[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN104766885B - 一种对称隔离ldmos器件及其制造方法 - Google Patents

一种对称隔离ldmos器件及其制造方法 Download PDF

Info

Publication number
CN104766885B
CN104766885B CN201410007467.9A CN201410007467A CN104766885B CN 104766885 B CN104766885 B CN 104766885B CN 201410007467 A CN201410007467 A CN 201410007467A CN 104766885 B CN104766885 B CN 104766885B
Authority
CN
China
Prior art keywords
type
area
region
doping area
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410007467.9A
Other languages
English (en)
Other versions
CN104766885A (zh
Inventor
马栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CSMC Technologies Corp
Original Assignee
CSMC Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CSMC Technologies Corp filed Critical CSMC Technologies Corp
Priority to CN201410007467.9A priority Critical patent/CN104766885B/zh
Priority to PCT/CN2014/093170 priority patent/WO2015103912A1/zh
Publication of CN104766885A publication Critical patent/CN104766885A/zh
Application granted granted Critical
Publication of CN104766885B publication Critical patent/CN104766885B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/761PN junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0688Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions characterised by the particular shape of a junction between semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1083Substrate region of field-effect devices of field-effect transistors with insulated gate with an inactive supplementary region, e.g. for preventing punch-through, improving capacity effect or leakage current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66681Lateral DMOS transistors, i.e. LDMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明提供一种对称隔离LDMOS器件及其制造方法,LDMOS器件包括:埋层隔离层;P型阱区;侧面隔离区;栅极;源区,设置在所述栅极的一侧;漏区,与所述源区相对于所述栅极对称地设置在另一侧,源区和漏区分别包括设于所述P型阱区内的N型掺杂区,邻接所述N型掺杂区的N型漂移区,设于所述N型漂移区上的场氧化层以及与设于所述N型掺杂区之上的重掺杂N型区;其特征在于:在所述P型阱区内,在N型掺杂区与所述埋层隔离层之间,通过P型注入形成有P型注入区,所述P型注入的杂质注入面密度为1013~1014cm‑2量级。因此P型阱(P well)不会被耗尽,能有效改善LDMOS器件容易被击穿的问题。

