CN104697638B - A kind of MOCVD device real-time temperature measurement system method for self-calibrating - Google Patents
A kind of MOCVD device real-time temperature measurement system method for self-calibrating Download PDFInfo
- Publication number
- CN104697638B CN104697638B CN201310655576.7A CN201310655576A CN104697638B CN 104697638 B CN104697638 B CN 104697638B CN 201310655576 A CN201310655576 A CN 201310655576A CN 104697638 B CN104697638 B CN 104697638B
- Authority
- CN
- China
- Prior art keywords
- wavelength
- temperature
- thermal radiation
- epitaxial wafer
- radiation power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000009529 body temperature measurement Methods 0.000 title claims abstract description 31
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 title claims abstract description 30
- 238000000034 method Methods 0.000 title claims abstract description 29
- 230000005855 radiation Effects 0.000 claims abstract description 66
- 230000003287 optical effect Effects 0.000 claims description 32
- 238000002834 transmittance Methods 0.000 claims description 15
- 238000005316 response function Methods 0.000 claims description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- 229910002804 graphite Inorganic materials 0.000 claims description 6
- 239000010439 graphite Substances 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 6
- 230000004044 response Effects 0.000 claims description 6
- 238000001228 spectrum Methods 0.000 claims description 6
- 239000000758 substrate Substances 0.000 claims description 6
- 238000002310 reflectometry Methods 0.000 claims description 5
- 230000005540 biological transmission Effects 0.000 claims description 3
- 230000003595 spectral effect Effects 0.000 claims description 3
- 229910052594 sapphire Inorganic materials 0.000 claims description 2
- 239000010980 sapphire Substances 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 238000004364 calculation method Methods 0.000 abstract description 2
- 239000004065 semiconductor Substances 0.000 abstract description 2
- 235000012431 wafers Nutrition 0.000 description 29
- 238000001514 detection method Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 238000009499 grossing Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000004861 thermometry Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Landscapes
- Radiation Pyrometers (AREA)
Abstract
本发明公开了一种MOCVD设备实时测温系统自校准方法,半导体制造技术领域。该方法包括根据实际热辐射比值,在理论热辐射比值‑温度曲线上描出与实际热辐射比值对应的点,将点对应的温度T的值代入计算公式,分别得到校准系数m1和m2。该方法能够得到双波长测温结构中第一种波长λ1和第二种波长λ2分别对应的校准系数m1和m2,从而实现了MOCVD设备实时测温系统自校准,能够保证外延片生长温度测量一致而又精确。
The invention discloses a self-calibration method for a real-time temperature measurement system of MOCVD equipment and belongs to the technical field of semiconductor manufacturing. The method includes drawing points corresponding to the actual heat radiation ratio on the theoretical heat radiation ratio-temperature curve according to the actual heat radiation ratio, and substituting the temperature T value corresponding to the point into the calculation formula to obtain the calibration coefficients m 1 and m 2 respectively. This method can obtain the calibration coefficients m 1 and m 2 respectively corresponding to the first wavelength λ 1 and the second wavelength λ 2 in the dual-wavelength temperature measurement structure, thereby realizing the self-calibration of the real-time temperature measurement system of the MOCVD equipment and ensuring that the epitaxial wafer Growth temperature measurements are consistent and precise.
Description
技术领域technical field
本发明涉及半导体制造技术领域,特别是涉及一种MOCVD设备实时测温系统自校准方法。The invention relates to the technical field of semiconductor manufacturing, in particular to a self-calibration method for a real-time temperature measurement system of MOCVD equipment.
背景技术Background technique
外延片生长温度是MOCVD生产性能控制的关键参数。由于MOCVD的反应条件严格,需要高真空、高温、化学性质活泼的生长环境,高速旋转的衬底,以及严格的设备空间布置,采用热电偶等直接测温的技术几乎是不可能的,因此,必须依赖于非接触测温法对外延片生长温度进行测量。现有技术中应用的非接触测温法是采用经过热辐射系数修正的高温测量方法,通过测量一定波段的辐射光和相应外延片片表面的发射率计算外延片片表面的温度。然而,在外延片片生长过程中,测温系统的安装及外界环境会影响其测温的稳定性,影响因素主要包括:a)反应腔窗口上的淀积的影响;b)测温系统安装位置对探测距离变化、光学探测器立体角变化的影响;c)外延片片生长环境如通气气压、石墨盘旋转变换的影响。这些影响会改变测温系统检测到的信号,引起系统性的温度偏离,导致外延片生长温度测量无法保证一致而又精确。Epitaxial wafer growth temperature is a key parameter for MOCVD production performance control. Due to the strict reaction conditions of MOCVD, high vacuum, high temperature, chemically active growth environment, high-speed rotating substrate, and strict equipment space layout, it is almost impossible to use thermocouples and other direct temperature measurement technologies. Therefore, It must rely on non-contact thermometry to measure the epitaxial wafer growth temperature. The non-contact temperature measurement method used in the prior art uses a high-temperature measurement method corrected by the thermal emissivity coefficient, and calculates the surface temperature of the epitaxial wafer by measuring the radiated light of a certain band and the emissivity of the corresponding epitaxial wafer surface. However, during the growth process of epitaxial wafers, the installation of the temperature measurement system and the external environment will affect the stability of the temperature measurement. The influencing factors mainly include: a) the influence of deposition on the window of the reaction chamber; b) the installation of the temperature measurement system The influence of the position on the change of the detection distance and the change of the solid angle of the optical detector; c) the influence of the growth environment of the epitaxial wafer such as the ventilation pressure and the rotation transformation of the graphite disk. These effects will change the signal detected by the temperature measurement system, causing systematic temperature deviation, resulting in the inability to guarantee consistent and accurate measurement of the epitaxial wafer growth temperature.
