CN104805118A - 一种苏禽黄鸡胚胎干细胞特定基因进行靶向敲除方法 - Google Patents
一种苏禽黄鸡胚胎干细胞特定基因进行靶向敲除方法 Download PDFInfo
- Publication number
- CN104805118A CN104805118A CN201510195632.2A CN201510195632A CN104805118A CN 104805118 A CN104805118 A CN 104805118A CN 201510195632 A CN201510195632 A CN 201510195632A CN 104805118 A CN104805118 A CN 104805118A
- Authority
- CN
- China
- Prior art keywords
- crispr
- carrier
- gene
- cas9
- sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 31
- 238000000034 method Methods 0.000 title claims abstract description 16
- 241000287828 Gallus gallus Species 0.000 title claims abstract description 14
- 210000001671 embryonic stem cell Anatomy 0.000 title claims abstract description 8
- 108091033409 CRISPR Proteins 0.000 claims abstract description 80
- 238000010354 CRISPR gene editing Methods 0.000 claims abstract description 40
- 230000000694 effects Effects 0.000 claims abstract description 27
- 108020005004 Guide RNA Proteins 0.000 claims abstract description 23
- 108020004414 DNA Proteins 0.000 claims abstract description 20
- 108060001084 Luciferase Proteins 0.000 claims abstract description 18
- 239000005089 Luciferase Substances 0.000 claims abstract description 18
- 210000004027 cell Anatomy 0.000 claims abstract description 11
- 238000000684 flow cytometry Methods 0.000 claims abstract description 8
- 238000003209 gene knockout Methods 0.000 claims description 21
- 238000013461 design Methods 0.000 claims description 18
- 241000894006 Bacteria Species 0.000 claims description 14
- 238000001890 transfection Methods 0.000 claims description 11
- 239000007788 liquid Substances 0.000 claims description 9
- 108700008625 Reporter Genes Proteins 0.000 claims description 8
- 239000012634 fragment Substances 0.000 claims description 8
- 108010008532 Deoxyribonuclease I Proteins 0.000 claims description 6
- 102000007260 Deoxyribonuclease I Human genes 0.000 claims description 6
- 102100035102 E3 ubiquitin-protein ligase MYCBP2 Human genes 0.000 claims description 6
- 238000013467 fragmentation Methods 0.000 claims description 6
- 238000006062 fragmentation reaction Methods 0.000 claims description 6
- 239000013612 plasmid Substances 0.000 claims description 6
- 102000004190 Enzymes Human genes 0.000 claims description 5
- 108090000790 Enzymes Proteins 0.000 claims description 5
- 108091032973 (ribonucleotides)n+m Proteins 0.000 claims description 4
- 241000242739 Renilla Species 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 4
- 241000287826 Gallus Species 0.000 claims description 3
- 238000012986 modification Methods 0.000 claims description 3
- 230000004048 modification Effects 0.000 claims description 3
- 230000035772 mutation Effects 0.000 claims description 3
- 238000010839 reverse transcription Methods 0.000 claims description 3
- 238000003786 synthesis reaction Methods 0.000 claims description 3
- 238000012360 testing method Methods 0.000 claims description 3