Description

一种对称隔离LDMOS器件及其制造方法
技术领域
本发明涉及一种LDMOS器件及其制造方法,尤其是改善对称隔离LDMOS管击穿的方法,及对应的LDMOS器件。
背景技术
LDMOS(横向扩散金属氧化物半导体),与晶体管相比,在关键的器件特性方面,如增益、线性度、开关性能、散热性能以及减少级数等发面优势很明显;并且LDMOS由于更容易与CMOS工艺兼容而被广泛采用,而对称隔离LDMOS管,因为Source(源)和Drain(漏)是完全对称的,所以工作时这两端也可以互换使用,这样实际应用更加方便,所以对称隔离LDMOS管更加受到用户的青睐。
如图1所示为现有技术中的一种对称隔离LDMOS管,采用0.25μmBCD工艺平台下,隔离对称LDMOS1’包括:埋层隔离层2’(BN),设置在底部;P型阱区3’,设置于埋层隔离层2’之上;侧面隔离区4’、5’,为N型阱区,设置于P型阱区3’外侧,源区(Source)7’和漏区(Drain)8’完全对称设置在栅极6’两侧,并且源区7’和漏区8’分别包括N型掺杂区(NG)74’a和84’a,N型漂移区(N-drift)72’a和82’a,场氧化层(FOX)73’a和83’a,重掺杂N型区71’a和81’a。但是现有的制造方法存在一个问题:因为在工作时漏区8’和埋层隔离层2’,一起被施加高电压,而源区7’接地。这样埋层隔离层2’和源区7’之间形成就形成了一个很高的压差,当源区7’的N型掺杂区74’a和埋层隔离层2’之间距离很小时,它们之间的P型阱区3’很容易被耗尽,这样源区7’的N型掺杂区74’a和埋层隔离层2’容易被击穿,这样对称隔离LDMOS管就耐不了高压;并且现有技术中源区7’的N型掺杂区74’a和埋层隔离层2’之间仅可以承受10V的压差,超过10V就会穿通,而这种对称隔离LDMOS管的击穿电压(BV,breakdown voltage)要求通常在30V以上。
为了解决LDMOS管的击穿电压(BV,breakdownvoltage)不够高的技术问题,对于本领域技术人员很容易想到的技术方案是:通过增加EPI的厚度(即增加NG和BN的距离),这样虽然可以改善以上问题,但是对其他器件影响较大,而且制造成本也很高。
发明内容
为了解决上述技术问题,本发明提供一种对称隔离LDMOS管及其制造方法,能够保证对称隔离LDMOS管的击穿电压满足需求的情况下,制造工艺简单,而且成本低。本发明采用的技术方案为:
提供一种对称隔离LDMOS器件,包括:
埋层隔离层,设置在底部;
P型阱区,设置于埋层隔离层之上;
侧面隔离区,设置于所述P型阱区外侧;
栅极,设置于所述P型阱区之上;
源区,设置在所述栅极的一侧,包括设于所述P型阱区内的第一N型掺杂区,邻接所述第一N型掺杂区的第一N型漂移区,设于所述第一N型漂移区上的场氧化层以及设于所述第一N型掺杂区之上的第一重掺杂N型区;
漏区,与所述源区相对于所述栅极对称地设置在另一侧,所述漏区包括设于所述P型阱区内的第二N型掺杂区,邻接所述第二N型掺杂区的第二N型漂移区,设于所述第二N型漂移区上的场氧化层以及设于所述第二N型掺杂区之上的第二重掺杂N型区;
其特征在于:
在所述P型阱区内,在第一N型掺杂区与所述埋层隔离层之间,通过P型注入形成有P型注入区,所述P型注入的杂质注入面密度为1013~1014cm-2量级。
作为一种优选方案,上述P型注入的杂质注入能量为100Kev到500Kev。
作为一种优选方案,上述P型注入区位于所述第一N型掺杂区的正下方。
作为一种优选方案,上述P型注入区与埋层隔离层的距离较其与所述第一N型掺杂区的距离更短。
作为一种优选方案,上述P型注入的杂质为硼离子。
另一方面,本发明提供一种对称隔离LDMOS器件的制造方法,包括:
首先提供一种器件,包括埋层隔离层,设置在底部;P型阱区,设置于埋层隔离层之上;侧面隔离区,设置于所述P型阱区外侧;栅极,设置于所述P型阱区之上;源区,设置在所述栅极的一侧,包括设于所述P型阱区内的第一N型掺杂区,邻接所述第一N型掺杂区的第一N型漂移区,设于所述第一N型漂移区上的场氧化层以及设于所述第一N型掺杂区之上的第一重掺杂N型区;漏区,与所述源区相对于所述栅极对称地设置在另一侧,所述漏区包括设于所述P型阱区内的第二N型掺杂区,邻接所述第二N型掺杂区的第二N型漂移区,设于所述第二N型漂移区上的场氧化层以及设于所述第二N型掺杂区之上的第二重掺杂N型区;