发明内容Contents of the invention
为了解决上述问题,本发明提供了一种采用双波长测温结构的MOCVD设备实时测温系统自校准方法。In order to solve the above problems, the present invention provides a self-calibration method for the real-time temperature measurement system of MOCVD equipment using a dual-wavelength temperature measurement structure.
本发明提供的MOCVD设备实时测温系统自校准方法包括以下步骤:The MOCVD equipment real-time temperature measurement system self-calibration method provided by the present invention comprises the following steps:
测量不同温度下,黑体炉的响应光谱P(λ,T);Measure the response spectrum P(λ,T) of the blackbody furnace at different temperatures;
根据according to
计算第一种波长λ1和第二种波长λ2分别对应的理论热辐射功率比值r0(T);Calculate the theoretical thermal radiation power ratio r 0 (T) corresponding to the first wavelength λ 1 and the second wavelength λ 2 respectively;
其中,in,
P0(λ1,T),第一种波长λ1对应的热辐射功率,P 0 (λ 1 ,T), the thermal radiation power corresponding to the first wavelength λ 1 ,
λ1,第一种波长,λ 1 , the first wavelength,
Δλ1,第一种波长λ1对应的带宽,Δλ 1 , the bandwidth corresponding to the first wavelength λ 1 ,
f1(λ),光学探测器在第一种波长λ1下的响应函数,f 1 (λ), the response function of the optical detector at the first wavelength λ 1 ,
g1(λ),第一种波长λ1对应的辐射光在光学器件的透过率,g 1 (λ), the transmittance of the radiant light corresponding to the first wavelength λ 1 in the optical device,
P(λ,T),黑体炉的响应光谱,P(λ,T), the response spectrum of the blackbody furnace,
τ(T),光谱传输曲线的表达式,τ(T), the expression for the spectral transmission curve,
P0(λ2,T),第二种波长λ2对应的热辐射功率,P 0 (λ 2 ,T), the thermal radiation power corresponding to the second wavelength λ 2 ,
λ2,第二种波长,λ 2 , the second wavelength,
Δλ2,第二种波长λ2对应的带宽,Δλ 2 , the bandwidth corresponding to the second wavelength λ 2 ,
f2(λ),光学探测器在第二种波长λ2下的响应函数,f 2 (λ), the response function of the optical detector at the second wavelength λ 2 ,
g2(λ),第二种波长λ2对应的辐射光在光学器件的透过率,g 2 (λ), the transmittance of the radiant light corresponding to the second wavelength λ 2 in the optical device,
T,温度,T, temperature,
r0(T),第一种波长λ1和第二种波长λ2分别对应的理论热辐射功率比值;r 0 (T), the theoretical heat radiation power ratio corresponding to the first wavelength λ 1 and the second wavelength λ 2 respectively;
根据所述温度和对应的理论热辐射功率比值r0(T),进行最小二乘拟合,得到理论热辐射比值-温度曲线;According to the temperature and the corresponding theoretical thermal radiation power ratio r 0 (T), a least squares fitting is performed to obtain a theoretical thermal radiation ratio-temperature curve;
测量不同温度下,第一种波长λ1对应的实际热辐射功率,第二种波长λ2对应的实际热辐射功率,并得到实际热辐射比值;Measure the actual thermal radiation power corresponding to the first wavelength λ 1 and the actual thermal radiation power corresponding to the second wavelength λ 2 at different temperatures, and obtain the actual thermal radiation ratio;
根据实际热辐射比值,在理论热辐射比值-温度曲线上描出与所述实际热辐射比值对应的点;According to the actual heat radiation ratio, trace the points corresponding to the actual heat radiation ratio on the theoretical heat radiation ratio-temperature curve;
将所述点对应的温度T的值代入Substitute the value of temperature T corresponding to the point into
分别得到m1和m2;get m 1 and m 2 respectively;
其中,in,
L(λ1,T),第一种波长λ1对应的实际热辐射功率,L(λ 1 ,T), the actual thermal radiation power corresponding to the first wavelength λ 1 ,
L(λ2,T),第二种波长λ2对应的实际热辐射功率,L(λ 2 ,T), the actual thermal radiation power corresponding to the second wavelength λ 2 ,
m1,第一种波长λ1对应的校准系数,m 1 , the calibration coefficient corresponding to the first wavelength λ 1 ,
m2,第二种波长λ2对应的校准系数,m 2 , the calibration coefficient corresponding to the second wavelength λ 2 ,
f1(λ),光学探测器在第一种波长λ1下的响应函数,f 1 (λ), the response function of the optical detector at the first wavelength λ 1 ,
g1(λ),第一种波长λ1对应的辐射光在光学器件的透过率,g 1 (λ), the transmittance of the radiant light corresponding to the first wavelength λ 1 in the optical device,
f2(λ),光学探测器在第二种波长λ2下的响应函数,f 2 (λ), the response function of the optical detector at the second wavelength λ 2 ,
g2(λ),第二种波长λ2对应的辐射光在光学器件的透过率,g 2 (λ), the transmittance of the radiant light corresponding to the second wavelength λ 2 in the optical device,
ε(λ),外延片表面的发射率,ε(λ), the emissivity of the epitaxial wafer surface,
T,温度;T, temperature;
λ1,第一种波长,λ 1 , the first wavelength,
Δλ1,第一种波长λ1对应的带宽,Δλ 1 , the bandwidth corresponding to the first wavelength λ 1 ,
λ2,第二种波长,λ 2 , the second wavelength,
Δλ2,第二种波长λ2对应的带宽,Δλ 2 , the bandwidth corresponding to the second wavelength λ 2 ,
k,玻尔兹曼常数,k=1.3806×10-23J/K,k, Boltzmann constant, k=1.3806×10 -23 J/K,
h为普照朗克常数,h=6.626×10-34J.s,h is the Plank constant, h=6.626×10 -34 Js,
c,光在真空中传播速度,c=3×108m/s。c, the propagation speed of light in vacuum, c=3×10 8 m/s.