- 102100029968 Calreticulin Human genes 0.000 abstract description 6
- 210000002304 esc Anatomy 0.000 abstract description 6
- 238000010367 cloning Methods 0.000 abstract 1
- 238000001514 detection method Methods 0.000 abstract 1
- 238000012163 sequencing technique Methods 0.000 abstract 1
- 238000010008 shearing Methods 0.000 abstract 1
- 238000010453 CRISPR/Cas method Methods 0.000 description 9
- 238000010459 TALEN Methods 0.000 description 5
- 108091092195 Intron Proteins 0.000 description 4
- 108010043645 Transcription Activator-Like Effector Nucleases Proteins 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 108010042407 Endonucleases Proteins 0.000 description 3
- 102000004533 Endonucleases Human genes 0.000 description 3
- 108091029865 Exogenous DNA Proteins 0.000 description 3
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 3
- 230000034431 double-strand break repair via homologous recombination Effects 0.000 description 3
- 108091028113 Trans-activating crRNA Proteins 0.000 description 2
- 108010073062 Transcription Activator-Like Effectors Proteins 0.000 description 2
- 101710185494 Zinc finger protein Proteins 0.000 description 2
- 102100023597 Zinc finger protein 816 Human genes 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 230000003013 cytotoxicity Effects 0.000 description 2
- 231100000135 cytotoxicity Toxicity 0.000 description 2
- 230000006780 non-homologous end joining Effects 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 210000000130 stem cell Anatomy 0.000 description 2
- 102000005869 Activating Transcription Factors Human genes 0.000 description 1
- 108010005254 Activating Transcription Factors Proteins 0.000 description 1
- 101710132601 Capsid protein Proteins 0.000 description 1
- 101100219625 Mus musculus Casd1 gene Proteins 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 102000011931 Nucleoproteins Human genes 0.000 description 1
- 108010061100 Nucleoproteins Proteins 0.000 description 1
- 102000004389 Ribonucleoproteins Human genes 0.000 description 1
- 108010081734 Ribonucleoproteins Proteins 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 108010017070 Zinc Finger Nucleases Proteins 0.000 description 1
- 101150055766 cat gene Proteins 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 230000005782 double-strand break Effects 0.000 description 1
- 230000011559 double-strand break repair via nonhomologous end joining Effects 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000010362 genome editing Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 102000044158 nucleic acid binding protein Human genes 0.000 description 1
- 108700020942 nucleic acid binding protein Proteins 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000008263 repair mechanism Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明公开了一种苏禽黄鸡胚胎干细胞特定基因进行靶向敲除的方法:首先查询出基因的外显子序列,克隆出基因,测序,获得完整的外显子序列,并在此序列上设计CRISPR/Cas9敲除靶位点作为gRNA,构建CRISPR/Cas9双启动子敲除载体;构建完成的Cas9载体进行SSA活性检测,对照组转染空载体,检测luciferase信号,luciferase活性相对于对照组增长的越多,则证明gRNA剪切活性越高;将具有高SSA活性的CRISPR/Cas9载体转染ESCs,流式细胞术筛选出GFP阳性细胞,提取基因组DNA,设计引物。