然后在第一N型掺杂区与所述埋层隔离层之间,通过增加一次P型注入形成P型注入区。
作为一种优选方案,上述增加的P型注入的杂质注入面密度为1013~1014cm-2量级。
作为一种优选方案,上述P型注入的杂质注入能量为100Kev到500Kev。
作为一种优选方案,通过N型注入形成第一N型掺杂区,并从与所述N型注入相同的注入区域进行所述增加的P型注入,以使所述P型注入区位于所述第一N型掺杂区的正下方。
作为一种优选方案,上述增加的P型注入的杂质为硼离子。
附图说明
图1所示为现有技术中对称隔离LDMOS器件的截面示意图;
图2所示为本发明一实施例的对称隔离LDMOS器件的截面示意图。
具体实施方式
下面结合附图对本发明的具体实施方式做详细的说明,需要说明的是,这些具体的说明只是让本领域普通技术人员更加容易、清晰理解本发明,而非对本发明的限定性解释。
如图2所示,作为本发明一优选实施例,首先提供一种对称隔离LDMOS器件1,包括:埋层隔离层(Bury N Well)2,设置在底部;P型阱区(Pwell)3,设置于埋层隔离层2之上;侧面隔离区4、5,侧面隔离区4、5为N型阱区(N well),设置于所述P型阱区外侧;栅极(GT)6,设置于所述P型阱区之上,通常栅极包括栅电极和位于栅电极下方的栅介质层,本发明对于栅极的具体材质结构没有限制;源区(Source)7,设置在所述栅极6的一侧,包括设于所述P型阱区3内的第一N型掺杂区(NG)74a,邻接所述第一N型掺杂区74a的第一N型漂移区(N—Drift)72a、72b,设于所述第一N型漂移区72a、72b上的场氧化层(FOX)73a、73b,以及设于所述第一N型掺杂区74a之上的第一重掺杂N型区71a,所述第一重掺杂N型区71a作为引出端,引出源电极;漏区8,与所述源区7相对于所述栅极6对称地设置在另一侧,所述漏区8包括设于所述P型阱区内的第二N型掺杂区(NG)84a,邻接所述第二N型掺杂区84a的第二N型漂移区(N—Drift)82a、82b,设于所述第二N型漂移区82a、82b上的场氧化层(FOX)83a、83b以及设于所述第二N型掺杂区84a之上的第二重掺杂N型区81a,所述第二重掺杂N型区81a作为引出端,引出漏电极。其中,本发明对第一、第二N型漂移区的数量没有限制,同样地,对相应覆盖在第一、第二N型漂移区上方的场氧化层的数量也没有限制;
在该实施例中,源区及漏区的外侧还分别设有重掺杂P型区73c、83c,所述重掺杂P型区73c、83c直接与下方的P型阱区(Pwell)3连接用于作为引出端引出衬底电极;最外侧的侧面隔离区4、5中还可设有第三重掺杂N型区71b、81b,作为引出端,用于引出隔离电极。此处,引出衬底电极和引出隔离电极也可以是其他的结构形式,本发明对此没有限制。
为了满足对称隔离LDMOS管的击穿电压需求,在所述P型阱区3内,在第一N型掺杂区74a与所述埋层隔离层2之间,通过P型注入形成有P型注入区9,所述P型注入的杂质注入面密度为1013~1014cm-2量级。这样即使源区7的第一N型掺杂区74a和埋层隔离层2承受较高电压时,P型阱区3也不会被完全耗尽。本实施例中,考虑到器件的对称性,优选地,在漏区8和埋层隔离层2之间同样设置了一个通过P型注入形成的P型注入区10。
优选地,P型注入的杂质注入能量为100Kev到500Kev。
优选地,P型注入区9与埋层隔离层2的距离较其与所述第一N型掺杂区74a的距离更短。
优选地,P型注入区9位于所述第一N型掺杂区74a的正下方。
优选地,P型注入的的P型杂质为硼离子。
上述优选地方案中,P型注入的杂质注入能量较大,P型注入区9与第一N型掺杂区74a的距离更近,可进一步改善源区7的第一N型掺杂区74a和埋层隔离层2容易被击穿的可能性。进行P型注入的区域与第一N型掺杂区74a的注入区域一致,使P型注入区9位于第一N型掺杂区74a的正下方,这样从工艺上分析,不会对BCD工艺下其他器件造成影响,成本花费小。