本发明提供的MOCVD设备实时测温系统自校准方法能够得到双波长测温结构中第一种波长λ1和第二种波长λ2分别对应的校准系数m1和m2,从而实现了MOCVD设备实时测温系统自校准,能够保证外延片生长温度测量一致而又精确。The self-calibration method of the MOCVD equipment real-time temperature measurement system provided by the present invention can obtain the calibration coefficients m 1 and m 2 respectively corresponding to the first wavelength λ 1 and the second wavelength λ 2 in the dual-wavelength temperature measurement structure, thereby realizing the MOCVD equipment The self-calibration of the real-time temperature measurement system can ensure consistent and accurate measurement of the epitaxial wafer growth temperature.
附图说明Description of drawings
图1为本发明实施例提供的MOCVD设备实时测温系统自校准方法中的理论热辐射比值-温度曲线;Fig. 1 is the theoretical thermal radiation ratio-temperature curve in the self-calibration method of the MOCVD equipment real-time temperature measurement system provided by the embodiment of the present invention;
图2为本发明实施例提供的MOCVD设备实时测温系统自校准方法的流程图;Fig. 2 is the flowchart of the self-calibration method of the MOCVD equipment real-time temperature measurement system provided by the embodiment of the present invention;
图3为实现本发明实施例提供的MOCVD设备实时测温系统自校准方法的一种装置的结构示意图;Fig. 3 is a structural schematic diagram of a device for realizing the self-calibration method of the MOCVD equipment real-time temperature measurement system provided by the embodiment of the present invention;
图4为图3中光学探测器的组成结构示意图。FIG. 4 is a schematic diagram of the composition and structure of the optical detector in FIG. 3 .
具体实施方式Detailed ways
为了深入了解本发明,下面结合附图及具体实施例对本发明进行详细说明。In order to deeply understand the present invention, the present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments.
参见附图2,本发明提供的MOCVD设备实时测温系统自校准方法包括以下步骤:Referring to accompanying drawing 2, MOCVD equipment real-time temperature measuring system self-calibration method provided by the present invention comprises the following steps:
步骤1:根据实际热辐射比值,在附图1所示的理论热辐射比值-温度曲线上描出与实际热辐射比值对应的点;Step 1: According to the actual thermal radiation ratio, trace the points corresponding to the actual thermal radiation ratio on the theoretical thermal radiation ratio-temperature curve shown in Figure 1;
步骤2:将点对应的温度T的值代入Step 2: Substitute the value of temperature T corresponding to the point into
分别得到m1和m2;get m 1 and m 2 respectively;
其中,in,
L(λ1,T),第一种波长λ1对应的实际热辐射功率,L(λ 1 ,T), the actual thermal radiation power corresponding to the first wavelength λ 1 ,
L(λ2,T),第二种波长λ2对应的实际热辐射功率,L(λ 2 ,T), the actual thermal radiation power corresponding to the second wavelength λ 2 ,
m1,第一种波长λ1对应的校准系数,m 1 , the calibration coefficient corresponding to the first wavelength λ 1 ,
m2,第二种波长λ2对应的校准系数,m 2 , the calibration coefficient corresponding to the second wavelength λ 2 ,
f1(λ),光学探测器在第一种波长λ1下的响应函数,f 1 (λ), the response function of the optical detector at the first wavelength λ 1 ,
g1(λ),第一种波长λ1对应的辐射光在光学器件的透过率,g 1 (λ), the transmittance of the radiant light corresponding to the first wavelength λ 1 in the optical device,
f2(λ),光学探测器在第二种波长λ2下的响应函数,f 2 (λ), the response function of the optical detector at the second wavelength λ 2 ,
g2(λ),第二种波长λ2对应的辐射光在光学器件的透过率,g 2 (λ), the transmittance of the radiant light corresponding to the second wavelength λ 2 in the optical device,
ε(λ),外延片表面的发射率,ε(λ), the emissivity of the epitaxial wafer surface,
T,温度;T, temperature;
λ1,第一种波长,λ 1 , the first wavelength,
Δλ1,第一种波长λ1对应的带宽,Δλ 1 , the bandwidth corresponding to the first wavelength λ 1 ,
λ2,第二种波长,λ 2 , the second wavelength,
Δλ2,第二种波长λ2对应的带宽,Δλ 2 , the bandwidth corresponding to the second wavelength λ 2 ,
k,玻尔兹曼常数,k=1.3806×10-23J/K,k, Boltzmann constant, k=1.3806×10 -23 J/K,
h为普照朗克常数,h=6.626×10-34J.s,h is the Plank constant, h=6.626×10 -34 Js,
c,光在真空中传播速度,c=3×108m/s。c, the propagation speed of light in vacuum, c=3×10 8 m/s.
