinylpyrrolidone, the model is PVP-K30.
上述步骤二中所述的正硅酸乙酯与甲基丙烯酸甲酯共聚马来酸锂的质量比例优选为5:1~1:2。The mass ratio of ethyl orthosilicate and methyl methacrylate copolymerized lithium maleate described in the above step 2 is preferably 5:1˜1:2.
上述步骤三中所述的聚偏氟乙烯的分子量为Mn=4×105~5×105。The molecular weight of the polyvinylidene fluoride described in the above step 3 is M n =4×10 5 -5×10 5 .
上述步骤三中所述的核壳形貌复合纳米粒子相对于聚偏氟乙烯粉末的掺杂量优选为1~10wt%。The doping amount of the composite nanoparticles with core-shell morphology in the above step 3 relative to the polyvinylidene fluoride powder is preferably 1-10 wt%.
上述步骤四所述的液体电解质为1M六氟合磷酸锂碳酸酯电解质。所述的1M六氟合磷酸锂碳酸酯电解质为由六氟合磷酸锂掺入碳酸二甲酯、碳酸甲乙酯和乙烯碳酸酯组成的混合溶液,其质量比为碳酸二甲酯:碳酸甲乙酯:乙烯碳酸酯=1:1:1。The liquid electrolyte described in the above step 4 is a 1M lithium hexafluorophosphate carbonate electrolyte. The 1M lithium hexafluorophosphate carbonate electrolyte is a mixed solution composed of lithium hexafluorophosphate mixed with dimethyl carbonate, ethyl methyl carbonate and ethylene carbonate, and its mass ratio is dimethyl carbonate:methyl carbonate Ethyl ester: ethylene carbonate = 1:1:1.
本发明的掺杂复合纳米粒子的多孔凝胶聚合物电解质的制备方法有益效果在于:The beneficial effect of the preparation method of the porous gel polymer electrolyte doped with composite nanoparticles of the present invention is:
传统的复合聚合物电解质的研究是将无机相直接掺杂混入有机相制备复合聚合物电解质,然而无机相对锂离子的传导并没有贡献,尽管在有机相与无机相的界面起到一定的离子导通作用,但其作用并不明显。本发明中,添加的核壳结构纳米粒子,一方面在聚偏氟乙烯基体中起到降低其结晶度的作用,使其更利于锂离子的导通,并且由于无机相的存在,一定程度上减少了由于结晶度降低引起强度下降;另一方面,加入的聚合物锂盐对电解液的亲和性更大,起到更好的离子导通作用;充分发挥复合聚合物电解质的复合两相的特点;最后,复合的效果,有利于加入液体电解质后得到的凝胶聚合物电解质体系依然保持较好力学性能。The traditional research on composite polymer electrolytes is to directly dope the inorganic phase into the organic phase to prepare composite polymer electrolytes. However, the inorganic phase does not contribute to the conduction of lithium ions, although it plays a role in the interface between the organic phase and the inorganic phase. general effect, but its effect is not obvious. In the present invention, the added core-shell structure nanoparticles, on the one hand, play a role in reducing the crystallinity of the polyvinylidene fluoride matrix, making it more conducive to the conduction of lithium ions, and due to the existence of the inorganic phase, to a certain extent It reduces the decrease in strength due to the decrease in crystallinity; on the other hand, the added polymer lithium salt has a greater affinity for the electrolyte and plays a better role in ion conduction; give full play to the composite two-phase composite polymer electrolyte characteristics; finally, the composite effect is beneficial to the gel polymer electrolyte system obtained after adding the liquid electrolyte to maintain good mechanical properties.
研究证明复合两相为连续相,相区尺寸小,混合较为均匀,体系性能稳定。本发明的改性纳米复合多孔凝胶聚合物电解质其室温离子导电率达到10-3Scm-1数量级,电化学稳定窗口达到5.3V。符合实际聚合物锂离子电池使用要求。The research proves that the composite two phases are continuous phases, the phase domain size is small, the mixing is relatively uniform, and the system performance is stable. The room temperature ion conductivity of the modified nanocomposite porous gel polymer electrolyte of the invention reaches the order of 10 -3 Scm -1 , and the electrochemical stability window reaches 5.3V. It meets the actual requirements for the use of polymer lithium-ion batteries.