另一方面,本实施例还提供一种对称隔离LDMOS器件的制造方法,包括:
1、在P型半导体的衬底上注入N型离子,然后高温退火,形成一个埋层隔离层(BuryN Well)2;
2、在埋层隔离层(Bury N Well)2上生长4.5μm的外延层(EPI),在外延层上注入N型杂质经高温退火形成侧面隔离区4、5,侧面隔离区4、5为N型阱区(N well);
3、在EPI上注入P型杂质经高温退火形成P型阱区(P well)3;
4、形成源区(Source)7、漏区(Drain)8:在特定位置注入N型杂质,然后再经过生长场氧化层(FOX)73a、73b、83a、83b,在场氧化层下面就形成了第一N型漂移区(N—Drift)72a、72b和第二N型漂移区(N—Drift)82a、82b,在生长场氧化层后,在特定位置注入N型杂质形成第一N型掺杂区(NG)74a、第二N型掺杂区(NG)84a;
5、在源区(Source)7、漏区(Drain)8对称中心处的P型阱区(Pwell)3上形成栅极(GT)6,然后分别在第一N型掺杂区(NG)74a、第二N型掺杂区(NG)84a、侧面隔离区4、5、P型阱区(Pwell)3中注入N+/P+作为源区(Source)7、漏区(Drain)8、侧面隔离区4、5及衬底电极的引出端,即形成第一重掺杂N型区71a、第二重掺杂N型区81a、第三重掺杂N型区71b、81b以及重掺杂P型区73c、83c。
其中,源区、漏区、栅极和各部分电极引出端的制作是本领域技术人员的常用技术,除本实施例所述方法外也可以是其他方法步骤,本发明对此没有限制。
通过上述方法就形成了一种器件,包括:埋层隔离层(Bury N Well)2,设置在底部;P型阱区(P well)3,设置于埋层隔离层2之上;侧面隔离区4、5,侧面隔离层4、5为N型阱区(N well),设置于所述P型阱区外侧;栅极(GT)6,设置于所述P型阱区之上;源区(Source)7,设置在所述栅极6的一侧,包括设于所述P型阱区3内的第一N型掺杂区(NG)74a,邻接所述第一N型掺杂区74a的第一N型漂移区(N—Drift)72a、72b,设于所述第一N型漂移区72a、72b上的场氧化层(FOX)73a、73b,以及设于所述第一N型掺杂区74a之上的第一重掺杂N型区71a;漏区8,与所述源区7相对于所述栅极6对称地设置在另一侧,所述漏区8包括设于所述P型阱区内的第二N型掺杂区(NG)84a,邻接所述第二N型掺杂区84a的第二N型漂移区(N—Drift)82a、82b,设于所述第二N型漂移区82a、82b上的场氧化层(FOX)83a、83b以及设于所述第二N型掺杂区84a之上的第二重掺杂N型区81a。
然后在所述P型阱区3内,在第一N型掺杂区74a与所述埋层隔离层2之间,通过增加一次P型注入形成P型注入区9,本实施例中,考虑到器件的对称性,优选地,同时在漏区8和埋层隔离层2之间注入形成P型注入区10。所述P型注入的杂质注入面密度为1013~1014cm-2量级。这样即使源区7的第一N型掺杂区74a和埋层隔离层2承受较高电压时,P型阱区3也不会被完全耗尽。
优选地,P型注入的杂质注入能量为100Kev到500Kev。
优选地,P型注入区9与埋层隔离层2的距离较其与所述第一N型掺杂区74a的距离更短。
优选地,P型注入区9位于所述第一N型掺杂区74a的正下方。
上述优选地方案中,P型注入的杂质注入能量较大,P型注入区9与第一N型掺杂区74a的距离更近,可进一步改善源区7的第一N型掺杂区74a和埋层隔离层2容易被击穿的可能性。进行P型注入的区域与第一N型掺杂区74a、第二N型掺杂区84a的注入区域一致,同时形成P型注入区9、10,并使P型注入区9、10分别位于第一N型掺杂区74a、第二N型掺杂区84a的正下方,这样从工艺上分析,不会对BCD工艺下其他器件造成影响,成本花费小。
最后需要说明的是,上述说明仅是本发明的最佳实施例而已,并非对本发明做任何形式上的限制。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围内,都可利用上述揭示的做法和技术内容对本发明技术方案做出许多可能的变动和简单的替换等,这些都属于本发明技术方案保护的范围。