具体地,specifically,
其中,附图1所示的理论热辐射比值-温度曲线的生成方法包括以下步骤:步骤1:测量不同温度下,黑体炉的响应光谱P(λ,T);Wherein, the method for generating the theoretical heat radiation ratio-temperature curve shown in accompanying drawing 1 comprises the following steps: Step 1: measure the response spectrum P (λ, T) of the blackbody furnace under different temperatures;
步骤2:根据Step 2: According to
计算第一种波长λ1和第二种波长λ2分别对应的理论热辐射功率比值r0(T);Calculate the theoretical thermal radiation power ratio r 0 (T) corresponding to the first wavelength λ 1 and the second wavelength λ 2 respectively;
其中,in,
P0(λ1,T),第一种波长λ1对应的热辐射功率,P 0 (λ 1 ,T), the thermal radiation power corresponding to the first wavelength λ 1 ,
λ1,第一种波长,λ 1 , the first wavelength,
Δλ1,第一种波长λ1对应的带宽,Δλ 1 , the bandwidth corresponding to the first wavelength λ 1 ,
f1(λ),光学探测器在第一种波长λ1下的响应函数,f 1 (λ), the response function of the optical detector at the first wavelength λ 1 ,
g1(λ),第一种波长λ1对应的辐射光在光学器件的透过率,g 1 (λ), the transmittance of the radiant light corresponding to the first wavelength λ 1 in the optical device,
P(λ,T),黑体炉的响应光谱P(λ,T), the response spectrum of a blackbody furnace
τ(T),光谱传输曲线的表达式,τ(T), the expression for the spectral transmission curve,
P0(λ2,T),第二种波长λ2对应的热辐射功率,P 0 (λ 2 ,T), the thermal radiation power corresponding to the second wavelength λ 2 ,
λ2,第二种波长,λ 2 , the second wavelength,
Δλ2,第二种波长λ2对应的带宽,Δλ 2 , the bandwidth corresponding to the second wavelength λ 2 ,
f2(λ),光学探测器在第二种波长λ2下的响应函数,f 2 (λ), the response function of the optical detector at the second wavelength λ 2 ,
g2(λ),第二种波长λ2对应的辐射光在光学器件的透过率,g 2 (λ), the transmittance of the radiant light corresponding to the second wavelength λ 2 in the optical device,
T,温度;T, temperature;
r0(T),第一种波长λ1和第二种波长λ2分别对应的理论热辐射功率比值;r 0 (T), the theoretical heat radiation power ratio corresponding to the first wavelength λ 1 and the second wavelength λ 2 respectively;
步骤3:根据温度和对应的理论热辐射功率比值r0(T),进行最小二乘拟合,得到理论热辐射比值-温度曲线。Step 3: According to the temperature and the corresponding theoretical thermal radiation power ratio r 0 (T), perform least square fitting to obtain a theoretical thermal radiation ratio-temperature curve.
其中,通过最小二乘法得到附图1所示的热辐射比值-温度曲线时,参与拟合的热辐射比值以及对应的温度T数据为多个,分别是反应腔温度稳定在T1,T2,…,Tn时获得。Among them, when the thermal radiation ratio-temperature curve shown in Figure 1 is obtained by the least square method, there are multiple thermal radiation ratios and corresponding temperature T data involved in the fitting, respectively, the temperature of the reaction chamber is stable at T 1 and T 2 ,…, T n is obtained.
其中,T1,T2,…,Tn分别由黑体炉加热系统加热获得。Among them, T 1 , T 2 ,..., T n are respectively obtained by heating with a black body furnace heating system.
其中,测温范围为(Tmin,Tmax)为(400℃,1500℃),第一种波长λ1对应高温度区间(Tup,Tmax),第二种波长λ2对应低温度区间(Tmin,Tdown)。Among them, the temperature measurement range is (T min , T max ) (400°C, 1500°C), the first wavelength λ 1 corresponds to the high temperature range (T up , T max ), and the second wavelength λ 2 corresponds to the low temperature range (T min ,T down ).
其中,其特征在于,(Tmin,Tmax)为(450℃,1200℃),Tup=750℃,Tdown=800℃,λ1=940nm,λ2=1050nm。Wherein, it is characterized in that (T min , T max ) is (450°C, 1200°C), T up =750°C, T down =800°C, λ 1 =940nm, λ 2 =1050nm.