附图说明Description of drawings
图1是本发明实施例1制备的核壳结构纳米粒子掺杂聚偏氟乙烯复合聚合物电解质薄膜的光学显微镜图;Fig. 1 is the optical microscope picture of the core-shell nanoparticle-doped polyvinylidene fluoride composite polymer electrolyte film prepared in Example 1 of the present invention;
图2是本发明实施例1制备的核壳结构纳米粒子掺杂聚偏氟乙烯复合聚合物电解质薄膜的电化学稳定窗口结果;Fig. 2 is the electrochemical stability window result of the core-shell nanoparticle-doped polyvinylidene fluoride composite polymer electrolyte film prepared in Example 1 of the present invention;
图3是本发明实施例1制备的不同比例核壳结构纳米粒子掺杂聚偏氟乙烯复合聚合物电解质薄膜在不同温度下的交流阻抗谱曲线;Fig. 3 is the AC impedance spectrum curve at different temperatures of different proportions of core-shell structure nanoparticles doped polyvinylidene fluoride composite polymer electrolyte film prepared in Example 1 of the present invention;
图4是本发明实施例1-4制备的核壳结构纳米粒子掺杂聚偏氟乙烯复合聚合物电解质薄膜的离子导电率随着温度的变化关系曲线;Fig. 4 is the relationship curve of the ionic conductivity of the core-shell nanoparticle-doped polyvinylidene fluoride composite polymer electrolyte film prepared in Example 1-4 of the present invention as a function of temperature;
具体实施方式Detailed ways
下面通过具体实施例,可以更好地理解本发明。然而,本领域的技术人员容易理解,实施例所描述的内容仅用于说明本发明,而不应当也不会限制本发明权利要求书中所详细描述的内容。Below through specific embodiment, can better understand the present invention. However, those skilled in the art can easily understand that the content described in the embodiments is only for illustrating the present invention, and should not and will not limit the content described in the claims of the present invention.
实施例1Example 1
(1)首先将4g甲基丙烯酸甲酯,0.196g顺丁烯二酸酐按照摩尔比20:1的比例混合,混合物在高速搅拌下分散于去离子水中,单体总量相对于去离子水的质量比例为10wt%,即水的质量为41.96g,然后加入相对于甲基丙烯酸甲酯与顺丁烯二酸酐中质量5%即0.21g的聚乙烯吡咯烷酮PVP-K30为分散剂,质量分数3%即0.126g的过硫酸钾为引发剂,升温75℃,反应24小时,反应结束后降至25℃,加入相对顺丁烯二酸酐摩尔量2倍即0.096g的氢氧化锂到反应体系中,反应8小时,产物冷冻干燥,得到甲基丙烯酸甲酯共聚马来酸锂的有机纳米粉末。(1) First, 4g methyl methacrylate and 0.196g maleic anhydride are mixed according to a molar ratio of 20:1, and the mixture is dispersed in deionized water under high-speed stirring. The mass ratio is 10wt%, that is, the mass of water is 41.96g, and then 0.21g of polyvinylpyrrolidone PVP-K30 relative to the mass of methyl methacrylate and maleic anhydride is added as a dispersant, with a mass fraction of 3 % that is, 0.126g of potassium persulfate is used as an initiator, the temperature is raised to 75°C, and the reaction is performed for 24 hours. After the reaction is completed, it is lowered to 25°C, and 0.096g of lithium hydroxide, which is twice the molar amount of maleic anhydride, is added to the reaction system. , reacted for 8 hours, and freeze-dried the product to obtain organic nanometer powder of methyl methacrylate copolymerized lithium maleate.
(2)将有机纳米粉末甲基丙烯酸甲酯共聚马来酸锂0.3g分散于25ml无水乙醇中,使其质量比例控制在0.012g/ml,超声分散0.5h,加入正硅酸乙酯,其中正硅酸乙酯与甲基丙烯酸甲酯共聚马来酸锂质量比例为5:1,即正硅酸乙酯质量为1.5g,滴加氨水使调节体系pH值控制在11左右,室温25℃下反应24h,得到壳层为二氧化硅核层为甲基丙烯酸甲酯共聚马来酸锂的核壳形貌复合纳米粒子。(2) Disperse 0.3 g of organic nano-powder methyl methacrylate copolymerized lithium maleate in 25 ml of absolute ethanol, control the mass ratio at 0.012 g/ml, ultrasonically disperse for 0.5 h, add tetraethyl orthosilicate, Among them, the mass ratio of ethyl orthosilicate and methyl methacrylate copolymerized lithium maleate is 5:1, that is, the quality of ethyl orthosilicate is 1.5g, and ammonia water is added dropwise to control the pH value of the adjustment system at about 11, and the room temperature is 25 The reaction was carried out at ℃ for 24 hours to obtain core-shell morphology composite nanoparticles whose shell layer is silicon dioxide and whose core layer is methyl methacrylate copolymerized lithium maleate.
(3)将分子量为4×105的聚偏氟乙烯粉末室温下溶解分散于N,N-二甲基甲酰胺溶液中,聚合物溶液浓度范围控制于1g/ml,搅拌8小时后,再将核壳形貌复合纳米粒子加入分散到其中,其中核壳形貌复合纳米粒子相对于聚偏氟乙烯的掺杂量为1%wt%,先超声0.4h,然后再室温搅拌20h以致完全分散均匀。聚合物溶液静置脱气泡后,用刮刀平整涂刮于玻璃板上,将其浸泡于水相中,采用浸没沉淀法制备得到复合纳米粒子掺杂聚偏氟乙烯的复合多孔膜,薄膜厚度约为30μm。(3) Dissolve and disperse polyvinylidene fluoride powder with a molecular weight of 4×10 5 in N,N-dimethylformamide solution at room temperature, control the concentration range of the polymer solution at 1 g/ml, stir for 8 hours, and then Add core-shell composite nanoparticles into it and disperse them, wherein the doping amount of core-shell composite nanoparticles relative to polyvinylidene fluoride is 1%wt%, first ultrasonic 0.4h, and then stir at room temperature for 20h to completely disperse uniform. After the polymer solution was left standing to remove air bubbles, it was evenly coated on a glass plate with a spatula, soaked in the water phase, and a composite porous membrane doped with composite nanoparticles doped with polyvinylidene fluoride was prepared by the immersion precipitation method. The thickness of the film was about is 30 μm.