Description
技术领域:
本发明涉及干细胞工程领域,尤其涉及一种基于CRISPR/Cas9技术对苏禽黄鸡胚胎干细胞特定基因进行靶向敲除的方法。
技术背景:
目前基因组编辑技术主要有三种方法,锌指核酸酶(zinc finger endonuclease,ZFN)、类转录激活因子效应物核酸酶(Transcription Activator-Like EffectorNuclease,TALEN)以及成簇的规律间隔的短回文重复序列及相关基因(clusteredregularly interspaced short palindromic repeats/CRISPR-associated,CRISPR/Cas)。这三种方法都通过在外源DAN靶位点上产生双链切口,从而诱导出同源重组修复和非同源末端连接,进而实现基因组的编辑。
ZFN结构上包括锌指蛋白(Zinc finger protein,ZFP)结构域和Fok I切割结构域,其中Fok I切割结构域源于一种IIS型限制性内切酶,当Fok I酶二聚体化,发挥其切割活性切割DNA的靶位点,形成双链断裂(double-stranded breaks,DSB),从而诱导细胞内的修复机制,即同源重组修复(homology-directed repair,HDR)或非同源末端链接(non-homologous end-joining,NHEJ),从而实现基因组的靶向敲除(knock-out)或敲入(knock-in),然而ZFN目前还存在设计苦难、脱靶严重,技术垄断等问题;
而TALEN结构上包括TALE(transcription activator-like effector)结构域和Fok I核酸内切酶结构域两个部分,其作用机制与ZFN一致,目前也存在多项缺陷,例如成本高,可操作性难度大,细胞毒性等;
CRISPR/Cas系统中主要以典型的Type II CRISPR/Cas为主,结构上分为三个部分tracrRNA位于5’端,CRISPR序列位于3’端,中间的为一系列的Cas基因家族,其中Cas9为核心蛋白,因此可以称此II型系统为CRISPR/Cas9系统。当外源DNA序列进入细菌或古细菌的含有CRISPR的细胞中,CRISPR复合体中的类似于Cas1核酸结合蛋白会介导该复合体与外源DNA序列进行结合,然后该复合体中类似于Cas2核酸内切酶会对外源DNA序列进行切割,形成众多约17-84bp不均等的小片段,其中的一个片段会在相关蛋白的作用下被整合到CRISPR的前导序列和第一个重复序列之间,形成一个新的间隔序列,入侵者与间隔序列相同的序列称为protospacer。当外源DNA再次入侵时,与其protospacer互补匹配的间隔序列,及其两边的部分重复序列转录形成前体crRNA(pre-crRNA)。转录完成后,tracrRNA与pre-crRNA形成二聚体,再与Cas9蛋白结合形成核糖核蛋白复合物,与外源DNA结合,扫描、寻找靶序列,crRNA的间隔序列与靶序列进行互补配对,在外源DNA互补配对的特定位置上被核蛋白复合物剪切。
CRISPR/Cas的打靶效率比较高,最高可达80%,且靶位点设计灵活、方便,载体构建简单;不同于ZFN或TALEN中以蛋白质识别DNA的方式,CRISPR/Cas系统对靶序列的识别是以RNA与DNA碱基配对的方式,这样会降低了脱靶的几率,降低了细胞毒性,但并不是代表不会产生;此外,较于ZFN与TALEN,CRISPR/Cas的设计更为简单、廉价,一般普通的实验也可自行操作;最后,CRISPR/Cas最大的有点就是可同时打靶多个基因,且每多一个靶位点只需多一个gRNA质粒。
有优势必然也会存在局限性,例如CRISPR/Cas技术目前还尚未成熟,需要设计出特异性较高的gRNA质粒,严重的脱靶效应以及在未建系的干细胞上无成功先例等,但相信随着CRISPR/Cas的发展,这些难题终将会被解决。
发明内容:
本发明公开了一种基于CRISPR/Cas9技术对苏禽黄鸡胚胎干细胞特定基因进行靶向敲除的方法:首先查询出基因的外显子序列,克隆出基因,测序,获得完整的外显子序列,并在此序列上设计CRISPR/Cas9敲除靶位点作为gRNA,构建CRISPR/Cas9双启动子敲除载体,其中禽源U6启动子启动gRNA表达,T7启动子启动Cas9基因表达,并在载体中插入GFP蛋白作为报告基因;构建完成的Cas9载体进行SSA活性检测,将终止子和靶位点插入双荧光Luciferase载体中,靶位点位于终止子后,共转染CRISPR/gRNA载体,以及新构建的luciferase报告基因和内参renilla质粒,对照组转染空载体,检测luciferase信号,luciferase活性相对于对照组增长的越多,则证明gRNA剪切活性越高;将具有高SSA活性的CRISPR/Cas9载体转染ESCs,流式细胞术筛选出GFP阳性细胞,提取基因组DNA,设计引物,克隆出靶位点前后各250bp的片段,使用T7E1酶进行活性检测,具有活性的敲除载体与T载体连接,摇菌后测序,计算具体的活性数值。
本发明包括以下步骤:
(1)目的基因的获取
根据基因序列号在NCBI数据库中查询目的基因在原鸡中的CDS序列,设计特异性引物,以苏禽黄鸡组织或细胞RNA反转录形成的单链cDNA为模板克隆并获得苏禽黄鸡中目的基因完整的CDS序列,通过比对得到完整的目的基因外显子序列;
(3)gRNA设计及合成
寻找获得的外显子序列中的PAM序列,将PAM序列前20bp左右的碱基作为靶序列,所有的靶序列在全基因组比对,无同源性的靶位点作为gRNA并合成;
(4)CRISPR/Cas9基因敲除载体构建
VK001-08载体为基础载体进行载体改造,以禽源U6作为启动子启动gRNA的表达,T7启动最启动Cas9酶的表达,同时插入GFP荧光基因作为报告基因。
(5)CRISPR/Cas9基因敲除载体SSA活性检测
将终止子和靶位点插入Luciferase载体中,靶位点位于终止子后,共转染CRISPR/gRNA载体,以及新构建的luciferase报告基因和内参renilla质粒,对照组转染空载体,检测luciferase信号,luciferase活性相对于对照组增长的越多,则证明gRNA剪切活性越高;
(6)CRISPR/Cas9基因敲除载体内源活性检测
剪切活性较高CRISPR/Cas9基因敲除载体转染状态良好的第二代ESC,48小时后流式细胞术筛选出GFP阳性细胞,提取基因组DNA,设计引物,克隆出靶位点前后各250bp共计500bp左右片段,使用T7E1酶进行活性检测,若存在敲除活性,将产生非配对DNA片段,即能被非配对内切酶--T7核酸内切酶I剪切;若没有发生突变,将产生配对DNA片段,而无法被非配对内切酶--T7核酸内切酶I剪切;