其中,实际热辐射比值r(T)的计算方法如下:Among them, the calculation method of the actual thermal radiation ratio r(T) is as follows:
其中,in,
L(λ1,T),第一种波长λ1对应的实际热辐射功率,L(λ 1 ,T), the actual thermal radiation power corresponding to the first wavelength λ 1 ,
L(λ2,T),第二种波长λ2对应的实际热辐射功率,L(λ 2 ,T), the actual thermal radiation power corresponding to the second wavelength λ 2 ,
λ1,第一种波长,λ 1 , the first wavelength,
λ2,第二种波长,λ 2 , the second wavelength,
ε1,第一种波长λ1对应的外延片表面的发射率,ε 1 , the emissivity of the epitaxial wafer surface corresponding to the first wavelength λ 1 ,
ε2,第二种波长λ2对应的外延片表面的发射率ε 2 , the emissivity of the epitaxial wafer surface corresponding to the second wavelength λ 2
T,温度。T, temperature.
其中,in,
当外延片为理想不透明、光滑、平整的表面时,When the epitaxial wafer is an ideal opaque, smooth and flat surface,
ε=1-R/ΔTR ε=1-R/ΔT R
其中,in,
ε,外延片表面的发射率,ε, the emissivity of the epiwafer surface,
R,外延片的反射率,R, the reflectivity of the epitaxial wafer,
ΔTR,反射率衰减因子,ΔT R , reflectivity attenuation factor,
当外延片为透明、单面衬底抛光的蓝宝石衬底时,When the epitaxial wafer is a transparent, single-sided polished sapphire substrate,
ε=εcarr(1-R/ΔTR)(1-Rdiff){1+R/ΔTR*Rdiff+(1-εcarr)[(Rdiff+R/ΔTR(1-Rdiff)2)]}ε=ε carr (1-R/ΔT R )(1-R diff ){1+R/ΔT R *R diff +(1-ε carr )[(R diff +R/ΔT R (1-R diff ) 2 )]}
其中,in,
ε,外延片表面的发射率,ε, the emissivity of the epiwafer surface,
Rdiff,不平滑衬底的散射率,R diff , the scattering rate of the uneven substrate,
εcarr,石墨基座的热发射率,ε carr , the thermal emissivity of the graphite base,
ΔTR,反射率衰减因子。ΔT R , reflectivity attenuation factor.
其中,计算实际热辐射比值时,温度T由MOCVD反应腔加热获得。Wherein, when calculating the actual heat radiation ratio, the temperature T is obtained by heating the MOCVD reaction chamber.
本发明提供的MOCVD设备实时测温系统自校准装置及方法能够得到双波长测温结构中第一种波长λ1和第二种波长λ2分别对应的校准系数m1和m2,从而实现了MOCVD设备实时测温系统自校准,能够保证外延片生长温度测量一致而又精确。The self-calibration device and method of the MOCVD equipment real-time temperature measurement system provided by the present invention can obtain the calibration coefficients m 1 and m 2 respectively corresponding to the first wavelength λ 1 and the second wavelength λ 2 in the dual-wavelength temperature measurement structure, thereby realizing The self-calibration of the real-time temperature measurement system of MOCVD equipment can ensure consistent and accurate measurement of the epitaxial wafer growth temperature.
通常,m1和m2两个常数的具体值,或者说,热辐射信号强度受外延片生长环境和系统参数影响较大,如探测器的角度、反应腔窗口的透射率、反应腔壁的反射信号、外延片的放置位置等。这些参数的变化会导致探测器读出的数据不一样。两种波长热辐射的强度比值与这些参数变化无关,而由热辐射光强度比值确定的外延片的温度也排除掉了这些因素的影响。Usually, the specific values of the two constants m 1 and m 2 , or the intensity of the thermal radiation signal is greatly affected by the growth environment of the epitaxial wafer and system parameters, such as the angle of the detector, the transmittance of the reaction chamber window, the thickness of the reaction chamber wall, etc. Reflection signal, placement position of epitaxial wafer, etc. The change of these parameters will cause the data read out by the detector to be different. The intensity ratio of the two wavelengths of thermal radiation has nothing to do with the changes of these parameters, and the temperature of the epitaxial wafer determined by the ratio of the intensity of the thermal radiation also excludes the influence of these factors.