(4)得到的复合纳米粒子掺杂聚偏氟乙烯复合多孔薄膜在40℃的温度下抽真空干燥20小时,再在手套箱中浸泡液体电解质(由六氟合磷酸锂掺入碳酸二甲酯、碳酸甲乙酯和乙烯碳酸酯所组成的浓度为1M的混合溶液,其按质量比碳酸二甲酯:碳酸甲乙酯:乙烯碳酸酯=1:1:1混合而成。)0.5小时,通过控制浸泡时间,使得组成中所吸附的液体电解质组分占总质量的40wt%,得到最终的具有多孔结构的复合凝胶聚合物电解质薄膜,薄膜厚度约为30μm。(4) The obtained composite nanoparticle-doped polyvinylidene fluoride composite porous film was vacuum-dried at a temperature of 40° C. for 20 hours, and then soaked in a liquid electrolyte (made from lithium hexafluorophosphate mixed with dimethyl carbonate) in a glove box. , the concentration that ethyl methyl carbonate and ethylene carbonate are formed is the mixed solution of 1M, and it forms by mass ratio dimethyl carbonate: ethyl methyl carbonate: ethylene carbonate=1:1:1.) 0.5 hour, By controlling the immersion time, the adsorbed liquid electrolyte component in the composition accounts for 40wt% of the total mass, and the final composite gel polymer electrolyte film with a porous structure is obtained, and the film thickness is about 30 μm.
图1是实施例1制备的核壳结构纳米粒子掺杂聚偏氟乙烯复合聚合物电解质薄膜的光学显微镜图;纳米粒子均匀分散在聚偏氟乙烯基体上,没有发现团簇,空洞大小均一,分布均匀。Figure 1 is an optical microscope image of the core-shell structure nanoparticle-doped polyvinylidene fluoride composite polymer electrolyte film prepared in Example 1; the nanoparticles are uniformly dispersed on the polyvinylidene fluoride matrix, no clusters are found, and the size of the holes is uniform. evenly distributed.
图2为实施例1制备得到的复合凝胶聚合物电解质薄膜在室温下的线性扫描伏安曲线测试结果(以不锈钢为工作正极、金属锂为负极和参考电极,将复合凝胶聚合物电解质薄膜夹于期间),其电化学稳定窗口为5.4V。Fig. 2 is the test result of the linear sweep voltammetry curve of the composite gel polymer electrolyte film prepared in Example 1 at room temperature (with stainless steel as the working positive electrode, metal lithium as the negative electrode and reference electrode, the composite gel polymer electrolyte film Sandwiched during), its electrochemical stability window is 5.4V.
图3是将实施例1制备得到的不同比例核壳结构纳米粒子掺杂聚偏氟乙烯复合聚合物电解质薄膜夹于不锈钢电极之间,在不同温度下测试得到的交流谱曲线。因为采用的是不锈钢阻塞电极,没有电化学反应,所以在阻抗谱中代表电化学反应的圆弧部分可以看成直径无穷大,在图中表现为近似的一条直线。根据交流阻抗谱中Nyquist曲线与阻抗谱图上实轴相交的点推算聚合物电解质的电阻Rb,由计算试计算聚合物电解质膜的离子导电率(σ)其室温下(25℃)离子导电率达到6.31×10-3Scm-1。Fig. 3 is the AC spectrum curve obtained by sandwiching the polyvinylidene fluoride composite polymer electrolyte film doped with core-shell structure nanoparticles in different proportions prepared in Example 1 between stainless steel electrodes and tested at different temperatures. Because the stainless steel blocking electrode is used, there is no electrochemical reaction, so the arc part representing the electrochemical reaction in the impedance spectrum can be regarded as an infinite diameter, which is shown as an approximate straight line in the figure. Calculate the resistance R b of the polymer electrolyte according to the point where the Nyquist curve in the AC impedance spectrum intersects with the real axis on the impedance spectrum, and use the calculation test Calculate the ionic conductivity (σ) of the polymer electrolyte membrane, and its ionic conductivity at room temperature (25°C) reaches 6.31×10 -3 Scm -1 .