Claims (9)

1.一种对称隔离LDMOS器件,包括:
埋层隔离层,设置在底部;
P型阱区,设置于埋层隔离层之上;
侧面隔离区,设置于所述P型阱区外侧;
栅极,设置于所述P型阱区之上;
源区,设置在所述栅极的一侧,包括设于所述P型阱区内的第一N型掺杂区,邻接所述第一N型掺杂区的第一N型漂移区,设于所述第一N型漂移区上的场氧化层以及设于所述第一N型掺杂区之上的第一重掺杂N型区;
漏区,与所述源区相对于所述栅极对称地设置在另一侧,所述漏区包括设于所述P型阱区内的第二N型掺杂区,邻接所述第二N型掺杂区的第二N型漂移区,设于所述第二N型漂移区上的场氧化层以及设于所述第二N型掺杂区之上的第二重掺杂N型区;
其特征在于:
在所述P型阱区内,在第一N型掺杂区与所述埋层隔离层之间,通过P型注入形成有P型注入区,所述P型注入的杂质注入面密度为1013~1014cm-2量级,所述P型注入区与埋层隔离层的距离较其与所述第一N型掺杂区和第二N型掺杂区的距离更短。
2.如权利要求1所述的对称隔离LDMOS器件,其特征在于,所述P型注入的杂质注入能量为100Kev到500Kev。
3.如权利要求1或2所述的对称隔离LDMOS器件,其特征在于,所述P型注入区位于所述第一N型掺杂区的正下方。
4.如权利要求3所述的对称隔离LDMOS器件,其特征在于,所述P型注入的杂质为硼离子。
5.一种对称隔离LDMOS器件的制造方法,包括:
首先提供一种器件,包括埋层隔离层,设置在底部;P型阱区,设置于埋层隔离层之上;侧面隔离区,设置于所述P型阱区外侧;栅极,设置于所述P型阱区之上;源区,设置在所述栅极的一侧,包括设于所述P型阱区内的第一N型掺杂区,邻接所述第一N型掺杂区的第一N型漂移区,设于所述第一N型漂移区上的场氧化层以及设于所述第一N型掺杂区之上的第一重掺杂N型区;漏区,与所述源区相对于所述栅极对称地设置在另一侧,所述漏区包括设于所述P型阱区内的第二N型掺杂区,邻接所述第二N型掺杂区的第二N型漂移区,设于所述第二N型漂移区上的场氧化层以及设于所述第二N型掺杂区之上的第二重掺杂N型区;
然后在第一N型掺杂区与所述埋层隔离层之间,通过增加一次P型注入形成P型注入区,所述P型注入区与埋层隔离层的距离较其与所述第一N型掺杂区和第二N型掺杂区的距离更短。
6.如权利要求5所述的对称隔离LDMOS器件的制造方法,其特征在于,增加的P型注入的杂质注入面密度为1013~1014cm-2量级。
7.如权利要求5或6所述的对称隔离LDMOS器件的制造方法,其特征在于,所述P型注入的杂质注入能量为100Kev到500Kev。
8.如权利要求7所述的对称隔离LDMOS器件的制造方法,其特征在于,通过N型注入形成第一N型掺杂区,并从与所述N型注入相同的注入区域进行所述增加的P型注入,以使所述P型注入区位于所述第一N型掺杂区的正下方。
9.如权利要求8所述的对称隔离LDMOS器件的制造方法,其特征在于,增加的P型注入的杂质为硼离子。
CN201410007467.9A 2014-01-08 2014-01-08 一种对称隔离ldmos器件及其制造方法 Active CN104766885B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201410007467.9A CN104766885B (zh) 2014-01-08 2014-01-08 一种对称隔离ldmos器件及其制造方法
PCT/CN2014/093170 WO2015103912A1 (zh) 2014-01-08 2014-12-05 对称隔离 ldmos 器件及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410007467.9A CN104766885B (zh) 2014-01-08 2014-01-08 一种对称隔离ldmos器件及其制造方法

Publications (2)

Publication Number Publication Date
CN104766885A CN104766885A (zh) 2015-07-08
CN104766885B true CN104766885B (zh) 2018-04-13

Family

ID=53523528

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410007467.9A Active CN104766885B (zh) 2014-01-08 2014-01-08 一种对称隔离ldmos器件及其制造方法

Country Status (2)