此外,基于本发明提供的MOCVD设备实时测温系统自校准装置及方法,还可以对 MOCVD反应腔进行测温,在得到校准系数m1和m2后,当MOCVD反应腔处于低温温度区间时,测 量第一种波长λ1对应的实际热辐射功率L(λ1,T),根据计算MOCVD反应腔的温度;当 MOCVD反应腔1处于高温温度区间时,测量第二种波长λ2对应的实际热辐射功率L(λ2,T),根 据计算MOCVD反应腔的温度; In addition, based on the MOCVD equipment real-time temperature measurement system self-calibration device and method provided by the present invention, the temperature of the MOCVD reaction chamber can also be measured. After obtaining the calibration coefficients m1 and m2 , when the MOCVD reaction chamber is in the low temperature range, Measure the actual thermal radiation power L(λ 1 ,T) corresponding to the first wavelength λ 1 , according to Calculate the temperature of the MOCVD reaction chamber; when the MOCVD reaction chamber 1 is in the high temperature range, measure the actual thermal radiation power L(λ 2 , T) corresponding to the second wavelength λ 2 , according to Calculate the temperature of the MOCVD reaction chamber;
其中,in,
L(λ1,T),第一种波长λ1对应的实际热辐射功率,L(λ 1 ,T), the actual thermal radiation power corresponding to the first wavelength λ 1 ,
L(λ2,T),第二种波长λ2对应的实际热辐射功率,L(λ 2 ,T), the actual thermal radiation power corresponding to the second wavelength λ 2 ,
m1,第一种波长λ1对应的校准系数,m 1 , the calibration coefficient corresponding to the first wavelength λ 1 ,
m2,第二种波长λ2对应的校准系数,m 2 , the calibration coefficient corresponding to the second wavelength λ 2 ,
f1(λ),光学探测器在第一种波长λ1下的响应函数,f 1 (λ), the response function of the optical detector at the first wavelength λ 1 ,
g1(λ),第一种波长λ1对应的辐射光在光学器件的透过率,g 1 (λ), the transmittance of the radiant light corresponding to the first wavelength λ 1 in the optical device,
f2(λ),光学探测器在第二种波长λ2下的响应函数,f 2 (λ), the response function of the optical detector at the second wavelength λ 2 ,
g2(λ),第二种波长λ2对应的辐射光在光学器件的透过率,g 2 (λ), the transmittance of the radiant light corresponding to the second wavelength λ 2 in the optical device,
ε(λ),外延片表面的发射率,ε(λ), the emissivity of the epitaxial wafer surface,
T,温度;T, temperature;
λ1,第一种波长,λ 1 , the first wavelength,
Δλ1,第一种波长λ1对应的带宽,Δλ 1 , the bandwidth corresponding to the first wavelength λ 1 ,
λ2,第二种波长,λ 2 , the second wavelength,
Δλ2,第二种波长λ2对应的带宽,Δλ 2 , the bandwidth corresponding to the second wavelength λ 2 ,
k,玻尔兹曼常数,k=1.3806×10-23J/K,k, Boltzmann constant, k=1.3806×10 -23 J/K,
h为普照朗克常数,h=6.626×10-34J.s,h is the Plank constant, h=6.626×10 -34 Js,
c,光在真空中传播速度,c=3×108m/s。c, the propagation speed of light in vacuum, c=3×10 8 m/s.
此外,当Tmin<Tup<Tdown<Tmax时,就存在过渡区间,在过渡区间,可以分别根据第 一种波长λ1的条件下和第二种波长λ2的条件下,均可以测得薄膜生长反应腔的温度。采用本 发明提供的薄膜生长实时测温方法在过渡温度区间进行测量时,可以采取平滑算法得到温 度的实际值。在过渡温度区间,在第一种波长λ1的条件下可以测得低温温度区间时,薄膜生 长反应腔的温度Tlow,在第二种波长λ2的条件下可以测得高温温度区间时,薄膜生长反应腔 的温度Thigh,由于Tlow不同于Thigh,此时,可以采用平滑算法计算出薄膜生长反应腔的实际温 度。比如采用一次平滑算法计算出薄 膜生长反应腔的实际温度。从而使本发明提供的薄膜生长实时测温方法的温度适用范围更 宽。 In addition, when T min <T up <T down <T max , there is a transition zone, and in the transition zone, it can be used under the conditions of the first wavelength λ1 and the second wavelength λ2 , respectively. Measure the temperature of the film growth reaction chamber. When the film growth real-time temperature measurement method provided by the present invention is used for measurement in the transition temperature range, a smoothing algorithm can be adopted to obtain the actual value of the temperature. In the transition temperature interval, when the low-temperature temperature interval can be measured under the condition of the first wavelength λ 1 , the temperature T low of the film growth reaction chamber can be measured under the condition of the second wavelength λ 2 When the high-temperature temperature interval is measured, The temperature T high of the film growth reaction chamber, since T low is different from T high , at this time, the actual temperature of the film growth reaction chamber can be calculated by using a smoothing algorithm. For example, using a smoothing algorithm Calculate the actual temperature of the film growth reaction chamber. Therefore, the temperature application range of the film growth real-time temperature measurement method provided by the invention is wider.
采用这种方式测得的MOCVD反应腔的温度更接近其实际温度。The temperature of the MOCVD reaction chamber measured in this way is closer to its actual temperature.