(7)CRISPR/Cas9基因敲除载体敲除效率检测
CRISPR/Cas9基因敲除载体转染状态良好的第二代ESC,48小时后流式细胞术筛选出GFP阳性细胞,提取基因组DNA,设计引物,克隆出靶位点前后各250bp共计500bp左右片段,进行TA克隆,挑菌测序并与原始序列进行对比,计算CRISPR/Cas9基因敲除载体的具体效率,计算方法:(序列发生突变的菌液数/全部测序菌液数*100%),注意测序的菌液需要足够多;
本发明的优越性在于:本方法简单易行,可重复性强,在普通实验室即可进行。运用该方法可以快速、高效在短时间内完成一个基因在鸡胚胎干细胞中基因功能的验证。
具体实施方式
一种基于CRISPR/Cas9技术对苏禽黄鸡胚胎干细胞特定基因进行靶向敲除方法,包括如下步骤:
(1)目的基因的获取
根据基因序列号在NCBI数据库中查询目的基因在原鸡中的CDS序列,设计特异性引物,以苏禽黄鸡PGC的RNA反转录形成的单链CDNA为模板克隆并获得苏禽黄鸡中目的基因完整的CDS序列,通过比对得到完整的目的基因外显子序列;
(4)gRNA设计及合成
寻找获得的外显子序列中的PAM序列,将PAM序列前20bp左右的碱基作为靶序列,所有的靶序列在全基因组比对,无同源性的靶位点作为gRNA并合成;
(5)CRISPR/Cas9基因敲除载体构建
VK001-08载体为基础载体进行载体改造,以禽源U6作为启动子启动gRNA的表达,T7启动最启动Cas9酶的表达,同时插入GFP荧光基因作为报告基因。
(6)CRISPR/Cas9基因敲除载体SSA活性检测
将终止子和靶位点插入Luciferase载体中,靶位点位于终止子后,共转染CRISPR/gRNA载体,以及新构建的luciferase报告基因和内参renilla质粒,对照组转染空载体,检测luciferase信号,luciferase活性相对于对照组增长的越多,则证明gRNA剪切活性越高;
(7)CRISPR/Cas9基因敲除载体内源活性检测
剪切活性较高CRISPR/Cas9基因敲除载体转染状态良好的第二代ESC,48小时后流式细胞术筛选出GFP阳性细胞,提取基因组DNA,设计引物,克隆出靶位点前后各250bp共计500bp左右片段,使用T7E1酶进行活性检测,若存在敲除活性,将产生非配对DNA片段,即能被非配对内切酶--T7核酸内切酶I剪切;若没有发生突变,将产生配对DNA片段,而无法被非配对内切酶--T7核酸内切酶I剪切;
(8)CRISPR/Cas9基因敲除载体敲除效率检测
CRISPR/Cas9基因敲除载体转染状态良好的第二代ESC,48小时后流式细胞术筛选出GFP阳性细胞,提取基因组DNA,设计引物,克隆出靶位点前后各250bp共计500bp左右片段,进行TA克隆,挑菌测序并与原始序列进行对比,计算CRISPR/Cas9基因敲除载体的具体效率,计算方法:(序列发生突变的菌液数/全部测序菌液数*100%),注意测序的菌液需要足够多。
Claims (1)
1.一种苏禽黄鸡胚胎干细胞特定基因靶向敲除方法,其特征在于:包括如下步骤:
(1)目的基因的获取
根据基因序列号在NCBI数据库中查询目的基因在原鸡中的CDS序列,设计特异性引物,以苏禽黄鸡PGC的RNA反转录形成的单链CDNA为模板克隆并获得苏禽黄鸡中目的基因完整的CDS序列,通过比对得到完整的目的基因外显子序列;
(2)gRNA设计及合成
寻找获得的外显子序列中的PAM序列,将PAM序列前20bp左右的碱基作为靶序列,所有的靶序列在全基因组比对,无同源性的靶位点作为gRNA并合成;
(3)CRISPR/Cas9基因敲除载体构建
VK001-08载体为基础载体进行载体改造,以禽源U6作为启动子启动gRNA的表达,T7启动最启动Cas9酶的表达,同时插入GFP荧光基因作为报告基因。
(4)CRISPR/Cas9基因敲除载体SSA活性检测
将终止子和靶位点插入Luciferase载体中,靶位点位于终止子后,共转染CRISPR/gRNA载体,以及新构建的luciferase报告基因和内参renilla质粒,对照组转染空载体,检测luciferase信号,luciferase活性相对于对照组增长的越多,则证明gRNA剪切活性越高;
(5)CRISPR/Cas9基因敲除载体内源活性检测
剪切活性较高CRISPR/Cas9基因敲除载体转染状态良好的第二代ESC,48小时后流式细胞术筛选出GFP阳性细胞,提取基因组DNA,设计引物,克隆出靶位点前后各250bp共计500bp左右片段,使用T7E1酶进行活性检测,若存在敲除活性,将产生非配对DNA片段,即能被非配对内切酶--T7核酸内切酶I剪切;若没有发生突变,将产生配对DNA片段,而无法被非配对内切酶--T7核酸内切酶I剪切;
(6)CRISPR/Cas9基因敲除载体敲除效率检测
CRISPR/Cas9基因敲除载体转染状态良好的第二代ESC,48小时后流式细胞术筛选出GFP阳性细胞,提取基因组DNA,设计引物,克隆出靶位点前后各250bp共计500bp左右片段,进行TA克隆,挑菌测序并与原始序列进行对比,计算CRISPR/Cas9基因敲除载体的具体效率,计算方法:(序列发生突变的菌液数/全部测序菌液数*100%),注意测序的菌液需要足够多。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510195632.2A CN104805118A (zh) | 2015-04-22 | 2015-04-22 | 一种苏禽黄鸡胚胎干细胞特定基因进行靶向敲除方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510195632.2A CN104805118A (zh) | 2015-04-22 | 2015-04-22 | 一种苏禽黄鸡胚胎干细胞特定基因进行靶向敲除方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104805118A true CN104805118A (zh) | 2015-07-29 |
Family
ID=53690316
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510195632.2A Pending CN104805118A (zh) | 2015-04-22 | 2015-04-22 | 一种苏禽黄鸡胚胎干细胞特定基因进行靶向敲除方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104805118A (zh) |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9340800B2 (en) | 2013-09-06 | 2016-05-17 | President And Fellows Of Harvard College | Extended DNA-sensing GRNAS |
US9388430B2 (en) | 2013-09-06 | 2016-07-12 | President And Fellows Of Harvard College | Cas9-recombinase fusion proteins and uses thereof |
CN105821116A (zh) * | 2016-04-15 | 2016-08-03 | 扬州大学 | 一种绵羊mstn基因定向敲除及其影响成肌分化的检测方法 |
CN105950656A (zh) * | 2016-05-31 | 2016-09-21 | 青岛农业大学 | 一种快速获得基因敲除细胞株的方法 |
US9526784B2 (en) | 2013-09-06 | 2016-12-27 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
CN106636298A (zh) * | 2016-07-26 | 2017-05-10 | 武汉伯远生物科技有限公司 | 一种快速体内验证基因打靶靶点效率的方法 |
CN107418974A (zh) * | 2017-07-28 | 2017-12-01 | 新乡医学院 | 一种利用单克隆细胞分选快速获得CRISPR/Cas9基因敲除稳定细胞株的方法 |
US9834791B2 (en) | 2013-11-07 | 2017-12-05 | Editas Medicine, Inc. | CRISPR-related methods and compositions with governing gRNAS |
CN107435051A (zh) * | 2017-07-28 | 2017-12-05 | 新乡医学院 | 一种通过CRISPR/Cas9系统快速获得大片段缺失的细胞系基因敲除方法 |
US9840699B2 (en) | 2013-12-12 | 2017-12-12 | President And Fellows Of Harvard College | Methods for nucleic acid editing |
US10077453B2 (en) | 2014-07-30 | 2018-09-18 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US10113163B2 (en) | 2016-08-03 | 2018-10-30 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US10167457B2 (en) | 2015-10-23 | 2019-01-01 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
US10227581B2 (en) | 2013-08-22 | 2019-03-12 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
US10323236B2 (en) | 2011-07-22 | 2019-06-18 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US10508298B2 (en) | 2013-08-09 | 2019-12-17 | President And Fellows Of Harvard College | Methods for identifying a target site of a CAS9 nuclease |
CN111269936A (zh) * | 2017-12-29 | 2020-06-12 | 浙江省农业科学院 | 质粒载体组、dna组和外源基因导入的基因编辑方法 |
US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
US11268082B2 (en) | 2017-03-23 | 2022-03-08 | President And Fellows Of Harvard College | Nucleobase editors comprising nucleic acid programmable DNA binding proteins |
US11306324B2 (en) | 2016-10-14 | 2022-04-19 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11447770B1 (en) | 2019-03-19 | 2022-09-20 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
US11732274B2 (en) | 2017-07-28 | 2023-08-22 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
US11912985B2 (en) | 2020-05-08 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103820441A (zh) * | 2014-03-04 | 2014-05-28 | 黄行许 | CRISPR-Cas9特异性敲除人CTLA4基因的方法以及用于特异性靶向CTLA4基因的sgRNA |
CN103820454A (zh) * | 2014-03-04 | 2014-05-28 | 黄行许 | CRISPR-Cas9特异性敲除人PD1基因的方法以及用于特异性靶向PD1基因的sgRNA |
CN103911376A (zh) * | 2014-04-03 | 2014-07-09 | 南京大学 | CRISPR-Cas9靶向敲除乙肝病毒cccDNA及其特异性sgRNA |
CN103923911A (zh) * | 2014-04-14 | 2014-07-16 | 黄行许 | CRISPR-Cas9特异性敲除人CCR5基因的方法以及用于特异性靶向CCR5基因的sgRNA |
CN104284669A (zh) * | 2012-02-24 | 2015-01-14 | 弗雷德哈钦森癌症研究中心 | 治疗血红蛋白病的组合物和方法 |
-
2015
- 2015-04-22 CN CN201510195632.2A patent/CN104805118A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104284669A (zh) * | 2012-02-24 | 2015-01-14 | 弗雷德哈钦森癌症研究中心 | 治疗血红蛋白病的组合物和方法 |
CN103820441A (zh) * | 2014-03-04 | 2014-05-28 | 黄行许 | CRISPR-Cas9特异性敲除人CTLA4基因的方法以及用于特异性靶向CTLA4基因的sgRNA |
CN103820454A (zh) * | 2014-03-04 | 2014-05-28 | 黄行许 | CRISPR-Cas9特异性敲除人PD1基因的方法以及用于特异性靶向PD1基因的sgRNA |
CN103911376A (zh) * | 2014-04-03 | 2014-07-09 | 南京大学 | CRISPR-Cas9靶向敲除乙肝病毒cccDNA及其特异性sgRNA |
CN103923911A (zh) * | 2014-04-14 | 2014-07-16 | 黄行许 | CRISPR-Cas9特异性敲除人CCR5基因的方法以及用于特异性靶向CCR5基因的sgRNA |
Non-Patent Citations (4)
Title |
---|
ZHILI RONG 等: "Homologous recombination in human embryonic stem cells using CRISPR/Cas9 nickase and a long DNA donor template", 《PROTEIN CELL》 * |
吴金青 等: "应用SSA 报告载体提高ZFN 和CRISPR/Cas9对猪IGF2基因的打靶效率", 《遗传》 * |
朱建勇: "CRISPR/Cas系统在禽畜中的应用前景", 《畜牧与兽医》 * |
梁丹 等: "CRISPR-Cas9技术在干细胞中的应用", 《生命科学》 * |
Cited By (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12006520B2 (en) | 2011-07-22 | 2024-06-11 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US10323236B2 (en) | 2011-07-22 | 2019-06-18 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US10954548B2 (en) | 2013-08-09 | 2021-03-23 | President And Fellows Of Harvard College | Nuclease profiling system |
US11920181B2 (en) | 2013-08-09 | 2024-03-05 | President And Fellows Of Harvard College | Nuclease profiling system |
US10508298B2 (en) | 2013-08-09 | 2019-12-17 | President And Fellows Of Harvard College | Methods for identifying a target site of a CAS9 nuclease |
US10227581B2 (en) | 2013-08-22 | 2019-03-12 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
US11046948B2 (en) | 2013-08-22 | 2021-06-29 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
US10597679B2 (en) | 2013-09-06 | 2020-03-24 | President And Fellows Of Harvard College | Switchable Cas9 nucleases and uses thereof |
US9526784B2 (en) | 2013-09-06 | 2016-12-27 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
US10682410B2 (en) | 2013-09-06 | 2020-06-16 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
US11299755B2 (en) | 2013-09-06 | 2022-04-12 | President And Fellows Of Harvard College | Switchable CAS9 nucleases and uses thereof |
US9388430B2 (en) | 2013-09-06 | 2016-07-12 | President And Fellows Of Harvard College | Cas9-recombinase fusion proteins and uses thereof |
US9999671B2 (en) | 2013-09-06 | 2018-06-19 | President And Fellows Of Harvard College | Delivery of negatively charged proteins using cationic lipids |
US10912833B2 (en) | 2013-09-06 | 2021-02-09 | President And Fellows Of Harvard College | Delivery of negatively charged proteins using cationic lipids |
US9340799B2 (en) | 2013-09-06 | 2016-05-17 | President And Fellows Of Harvard College | MRNA-sensing switchable gRNAs |
US9340800B2 (en) | 2013-09-06 | 2016-05-17 | President And Fellows Of Harvard College | Extended DNA-sensing GRNAS |
US10858639B2 (en) | 2013-09-06 | 2020-12-08 | President And Fellows Of Harvard College | CAS9 variants and uses thereof |
US9737604B2 (en) | 2013-09-06 | 2017-08-22 | President And Fellows Of Harvard College | Use of cationic lipids to deliver CAS9 |
US10190137B2 (en) | 2013-11-07 | 2019-01-29 | Editas Medicine, Inc. | CRISPR-related methods and compositions with governing gRNAS |
US11390887B2 (en) | 2013-11-07 | 2022-07-19 | Editas Medicine, Inc. | CRISPR-related methods and compositions with governing gRNAS |
US10640788B2 (en) | 2013-11-07 | 2020-05-05 | Editas Medicine, Inc. | CRISPR-related methods and compositions with governing gRNAs |
US9834791B2 (en) | 2013-11-07 | 2017-12-05 | Editas Medicine, Inc. | CRISPR-related methods and compositions with governing gRNAS |
US10465176B2 (en) | 2013-12-12 | 2019-11-05 | President And Fellows Of Harvard College | Cas variants for gene editing |
US11124782B2 (en) | 2013-12-12 | 2021-09-21 | President And Fellows Of Harvard College | Cas variants for gene editing |
US11053481B2 (en) | 2013-12-12 | 2021-07-06 | President And Fellows Of Harvard College | Fusions of Cas9 domains and nucleic acid-editing domains |
US9840699B2 (en) | 2013-12-12 | 2017-12-12 | President And Fellows Of Harvard College | Methods for nucleic acid editing |
US10077453B2 (en) | 2014-07-30 | 2018-09-18 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US10704062B2 (en) | 2014-07-30 | 2020-07-07 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US11578343B2 (en) | 2014-07-30 | 2023-02-14 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US10167457B2 (en) | 2015-10-23 | 2019-01-01 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
US12043852B2 (en) | 2015-10-23 | 2024-07-23 | President And Fellows Of Harvard College | Evolved Cas9 proteins for gene editing |
US11214780B2 (en) | 2015-10-23 | 2022-01-04 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
CN105821116A (zh) * | 2016-04-15 | 2016-08-03 | 扬州大学 | 一种绵羊mstn基因定向敲除及其影响成肌分化的检测方法 |
CN105950656A (zh) * | 2016-05-31 | 2016-09-21 | 青岛农业大学 | 一种快速获得基因敲除细胞株的方法 |
CN106636298A (zh) * | 2016-07-26 | 2017-05-10 | 武汉伯远生物科技有限公司 | 一种快速体内验证基因打靶靶点效率的方法 |
US10113163B2 (en) | 2016-08-03 | 2018-10-30 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11999947B2 (en) | 2016-08-03 | 2024-06-04 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US10947530B2 (en) | 2016-08-03 | 2021-03-16 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11702651B2 (en) | 2016-08-03 | 2023-07-18 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US12084663B2 (en) | 2016-08-24 | 2024-09-10 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11306324B2 (en) | 2016-10-14 | 2022-04-19 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
US11820969B2 (en) | 2016-12-23 | 2023-11-21 | President And Fellows Of Harvard College | Editing of CCR2 receptor gene to protect against HIV infection |
US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
US11268082B2 (en) | 2017-03-23 | 2022-03-08 | President And Fellows Of Harvard College | Nucleobase editors comprising nucleic acid programmable DNA binding proteins |
US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
CN107418974A (zh) * | 2017-07-28 | 2017-12-01 | 新乡医学院 | 一种利用单克隆细胞分选快速获得CRISPR/Cas9基因敲除稳定细胞株的方法 |
US11732274B2 (en) | 2017-07-28 | 2023-08-22 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
CN107435051B (zh) * | 2017-07-28 | 2020-06-02 | 新乡医学院 | 一种通过CRISPR/Cas9系统快速获得大片段缺失的细胞系基因敲除方法 |
CN107435051A (zh) * | 2017-07-28 | 2017-12-05 | 新乡医学院 | 一种通过CRISPR/Cas9系统快速获得大片段缺失的细胞系基因敲除方法 |
US11932884B2 (en) | 2017-08-30 | 2024-03-19 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
CN111269936B (zh) * | 2017-12-29 | 2022-07-12 | 浙江省农业科学院 | 质粒载体组、dna组和外源基因导入的基因编辑方法 |
CN111269936A (zh) * | 2017-12-29 | 2020-06-12 | 浙江省农业科学院 | 质粒载体组、dna组和外源基因导入的基因编辑方法 |
US11643652B2 (en) | 2019-03-19 | 2023-05-09 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11447770B1 (en) | 2019-03-19 | 2022-09-20 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11795452B2 (en) | 2019-03-19 | 2023-10-24 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11912985B2 (en) | 2020-05-08 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
US12031126B2 (en) | 2020-05-08 | 2024-07-09 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104805118A (zh) | 一种苏禽黄鸡胚胎干细胞特定基因进行靶向敲除方法 | |
US20230374525A1 (en) | Composition for cleaving a target dna comprising a guide rna specific for the target dna and cas protein-encoding nucleic acid or cas protein, and use thereof | |
US11512325B2 (en) | RNA-guided human genome engineering | |
Gilles et al. | Functional genetics for all: engineered nucleases, CRISPR and the gene editing revolution | |
KR102417127B1 (ko) | 대형 유전자 절제 및 삽입 | |
US20200190540A1 (en) | Genetic targeting in non-conventional yeast using an rna-guided endonuclease | |
EP3744844A1 (en) | Extended single guide rna and use thereof | |
EP3536796A1 (en) | Gene knockout method | |
JP2016501036A5 (zh) | ||
RU2019143133A (ru) | Способы и композиции для нацеленных генетических модификаций и способы их применения | |
Horii et al. | Challenges to increasing targeting efficiency in genome engineering | |
CN103725712A (zh) | 一种无物种限制的条件性基因敲除用中间载体及其制备方法和用途 | |
Yang et al. | Highly efficient and rapid detection of the cleavage activity of Cas9/gRNA via a fluorescent reporter | |
US20230032810A1 (en) | Methods and compositions for high efficiency homologous repair-based gene editing | |
RU2808600C1 (ru) | Способ редактирования генома млекопитающих путем гомологичной репарации | |
Calarco et al. | Heritable Custom Genomic Modifications in | |
Wang et al. | REPRINT WITH PERMISSION ONLY | |
Kim et al. | A Co-CRISPR Strategy for Efficient Genome Editing in C. elegans | |
NZ709429B2 (en) | Rna-guided human genome engineering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
EXSB | Decision made by sipo to initiate substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20150729 |
|
RJ01 | Rejection of invention patent application after publication |