Country Link
CN (1) CN104766885B (zh)
WO (1) WO2015103912A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108242467B (zh) * 2016-12-27 2020-05-22 无锡华润上华科技有限公司 Ldmos器件及其制作方法
CN109427586B (zh) * 2017-09-01 2022-05-31 无锡华润上华科技有限公司 一种半导体器件及其制造方法
CN107946296A (zh) * 2017-10-23 2018-04-20 深圳震有科技股份有限公司 一种静电保护用lemds_scr器件
CN108511529B (zh) * 2018-06-08 2021-06-04 上海华虹宏力半导体制造有限公司 Nldmos器件和ldmos功率器件的制造方法
CN111048420B (zh) * 2019-12-27 2022-07-19 杰华特微电子股份有限公司 横向双扩散晶体管的制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6365475B1 (en) * 2000-03-27 2002-04-02 United Microelectronics Corp. Method of forming a MOS transistor
CN102142460A (zh) * 2010-12-29 2011-08-03 电子科技大学 一种soi型p-ldmos
EP2405466A1 (en) * 2010-07-05 2012-01-11 austriamicrosystems AG Symmetric LDMOS transistor and method of production
CN103137703A (zh) * 2011-11-28 2013-06-05 瑞萨电子株式会社 半导体器件
CN103280462A (zh) * 2013-05-27 2013-09-04 东南大学 一种高鲁棒性的p型对称横向双扩散场效应晶体管

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5458809B2 (ja) * 2009-11-02 2014-04-02 富士電機株式会社 半導体装置
CN102148247B (zh) * 2010-02-04 2013-07-31 立锜科技股份有限公司 增加击穿防护电压的横向扩散金属氧化物半导体元件与制作方法
CN101944486A (zh) * 2010-08-03 2011-01-12 无锡晶凯科技有限公司 Led驱动芯片用40v-bcd工艺、ldmos器件及制备方法
CN102790088A (zh) * 2012-07-20 2012-11-21 昆山华太电子技术有限公司 一个击穿电压可以调整rf-ldmos器件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6365475B1 (en) * 2000-03-27 2002-04-02 United Microelectronics Corp. Method of forming a MOS transistor
EP2405466A1 (en) * 2010-07-05 2012-01-11 austriamicrosystems AG Symmetric LDMOS transistor and method of production
CN102142460A (zh) * 2010-12-29 2011-08-03 电子科技大学 一种soi型p-ldmos
CN103137703A (zh) * 2011-11-28 2013-06-05 瑞萨电子株式会社 半导体器件
CN103280462A (zh) * 2013-05-27 2013-09-04 东南大学 一种高鲁棒性的p型对称横向双扩散场效应晶体管

Also Published As

Publication number Publication date
CN104766885A (zh) 2015-07-08
WO2015103912A1 (zh) 2015-07-16

Similar Documents

Publication Publication Date Title
CN102130168B (zh) 隔离型ldnmos器件及其制造方法
CN104766885B (zh) 一种对称隔离ldmos器件及其制造方法
CN105097914B (zh) 横向扩散金属氧化物半导体器件及其制造方法
CN107316899B (zh) 半超结器件及其制造方法
CN105428415B (zh) Nldmos器件及其制造方法
CN102130164A (zh) Ldmos的埋层
CN104347683A (zh) 半导体器件
CN102412126B (zh) 超高压ldmos的工艺制作方法
CN101924131B (zh) 横向扩散mos器件及其制备方法
CN103633089B (zh) 多晶硅电阻及其制造方法
CN106129117A (zh) 一种高可靠性的横向双扩散金属氧化物半导体管
CN105914231B (zh) 电荷存储型igbt及其制造方法
CN103178087A (zh) 超高压ldmos器件结构及制备方法
CN108074963B (zh) 超结器件及其制造方法
CN103545346B (zh) 隔离型n型ldmos器件及其制造方法
CN103035525B (zh) 高压隔离n型ldmos器件的制造方法
CN103094319B (zh) 双通道高压结型场效应管降低夹断电压的结构及制造方法
CN103107191B (zh) 高压p型ldmos结构及其制造方法
CN109216431A (zh) 完全隔离型的横向扩散金属氧化物半导体结构及制造方法
CN104617139B (zh) Ldmos器件及制造方法
CN103456784B (zh) 高压p型ldmos器件及制造方法
CN104282763B (zh) 射频横向双扩散场效应晶体管制作方法
CN103811402B (zh) 一种超高压bcd工艺的隔离结构制作工艺方法
CN105140303B (zh) 结型场效应晶体管及其制备方法
CN108428732A (zh) 超结器件及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant