[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN104574221B9 - A kind of photovoltaic plant running status discrimination method based on loss electricity characteristic parameter - Google Patents

A kind of photovoltaic plant running status discrimination method based on loss electricity characteristic parameter Download PDF

Info

Publication number
CN104574221B9
CN104574221B9 CN201510049730.5A CN201510049730A CN104574221B9 CN 104574221 B9 CN104574221 B9 CN 104574221B9 CN 201510049730 A CN201510049730 A CN 201510049730A CN 104574221 B9 CN104574221 B9 CN 104574221B9
Authority
CN
China
Prior art keywords
mrow
photovoltaic power
power generation
generation unit
operating state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510049730.5A
Other languages
Chinese (zh)
Other versions
CN104574221A (en
CN104574221B (en
Inventor
王飞
李康平
米增强
梅华威
张雷
梁玉杰
白雪天
李玉笑
孙国腾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Yingli Group Co Ltd
Original Assignee
North China Electric Power University
Yingli Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University, Yingli Group Co Ltd filed Critical North China Electric Power University
Priority to CN201510049730.5A priority Critical patent/CN104574221B9/en
Publication of CN104574221A publication Critical patent/CN104574221A/en
Application granted granted Critical
Publication of CN104574221B publication Critical patent/CN104574221B/en
Publication of CN104574221B9 publication Critical patent/CN104574221B9/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种基于损失电量特征参数的光伏电站运行状态辨识方法,所述方法首先利用光伏电站能量管理系统(EMS)的历史数据计算得到光伏电站各发电单元的损失电量信息,然后通过支持向量机方法建立各光伏发电单元的运行状态辨识模型,拟合损失电量信息特征参数与运行状态之间的映射关系,最后利用这些运行状态辨识模型对各光伏发电单元的运行状态进行识别,进而得到整个光伏电站的运行状态集合。本发明可减少光伏发电单元监测的工作量,帮助运行人员及时发现组件和系统故障,为光伏电站的运行和维护提供了重要的科学依据。

A method for identifying the operating state of a photovoltaic power station based on the characteristic parameters of the power loss. The method first uses the historical data of the energy management system (EMS) of the photovoltaic power station to calculate the power loss information of each power generation unit of the photovoltaic power station, and then establishes it through the support vector machine method. The operating state identification model of each photovoltaic power generation unit fits the mapping relationship between the characteristic parameters of the power loss information and the operating state, and finally uses these operating state identification models to identify the operating state of each photovoltaic power generation unit, and then obtains the entire photovoltaic power plant A collection of running states. The invention can reduce the monitoring workload of the photovoltaic power generation unit, help operators to discover component and system faults in time, and provide important scientific basis for the operation and maintenance of the photovoltaic power station.

Description

一种基于损失电量特征参数的光伏电站运行状态辨识方法A photovoltaic power plant operating state identification method based on the characteristic parameters of power loss

技术领域 technical field

本发明涉及一种用于准确辨识光伏电站运行状态的方法,属于发电技术领 域。 The invention relates to a method for accurately identifying the operating state of a photovoltaic power station, which belongs to the field of power generation technology area.

背景技术 Background technique

光伏发电作为可再生能源的重要组成部分近年来得到了快速发展,并网型 光伏电站是目前光伏发电的主要利用形式。一般地,一个光伏电站由若干个光伏 发电单元组成,一个光伏发电单元又由若干个光伏组件串并联而成。在实际运行 过程中,除受到外界环境因素影响外,光伏电站的发电效率也与光伏发电单元、 逆变器的运行状态有着密切关系。受到逆变器故障、发电单元故障及单元表面 积灰等因素的影响,光伏电站的实际出力总是小于其理论出力,这部分本可以 发出却未发出的电量定义为损失电量。 As an important part of renewable energy, photovoltaic power generation has developed rapidly in recent years, and grid-connected Photovoltaic power plants are currently the main form of utilization of photovoltaic power generation. Generally, a photovoltaic power station consists of several photovoltaic A photovoltaic power generation unit is composed of several photovoltaic modules connected in series and parallel. in actual operation In the process, in addition to being affected by external environmental factors, the power generation efficiency of photovoltaic power plants is also related to photovoltaic power generation units, The operating status of the inverter is closely related. Inverter faults, generator unit faults and unit surface Affected by factors such as dust accumulation, the actual output of photovoltaic power plants is always less than its theoretical output, which could have been The electricity delivered but not delivered is defined as the lost electricity.