实施例2Example 2
(1)首先将4g甲基丙烯酸甲酯,0.392g顺丁烯二酸酐按照摩尔比10:1的比例混合,混合物在高速搅拌下分散于去离子水中,单体总量相对于去离子水的质量比例为5wt%,水的质量为87.84g,然后加入相对于甲基丙烯酸甲酯与顺丁烯二酸酐中质量3%即0.132g的聚乙烯吡咯烷酮PVP-K30为分散剂,质量分数2.5%即0.11g的过硫酸钾为引发剂,升温85℃,反应6小时,反应结束后降至25℃,加入相对顺丁烯二酸酐摩尔量2倍即0.192g的氢氧化锂到反应体系中,反应6小时,产物冷冻干燥,得到甲基丙烯酸甲酯共聚马来酸锂的有机纳米粉末。(1) First, 4g of methyl methacrylate and 0.392g of maleic anhydride are mixed in a molar ratio of 10:1, and the mixture is dispersed in deionized water under high-speed stirring. The mass ratio is 5wt%, the mass of water is 87.84g, and then 0.132g of polyvinylpyrrolidone PVP-K30 relative to the mass of methyl methacrylate and maleic anhydride is added as a dispersant, with a mass fraction of 2.5% That is, 0.11g of potassium persulfate is used as an initiator, the temperature is raised to 85°C, and the reaction is carried out for 6 hours. After the reaction is completed, it is lowered to 25°C, and 0.192g of lithium hydroxide, which is twice the molar amount of maleic anhydride, is added to the reaction system. After reacting for 6 hours, the product was freeze-dried to obtain organic nanometer powder of methyl methacrylate copolymerized lithium maleate.
(2)将有机纳米粉末甲基丙烯酸甲酯共聚马来酸锂0.25g分散于25ml无水乙醇中,使其质量比例控制在0.01g/ml,超声分散0.5h,加入正硅酸乙酯,其中正硅酸乙酯与甲基丙烯酸甲酯共聚马来酸锂质量比例为3:1,即正硅酸乙酯质量为0.75g,滴加氨水使调节体系pH值控制在9左右,室温25℃下反应20h,得到壳层为二氧化硅核层为甲基丙烯酸甲酯共聚马来酸锂的核壳形貌复合纳米粒子。(2) Disperse 0.25 g of organic nano-powder methyl methacrylate copolylithium maleate in 25 ml of absolute ethanol, control the mass ratio at 0.01 g/ml, ultrasonically disperse for 0.5 h, add tetraethyl orthosilicate, Among them, the mass ratio of ethyl orthosilicate to lithium maleate copolymerized with methyl methacrylate is 3:1, that is, the quality of ethyl orthosilicate is 0.75g, and ammonia water is added dropwise to control the pH value of the adjustment system at about 9, and the room temperature is 25 The reaction is carried out at ℃ for 20 hours to obtain core-shell morphology composite nanoparticles whose shell layer is silicon dioxide and whose core layer is methyl methacrylate copolymerized lithium maleate.
(3)将分子量为4.5×105的聚偏氟乙烯粉末室温下溶解分散于N,N-二甲基甲酰胺溶液中,聚合物溶液浓度范围控制于5g/ml,搅拌12小时后,再将核壳形貌复合纳米粒子加入分散到其中,其中复合纳米粒子相对于聚偏氟乙烯的掺杂量为0.01wt%,先超声0.1h,然后再室温搅拌12h以致完全分散均匀。聚合物溶液静置脱气泡后,用刮刀平整涂刮于玻璃板上,将其浸泡于水相中,采用浸没沉淀法制备得到复合纳米粒子掺杂聚偏氟乙烯的复合多孔膜,薄膜厚度约为50μm。(3) Dissolve and disperse polyvinylidene fluoride powder with a molecular weight of 4.5×10 5 in N,N-dimethylformamide solution at room temperature, control the concentration range of the polymer solution at 5 g/ml, stir for 12 hours, and then Add and disperse the composite nanoparticles with core-shell morphology, wherein the doping amount of the composite nanoparticles relative to polyvinylidene fluoride is 0.01wt%, ultrasonication for 0.1h, and then stirring at room temperature for 12h to completely disperse uniformly. After the polymer solution was left standing to remove air bubbles, it was evenly coated on a glass plate with a spatula, soaked in the water phase, and a composite porous membrane doped with composite nanoparticles doped with polyvinylidene fluoride was prepared by the immersion precipitation method. The thickness of the film was about is 50 μm.
(4)得到的复合纳米粒子掺杂聚偏氟乙烯复合多孔薄膜在80℃的温度下抽真空干燥8小时,再在手套箱中浸泡液体电解质(由六氟合磷酸锂掺入碳酸二甲酯、碳酸甲乙酯和乙烯碳酸酯所组成的浓度为1M的混合溶液,其按质量比碳酸二甲酯:碳酸甲乙酯:乙烯碳酸酯=1:1:1混合而成。)1小时,通过控制浸泡时间,使得组成中所吸附的液体电解质组分占总质量的70wt%,得到最终的具有多孔结构的复合凝胶聚合物电解质薄膜,薄膜厚度约为50μm。(4) The obtained composite nanoparticle-doped polyvinylidene fluoride composite porous film was vacuum-dried at a temperature of 80° C. for 8 hours, and then soaked in a liquid electrolyte (mixed with dimethyl carbonate by lithium hexafluorophosphate) in a glove box. , the concentration that ethyl methyl carbonate and ethylene carbonate are formed is the mixed solution of 1M, and it forms by mass ratio dimethyl carbonate: ethyl methyl carbonate: ethylene carbonate=1:1:1.) 1 hour, By controlling the immersion time, the adsorbed liquid electrolyte component in the composition accounts for 70wt% of the total mass, and the final composite gel polymer electrolyte film with a porous structure is obtained, and the film thickness is about 50 μm.