参见附图3和4,用于实现本发明提供的MOCVD设备实时测温系统自校准方法的一种装置包括MOCVD反应腔1及光学探测器6,MOCVD反应腔1包括外延片4、加热室2和石墨基座3,石墨基座3用于承载外延片4,加热室2用于对石墨基座3进行加热,进而对外延片4进行加热;MOCVD反应腔1的顶部设有探测窗口5,光学探测器6通过探测窗口5向外延片4发出波长分别为λ1和λ2的探测光束,光束外延片4反射后形成的反射光束由光学探测部分探测。光学探测器6包括第一光源、第二光源、分束器、第一二向色镜10、第一滤波片11、第一探测器、第二二向色镜8、第二滤波片9、第二探测器、参考光探测器和数据采集单元(本实施例中,数据采集单元是数据采集卡)。第一光源发出波长为λ1的光束,第二光源发出波长为λ2的光束,波长为λ1的光束和波长为λ2的光束经过分束器后被分成两部分,其中一部分为参考光,另一部分为波长为λ1的探测光束和波长为λ2的探测光束,参考光进入参考光探测器,形成电信号I参。波长为λ1的探测光束、波长为λ2的探测光束经过外延片4反射后形成的反射光经过分束器12后,被第一二相色镜和第二二向色镜分隔呈两部分,其中一部分的波长为λ1,经过第一滤波片后进入第一探测器,形成电信号I反1,另一部分的波长为λ2,经过第二滤波片后进入第二探测器,形成电信号I反2。电信号I参、I反1和I反2分别被数据采集单元采集。Referring to accompanying drawings 3 and 4, a kind of device for realizing the self-calibration method of real-time temperature measurement system of MOCVD equipment provided by the present invention includes MOCVD reaction chamber 1 and optical detector 6, and MOCVD reaction chamber 1 includes epitaxial wafer 4, heating chamber 2 and the graphite base 3, the graphite base 3 is used to carry the epitaxial wafer 4, the heating chamber 2 is used to heat the graphite base 3, and then heat the epitaxial wafer 4; the top of the MOCVD reaction chamber 1 is provided with a detection window 5, The optical detector 6 emits detection beams with wavelengths λ1 and λ2 to the epitaxial wafer 4 through the detection window 5, and the reflected beam formed by the reflection of the beam epitaxial wafer 4 is detected by the optical detection part. The optical detector 6 includes a first light source, a second light source, a beam splitter, a first dichroic mirror 10, a first filter 11, a first detector, a second dichroic mirror 8, a second filter 9, A second detector, a reference light detector and a data acquisition unit (in this embodiment, the data acquisition unit is a data acquisition card). The first light source emits a light beam with a wavelength of λ1 , and the second light source emits a light beam with a wavelength of λ2 . The light beam with a wavelength of λ1 and the light beam with a wavelength of λ2 are divided into two parts after passing through a beam splitter, one of which is the reference light , the other part is the probe beam with wavelength λ1 and the probe beam with wavelength λ2 , and the reference light enters the reference light detector to form the electrical signal I parameter . The probe beam with a wavelength of λ1 and the probe beam with a wavelength of λ2 are reflected by the epitaxial wafer 4. After passing through the beam splitter 12, the reflected light is separated into two parts by the first dichroic mirror and the second dichroic mirror. , part of which has a wavelength of λ 1 , passes through the first filter and enters the first detector to form an electrical signal I 1 , and the other part of which has a wavelength of λ 2 passes through the second filter and enters the second detector to form an electrical signal signal I inverse 2 . The electrical signals Iparameter , Ianti1 and Ianti2 are respectively collected by the data acquisition unit.
其中,第一光源和第二光源发出的光的频率可调制,由于λ·f=c,其中,λ,波长,f,频率,c,光速,对频率进行控制能够实现对第一光源和第二光源发出的光的波长进行控制。Wherein, the frequency of the light emitted by the first light source and the second light source can be modulated, since λ·f=c, wherein, λ, wavelength, f, frequency, c, speed of light, controlling the frequency can realize the control of the first light source and the second light source The wavelength of the light emitted by the second light source is controlled.
其中,光学探测器6还包括光源控制电路,光源控制电路用于对第一光源和第二光源的开关进行控制。第一光源和第二光源打开时,检测到外延片4的反射光强度和热辐射强度之和;第一光源和第二光源关闭时,可检测到外延片4的热辐射强度。通过分离算法,分别得到反射光强度和热辐射强度,由此计算外延片4表面的反射率和温度。Wherein, the optical detector 6 further includes a light source control circuit, and the light source control circuit is used to control the switching of the first light source and the second light source. When the first light source and the second light source are turned on, the sum of the reflected light intensity and the heat radiation intensity of the epitaxial wafer 4 is detected; when the first light source and the second light source are turned off, the heat radiation intensity of the epitaxial wafer 4 can be detected. Through the separation algorithm, the intensity of reflected light and the intensity of thermal radiation are respectively obtained, thereby calculating the reflectivity and temperature of the surface of the epitaxial wafer 4 .
其中,光学探测器6还包括处理单元,处理单元用于对光源控制电路和数据采集单元进行处理,本实施例中,处理单元是CPU,还可以用单片机、PLC等进行替代。Wherein, the optical detector 6 also includes a processing unit, which is used to process the light source control circuit and the data acquisition unit. In this embodiment, the processing unit is a CPU, which can also be replaced by a single-chip microcomputer, PLC, etc.