实施例3Example 3
(1)首先将5g甲基丙烯酸甲酯,0.98g顺丁烯二酸酐按照摩尔比5:1的比例混合,混合物在高速搅拌下分散于去离子水中,单体总量相对于去离子水的质量比例为20wt%,即水的质量为29.9g,然后加入相对于甲基丙烯酸甲酯与顺丁烯二酸酐中质量10%即0.598g的聚乙烯吡咯烷酮PVP-K30为分散剂,质量分数1%即0.0598g过硫酸钾为引发剂,升温100℃,反应10小时,反应结束后降至25℃,加入相对顺丁烯二酸酐摩尔量2倍即0.48g的氢氧化锂到反应体系中,反应24小时,产物冷冻干燥,得到甲基丙烯酸甲酯共聚马来酸锂的有机纳米粉末。(1) First, 5g methyl methacrylate and 0.98g maleic anhydride are mixed according to a molar ratio of 5:1, and the mixture is dispersed in deionized water under high-speed stirring. The mass ratio is 20wt%, that is, the mass of water is 29.9g, and then 0.598g of polyvinylpyrrolidone PVP-K30 is added as a dispersant relative to the mass of methyl methacrylate and maleic anhydride, with a mass fraction of 1 % that is 0.0598g potassium persulfate is the initiator, heat up 100 ° C, react for 10 hours, drop to 25 ° C after the end of the reaction, add lithium hydroxide that is 0.48 g of 2 times the relative maleic anhydride molar weight to the reaction system, After reacting for 24 hours, the product was freeze-dried to obtain organic nanometer powder of methyl methacrylate copolymerized lithium maleate.
(2)将有机纳米粉末甲基丙烯酸甲酯共聚马来酸锂12.5g分散于25ml无水乙醇中,使其质量比例控制在0.5g/ml,超声分散0.5h,加入正硅酸乙酯,其中正硅酸乙酯与甲基丙烯酸甲酯共聚马来酸锂质量比例为1:2,即正硅酸乙酯质量为6.25g,滴加氨水使调节体系pH值控制在8左右,室温25℃下反应6h,得到壳层为二氧化硅(SiO2)核层为甲基丙烯酸甲酯共聚马来酸锂的核壳形貌复合纳米粒子。(2) Disperse 12.5 g of organic nano-powder methyl methacrylate copolymerized lithium maleate in 25 ml of absolute ethanol, control the mass ratio at 0.5 g/ml, ultrasonically disperse for 0.5 h, add tetraethyl orthosilicate, Among them, the mass ratio of ethyl orthosilicate to lithium maleate copolymerized with methyl methacrylate is 1:2, that is, the mass of ethyl orthosilicate is 6.25g, and ammonia water is added dropwise to control the pH value of the adjustment system at about 8, and the room temperature is 25 React at ℃ for 6 hours to obtain core-shell morphology composite nanoparticles whose shell layer is silicon dioxide (SiO 2 ) and whose core layer is methyl methacrylate copolymerized lithium maleate.
(3)将分子量为5×105的聚偏氟乙烯粉末室温下溶解分散于N,N-二甲基甲酰胺(N,N-二甲基甲酰胺)溶液中,聚合物溶液浓度范围控制于0.1g/ml,搅拌6小时后,再将核壳形貌复合纳米粒子加入分散到其中,其中复合纳米粒子相对于聚偏氟乙烯的掺杂量为10wt%,先超声1h,然后再室温搅拌24h以致完全分散均匀。聚合物溶液静置脱气泡后,用刮刀平整涂刮于玻璃板上,将其浸泡于水相中,采用浸没沉淀法制备得到复合纳米粒子掺杂聚偏氟乙烯的复合多孔膜。(3) Dissolve and disperse polyvinylidene fluoride powder with a molecular weight of 5×10 5 in N,N-dimethylformamide (N,N-dimethylformamide) solution at room temperature, and the concentration range of the polymer solution is controlled After stirring at 0.1g/ml for 6 hours, the composite nanoparticles with core-shell morphology were added and dispersed in it, wherein the doping amount of the composite nanoparticles relative to polyvinylidene fluoride was 10wt%. Stir for 24h so that it is completely dispersed. After the polymer solution is left standing to remove air bubbles, it is evenly coated on a glass plate with a spatula, soaked in the water phase, and a composite porous membrane doped with composite nanoparticles and polyvinylidene fluoride is prepared by an immersion precipitation method.
(4)得到的复合纳米粒子掺杂聚偏氟乙烯复合多孔薄膜在60℃的温度下抽真空干燥24小时,再在手套箱中浸泡液体电解质(由六氟合磷酸锂掺入碳酸二甲酯、碳酸甲乙酯和乙烯碳酸酯所组成的浓度为1M的混合溶液,其按质量比碳酸二甲酯:碳酸甲乙酯:乙烯碳酸酯=1:1:1混合而成。)0.7小时,通过控制浸泡时间,使得组成中所吸附的液体电解质组分占总质量的60wt%,得到最终的具有多孔结构的复合凝胶聚合物电解质薄膜,薄膜厚度约为40μm。(4) The obtained composite nanoparticle-doped polyvinylidene fluoride composite porous film was vacuum-dried at a temperature of 60° C. for 24 hours, and then soaked in a liquid electrolyte (mixed with dimethyl carbonate by lithium hexafluorophosphate) in a glove box. , the concentration that ethyl methyl carbonate and ethylene carbonate are formed is the mixed solution of 1M, and it forms by mass ratio dimethyl carbonate: ethyl methyl carbonate: ethylene carbonate=1:1:1.) 0.7 hour, By controlling the immersion time, the adsorbed liquid electrolyte component in the composition accounts for 60 wt% of the total mass, and the final composite gel polymer electrolyte film with a porous structure is obtained, and the film thickness is about 40 μm.
实施例4Example 4
(1)首先将8g甲基丙烯酸甲酯,0.98g顺丁烯二酸酐按照摩尔比8:1的比例混合,混合物在高速搅拌下分散于去离子水中,单体总量相对于去离子水的质量比例为15wt%,即水的质量为59.9g,然后加入相对于甲基丙烯酸甲酯与顺丁烯二酸酐中质量6%即0.539g的聚乙烯吡咯烷酮PVP-K30为分散剂,质量分数1.5%即0.135g过硫酸钾为引发剂,升温100℃,反应10小时,反应结束后降至25℃,加入相对顺丁烯二酸酐摩尔量2倍即0.48g的氢氧化锂到反应体系中,反应20小时,产物冷冻干燥,得到甲基丙烯酸甲酯共聚马来酸锂的有机纳米粉末。(1) First, 8g methyl methacrylate and 0.98g maleic anhydride are mixed according to a molar ratio of 8:1, and the mixture is dispersed in deionized water under high-speed stirring. The mass ratio is 15wt%, that is, the mass of water is 59.9g, and then 0.539g of polyvinylpyrrolidone PVP-K30 relative to the mass of methyl methacrylate and maleic anhydride is added as a dispersant, with a mass fraction of 1.5 % that is 0.135g potassium persulfate is the initiator, heat up 100 ° C, react for 10 hours, drop to 25 ° C after the end of the reaction, add lithium hydroxide that is 0.48 g of 2 times the relative maleic anhydride molar weight to the reaction system, After reacting for 20 hours, the product was freeze-dried to obtain organic nanometer powder of methyl methacrylate copolymerized lithium maleate.
(2)将有机纳米粉末甲基丙烯酸甲酯共聚马来酸锂2.5g分散于25ml无水乙醇中,使其质量比例控制在0.1g/ml,超声分散0.5h,加入正硅酸乙酯,其中正硅酸乙酯与甲基丙烯酸甲酯共聚马来酸锂质量比例为1:1,即正硅酸乙酯质量为2.5g,滴加氨水使调节体系pH值控制在10左右,室温25℃下反应15h,得到壳层为二氧化硅核层为甲基丙烯酸甲酯共聚马来酸锂的复合纳米粒子。(2) Disperse 2.5 g of organic nano-powder methyl methacrylate copolymerized lithium maleate in 25 ml of absolute ethanol, control the mass ratio at 0.1 g/ml, ultrasonically disperse for 0.5 h, add ethyl orthosilicate, Among them, the mass ratio of ethyl orthosilicate to lithium maleate copolymerized with methyl methacrylate is 1:1, that is, the quality of ethyl orthosilicate is 2.5g, and ammonia water is added dropwise to control the pH value of the adjustment system at about 10, and the room temperature is 25 The reaction was carried out at ℃ for 15 hours to obtain composite nanoparticles whose shell layer was silicon dioxide and core layer was methyl methacrylate copolymerized lithium maleate.
(3)将分子量为4.5×105的聚偏氟乙烯粉末室温下溶解分散于N,N-二甲基甲酰胺(N,N-二甲基甲酰胺)溶液中,聚合物溶液浓度范围控制于0.5g/ml,搅拌10小时后,再将核壳形貌复合纳米粒子加入分散到其中,其中核壳形貌复合纳米粒子相对于聚偏氟乙烯的掺杂量为2wt%,先超声0.8h,然后再室温搅拌20h以致完全分散均匀。聚合物溶液静置脱气泡后,用刮刀平整涂刮于玻璃板上,将其浸泡于水相中,采用浸没沉淀法制备得到复合纳米粒子掺杂聚偏氟乙烯的复合多孔膜。(3) Dissolve and disperse polyvinylidene fluoride powder with a molecular weight of 4.5×10 5 in N,N-dimethylformamide (N,N-dimethylformamide) solution at room temperature, and the concentration range of the polymer solution is controlled After stirring at 0.5g/ml for 10 hours, the composite nanoparticles with core-shell morphology were added and dispersed therein, wherein the doping amount of the composite nanoparticles with core-shell morphology relative to polyvinylidene fluoride was 2wt%, and ultrasonic 0.8 h, and then stirred at room temperature for 20 h so as to completely disperse evenly. After the polymer solution is left standing to remove air bubbles, it is evenly coated on a glass plate with a spatula, soaked in the water phase, and a composite porous membrane doped with composite nanoparticles and polyvinylidene fluoride is prepared by an immersion precipitation method.
(4)得到的复合纳米粒子掺杂聚偏氟乙烯复合多孔薄膜在50℃的温度下抽真空干燥18小时,再在手套箱中浸泡液体电解质(由六氟合磷酸锂掺入碳酸二甲酯、碳酸甲乙酯和乙烯碳酸酯所组成的浓度为1M的混合溶液,其按质量比碳酸二甲酯:碳酸甲乙酯:乙烯碳酸酯=1:1:1混合而成。)0.9小时,通过控制浸泡时间,使得组成中所吸附的液体电解质组分占总质量的65wt%,得到最终的具有多孔结构的复合凝胶聚合物电解质薄膜,薄膜厚度约为45μm。(4) The obtained composite nanoparticle-doped polyvinylidene fluoride composite porous film was vacuum-dried at a temperature of 50° C. for 18 hours, and then soaked in a liquid electrolyte (mixed with dimethyl carbonate by lithium hexafluorophosphate) in a glove box. , the concentration that ethyl methyl carbonate and ethylene carbonate are formed is the mixed solution of 1M, and it forms by mass ratio dimethyl carbonate: ethyl methyl carbonate: ethylene carbonate=1:1:1.) 0.9 hours, By controlling the immersion time, the adsorbed liquid electrolyte component in the composition accounts for 65wt% of the total mass, and the final composite gel polymer electrolyte film with a porous structure is obtained, and the film thickness is about 45 μm.
图4是实施例1-4的核壳结构纳米粒子掺杂聚偏氟乙烯复合聚合物电解质薄膜的离子导电率随温度的变化情况。其线性关系表明,复合凝胶聚合物电解质薄膜的离子导电率随温度变化符合实验的Arrhenius方程,符合凝胶聚合物电解质离子导电的一般规律。导电离子载子通过体系中的凝胶相以及吸附于其内的液态相来传输,高分子链围绕锂离子的折叠有助于其与大阴离子分开,高分子链段蠕动可促进锂离子在其中的传递。材料的体积随着温度的上升而扩张,使得离子传导的空间自由体积扩大,离子运动的能量同时也随着温度的上升而升高,这些因素都促进导电离子载子的运动。因此,随着温度的升高,Rb下降。Fig. 4 is the change of ion conductivity with temperature of the core-shell nanoparticle-doped polyvinylidene fluoride composite polymer electrolyte film in Example 1-4. The linear relationship shows that the ionic conductivity of the composite gel polymer electrolyte film conforms to the experimental Arrhenius equation and the general law of ionic conduction in the gel polymer electrolyte film. Conductive ion carriers are transported through the gel phase in the system and the liquid phase adsorbed in it. The folding of the polymer chain around the lithium ion helps it to separate from the large anion, and the peristalsis of the polymer chain can promote the lithium ion in it. transmission. The volume of the material expands with the rise of temperature, which makes the space free volume for ion conduction expand, and the energy of ion movement also increases with the rise of temperature. These factors all promote the movement of conductive ion carriers. Therefore, as the temperature increases, Rb decreases.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510187329.8A CN104810549B (en) | 2015-04-20 | 2015-04-20 | The porous gel method for preparing polymer electrolytes of doped compound nano particle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510187329.8A CN104810549B (en) | 2015-04-20 | 2015-04-20 | The porous gel method for preparing polymer electrolytes of doped compound nano particle |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104810549A true CN104810549A (en) | 2015-07-29 |
CN104810549B CN104810549B (en) | 2017-04-05 |
Family
ID=53695193
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510187329.8A Expired - Fee Related CN104810549B (en) | 2015-04-20 | 2015-04-20 | The porous gel method for preparing polymer electrolytes of doped compound nano particle |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104810549B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110492175A (en) * | 2019-08-13 | 2019-11-22 | 中北大学 | All solid state alkali metal battery organic nano composite electrolyte membrane and preparation method thereof |
CN113346131A (en) * | 2021-05-12 | 2021-09-03 | 北京理工大学 | Composite polymer gel solid electrolyte, preparation method thereof and application of lithium metal battery |
CN115732770A (en) * | 2022-12-07 | 2023-03-03 | 北京理工大学 | Flexible self-healing electrolyte membrane, preparation method thereof and battery |
US12166168B2 (en) * | 2020-06-02 | 2024-12-10 | Saudi Arabian Oil Company | Electrolyte structure for a high-temperature, high-pressure lithium battery |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101901938A (en) * | 2009-06-01 | 2010-12-01 | 复旦大学 | A kind of composite polymer electrolyte and its preparation method and application |
CN102005609A (en) * | 2010-10-20 | 2011-04-06 | 浙江工业大学 | Composite gel polymer electrolyte membrane and application thereof |
CN102005610A (en) * | 2010-10-21 | 2011-04-06 | 江苏科技大学 | Ionic blended gel polymer electrolyte membrane and preparation method and use thereof |
CN103094612A (en) * | 2013-02-04 | 2013-05-08 | 江苏科技大学 | PVDF doped lithium-containing silica sol composite gel polymer electrolyte film and its making method |
-
2015
- 2015-04-20 CN CN201510187329.8A patent/CN104810549B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101901938A (en) * | 2009-06-01 | 2010-12-01 | 复旦大学 | A kind of composite polymer electrolyte and its preparation method and application |
CN102005609A (en) * | 2010-10-20 | 2011-04-06 | 浙江工业大学 | Composite gel polymer electrolyte membrane and application thereof |
CN102005610A (en) * | 2010-10-21 | 2011-04-06 | 江苏科技大学 | Ionic blended gel polymer electrolyte membrane and preparation method and use thereof |
CN103094612A (en) * | 2013-02-04 | 2013-05-08 | 江苏科技大学 | PVDF doped lithium-containing silica sol composite gel polymer electrolyte film and its making method |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110492175A (en) * | 2019-08-13 | 2019-11-22 | 中北大学 | All solid state alkali metal battery organic nano composite electrolyte membrane and preparation method thereof |
CN110492175B (en) * | 2019-08-13 | 2020-12-15 | 中北大学 | Organic nanocomposite electrolyte membrane for all-solid-state alkali metal battery and preparation method thereof |
US12166168B2 (en) * | 2020-06-02 | 2024-12-10 | Saudi Arabian Oil Company | Electrolyte structure for a high-temperature, high-pressure lithium battery |
CN113346131A (en) * | 2021-05-12 | 2021-09-03 | 北京理工大学 | Composite polymer gel solid electrolyte, preparation method thereof and application of lithium metal battery |
CN115732770A (en) * | 2022-12-07 | 2023-03-03 | 北京理工大学 | Flexible self-healing electrolyte membrane, preparation method thereof and battery |
CN115732770B (en) * | 2022-12-07 | 2024-07-19 | 北京理工大学 | Flexible self-healing electrolyte membrane, preparation method thereof and battery |
Also Published As
Publication number | Publication date |
---|---|
CN104810549B (en) | 2017-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102945947B (en) | Preparation method of flexible binding agent-free self-support combination electrode | |
CN104810549B (en) | The porous gel method for preparing polymer electrolytes of doped compound nano particle | |
CN102044702A (en) | Composite polymer electrolyte for lithium ion battery and preparation method thereof | |
CN111430667B (en) | Negative electrode slurry, negative electrode plate, power battery and electric automobile | |
CN100365056C (en) | Preparation method of porous composite polymer electrolyte doped with titania by in-situ hydrolysis | |
CN107195861A (en) | A kind of negative electrode of lithium ion battery electrocondution slurry, preparation method, negative pole and battery | |
CN114350095B (en) | High-concentration salt double-network hydrogel electrolyte and preparation method and application thereof | |
Karami et al. | Synthesis of sub-micro and nanometer sized lead oxide by sol-gel pyrrolysis method and its application as cathode and anode of lead-acid batteries | |
CN106024408A (en) | Ruthenium oxide-copper sulfide composite material, application thereof and electrode plate for supercapacitor | |
CN104466138B (en) | Spherical composite positive pole material for lithium sulfur battery and preparation method and application of spherical composite positive pole material | |
CN110358137A (en) | A kind of porous network structure graphene/polyaniline composite xerogel preparation method | |
CN112151842A (en) | Polyacid-based electrolyte conductor material and preparation method and application thereof | |
CN113470987B (en) | Preparation of Al-doped MnO2 electrode material and construction of wide-voltage-window flexible super-electric device | |
CN100513467C (en) | Porous gel polyelectrolyte thin film and preparation method thereof | |
CN111883857B (en) | A colloidal electrolyte and a zinc ion battery comprising the same | |
CN112952099B (en) | A lithium battery composite positive electrode and preparation method thereof | |
CN103094612B (en) | Containing lithium Ludox doping PVDF composite gel polymer electrolyte film and preparation method | |
CN115259307B (en) | Preparation method of ion exchange gel electrode for capacitive deionization technology | |
CN110034292B (en) | A three-dimensional ordered porous polypyrrole/zinc oxide lithium ion battery negative electrode material and preparation method | |
CN110993861A (en) | Nano-alumina/polyurethane nonporous diaphragm, preparation method and application thereof in lithium ion battery | |
CN101521296A (en) | Composite solid electrolyte and preparation method thereof | |
CN115377487A (en) | Ternary crosslinked gel electrolyte of zinc ion battery and preparation and application thereof | |
CN115083795B (en) | High-performance spinel type lithium manganate-based semi-solid fluid electrode and preparation method thereof | |
CN114628800A (en) | Aqueous polymer electrolytes for high-energy lithium secondary batteries | |
CN114725500B (en) | A polymer composite solid electrolyte and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
EXSB | Decision made by sipo to initiate substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170405 Termination date: 20200420 |
|
CF01 | Termination of patent right due to non-payment of annual fee |