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310655576.7A CN104697638B (en) | 2013-12-06 | 2013-12-06 | A kind of MOCVD device real-time temperature measurement system method for self-calibrating |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310655576.7A CN104697638B (en) | 2013-12-06 | 2013-12-06 | A kind of MOCVD device real-time temperature measurement system method for self-calibrating |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104697638A CN104697638A (en) | 2015-06-10 |
CN104697638B true CN104697638B (en) | 2018-12-25 |
Family
ID=53345003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310655576.7A Expired - Fee Related CN104697638B (en) | 2013-12-06 | 2013-12-06 | A kind of MOCVD device real-time temperature measurement system method for self-calibrating |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104697638B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111006768B (en) * | 2019-11-15 | 2021-10-22 | 江苏宜兴德融科技有限公司 | Device and method for calibrating temperature of MOCVD (Metal organic chemical vapor deposition) equipment by utilizing alloy phase change |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4052514B2 (en) * | 2003-03-31 | 2008-02-27 | 株式会社チノー | Radiation temperature measuring device |
US7632012B2 (en) * | 2005-09-01 | 2009-12-15 | Siemens Energy, Inc. | Method of measuring in situ differential emissivity and temperature |
CN101419095B (en) * | 2008-11-28 | 2010-09-08 | 田乃良 | Graybody radiation rate measuring method |
CN102455222B (en) * | 2010-10-21 | 2013-11-13 | 甘志银 | Method for measuring membrane temperature in metal organic chemical vapor deposition (MOCVD) equipment in real time and measuring device |
CN102889934B (en) * | 2011-07-18 | 2015-06-03 | 甘志银 | Method for measuring temperature in real time |
CN202903332U (en) * | 2012-10-09 | 2013-04-24 | 甘志银 | Infrared radiation temperature test calibrating device for chemical vapor deposition device |
-
2013
- 2013-12-06 CN CN201310655576.7A patent/CN104697638B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN104697638A (en) | 2015-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104697639B (en) | A kind of MOCVD device real-time temperature measurement system self-calibrating device and method | |
JP5361713B2 (en) | Method for determining wafer temperature | |
US8282272B2 (en) | Calibration substrate and method of calibration therefor | |
CN102889934B (en) | Method for measuring temperature in real time | |
US8786841B2 (en) | Thin film temperature measurement using optical absorption edge wavelength | |
TWI680281B (en) | Method for calibrating pyrometer configuration of CVD or PVD reactor | |
CN105136310B (en) | The ultraviolet temp measuring method and device of MOCVD epitaxy piece surface temperature measurement | |
TW201505113A (en) | Method for measuring temperature of film in reaction chamber | |
CN105092053B (en) | Three wavelength for MOCVD epitaxy growth are excused from a college course positive infrared monitoring method and device | |
CN105784333A (en) | High-temperature spectrum emissivity measuring method and device of infrared window | |
CN104697637B (en) | A kind of real time temperature measurement method of film growth | |
CN104697666B (en) | A kind of MOCVD reaction chambers temp measuring method | |
CN104697638B (en) | A kind of MOCVD device real-time temperature measurement system method for self-calibrating | |
US20190346308A1 (en) | Apparatus and method for online and real-time detection of temperature of epitaxial wafer | |
US5364187A (en) | System for repeatable temperature measurement using surface reflectivity | |
Haberland et al. | Real-time calibration of wafer temperature, growth rate and composition by optical in-situ techniques during AlxGa1− xAs growth in MOVPE | |
CN104697636B (en) | A kind of self calibration realtime temperature measurer of film growth | |
JP3550315B2 (en) | Equipment for processing silicon workpieces | |
CN104089704B (en) | Semiconductive thin film reaction chamber auxiliary temperature calibration steps | |
CN104726841A (en) | Assistant temperature correction device and method for semiconductor film growth reaction chamber | |
CN104089703A (en) | Auxiliary temperature calibration device for reaction cavity of semiconductor film | |
CN103411685B (en) | Utilize the method for Standard Ratio thermometer measure pyrometric scale surface temperature homogeneity | |
CN105333962B (en) | A kind of thermometry and system for correcting two waveband temperature measurement error | |
CN104180905B (en) | Infrared temperature measurement method and device for MOCVD process growth | |
CN204903016U (en) | Online infrared monitoring of multi -functional MOCVD probe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information |
Address after: 102206 Beijing City, Changping District Changping Road No. 97 Xinyuan Science Park B building room 503 Applicant after: BEI OPTICS TECHNOLOGY Co.,Ltd. Address before: 100191, Beijing, Zhichun Road, Haidian District No. 27 quantum core 402 room Applicant before: BEI OPTICS TECHNOLOGY Co.,Ltd. |
|
CB03 | Change of inventor or designer information |
Inventor after: Yan Dong Inventor after: Ma Tiezhong Inventor after: Wang Linzi Inventor after: Liu Jianpeng Inventor after: Jiao Hongda Inventor before: Yan Dong Inventor before: Li Chengmin Inventor before: Wang Linzi Inventor before: Liu Jianpeng Inventor before: Jiao Hongda Inventor before: Zhang Tang Inventor before: Ma Xiaochao |
|
COR | Change of bibliographic data | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20200403 Address after: 330096 floor 1, workshop 8, Zhongxing science and Technology Park, No. 688, aixihu North Road, Nanchang high tech Industrial Development Zone, Nanchang City, Jiangxi Province Patentee after: Nanchang angkun Semiconductor Equipment Co.,Ltd. Address before: 503, room 102206, B, Xinyuan Science Park, 97 Changping Road, Beijing, Changping District Patentee before: BEI OPTICS TECHNOLOGY Co.,Ltd. |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20230629 Address after: B701, Building 8, No. 97, Changping Road, Shahe Town, Changping District, Beijing 102200 (Changping Demonstration Park) Patentee after: Beijing Airui Haotai Information Technology Co.,Ltd. Address before: 330096 1st floor, No.8 workshop, Zhongxing Science Park, no.688 aixihu North Road, Nanchang hi tech Industrial Development Zone, Nanchang City, Jiangxi Province Patentee before: Nanchang angkun Semiconductor Equipment Co.,Ltd. |
|
TR01 | Transfer of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20181225 |
|
CF01 | Termination of patent right due to non-payment of annual fee |