光伏电站的运行状态主要指的是逆变器及光伏发电单元的运行状态集合。 对于光伏电站的逆变器来说,运行状态只有两种,即正常态和故障态。而对于 光伏电站的光伏发电单元来说,运行状态一般分为如下几种:①正常态,即发 电单元完好无损且单元表面清洁无积灰。②发电单元出现故障而单元表面清洁 无积灰。③发电单元完好无损而单元表面污染有积灰。④发电单元出现故障且 单元表面污染有积灰。科学准确地对光伏电站进行状态辨识,不仅可帮助电站 人员及时发现并处理故障,防止故障进一步蔓延而造成更加严重的事故,将电 站的损失降到最小,而且有利于实现光伏电站的稳定、可靠运行,对促进光伏 发电的规模化发展具有重要意义。 The running state of the photovoltaic power station mainly refers to the set of running states of the inverter and the photovoltaic power generation unit. For the inverter of a photovoltaic power station, there are only two operating states, namely normal state and fault state. and for For the photovoltaic power generation unit of the photovoltaic power station, the operating status is generally divided into the following types: ① Normal state, that is, power generation The electrical unit is intact and the surface of the unit is clean and free of dust. ②The power generation unit fails and the surface of the unit is clean No dust accumulation. ③The power generation unit is intact but the surface of the unit is polluted and has dust accumulation. ④The power generation unit fails and The surface of the unit is contaminated with dust. Scientifically and accurately identify the status of photovoltaic power plants, not only can help power plants The personnel can detect and deal with the fault in time, prevent the fault from further spreading and cause more serious accidents, and put the power The loss of the station is minimized, and it is conducive to the stable and reliable operation of the photovoltaic power station, which is conducive to the promotion of photovoltaic The large-scale development of power generation is of great significance.

目前,光伏电站大都采用人工巡检的方式对分散的光伏发电单元进行监测, 这种传统监测方式不仅工作量巨大且实时性很差,难以及时发现系统故障,无 法保证光伏电站的稳定、可靠运行。 At present, most photovoltaic power plants use manual inspection to monitor scattered photovoltaic power generation units. This traditional monitoring method not only has a huge workload and poor real-time performance, it is difficult to detect system failures in time, and there is no This method ensures the stable and reliable operation of photovoltaic power plants.

发明内容 Contents of the invention

本发明的目的在于针对现有技术之弊端,提供一种基于损失电量特征参数 的光伏电站运行状态辨识方法,以及时发现系统故障,为光伏电站的运营维护 提供科学依据。 The object of the present invention is to provide a method based on the characteristic parameter The operating status identification method of the photovoltaic power station can detect system faults in time, and provide a comprehensive solution for the operation and maintenance of photovoltaic power stations. Provide a scientific basis.

本发明所述问题是以下述技术方案实现的: Problem described in the present invention is realized with following technical scheme:

一种基于损失电量特征参数的光伏电站运行状态辨识方法,其特征是,所 述方法首先利用光伏电站能量管理系统(Energy Management System,EMS)的 历史数据计算得到光伏电站各发电单元的损失电量信息,然后通过支持向量机 (Support Vector Machine,SVM)方法建立各发电单元的运行状态辨识模型,拟合 该单元损失电量特征参数与运行状态之间的映射关系,最后利用这些运行状态 辨识模型对各发电单元的运行状态进行识别,进而得到整个光伏电站的运行状 态集合,所述方法包括以下步骤: A method for identifying the operating state of a photovoltaic power station based on the characteristic parameters of power loss, which is characterized in that the The above method first uses the energy management system (Energy Management System, EMS) of the photovoltaic power station The historical data is calculated to obtain the power loss information of each power generation unit of the photovoltaic power station, and then through the support vector machine (Support Vector Machine, SVM) method establishes the operating state identification model of each power generation unit, and fits The mapping relationship between the characteristic parameters of the unit’s power loss and the operating state, and finally use these operating states The identification model identifies the operating status of each power generation unit, and then obtains the operating status of the entire photovoltaic power station. State collection, described method comprises the following steps:

①计算损失系数 ①Calculation of loss coefficient

a.对于每个光伏电站,按照气象条件划分成若干个区,在每个区安装一个 标准组件;所述标准组件的安装方式、规格型号及物理特性均与同区内其他组 件相同;此外,电站工作人员需经常对标准组件进行维护,确保其表面清洁且 工作正常,从而保证其出力始终为理论出力,并将其功率出力采集记录到EMS 系统中;通过发电单元的归一化出力(即将发电单元的出力换算成与标准光伏 组件个数相同下的出力)与同区内标准光伏组件出力之比是否大于给定的阈值 来判断该单元的出力是否为理论出力; a. For each photovoltaic power station, divide it into several areas according to the meteorological conditions, and install a Standard components; the installation methods, specifications, models and physical characteristics of the standard components are different from those of other groups in the same area. components are the same; in addition, power plant staff need to maintain the standard components frequently to ensure that their surfaces are clean and Work normally, so as to ensure that its output is always the theoretical output, and record its power output collection to EMS In the system; through the normalized output of the power generation unit (that is, the output of the power generation unit is converted into the standard photovoltaic Whether the ratio of the output under the same number of modules) to the output of standard photovoltaic modules in the same area is greater than a given threshold To judge whether the output of the unit is theoretical output;

所述气象条件是指太阳辐照度、环境温度、组件温度、风速、风向、气压、 湿度在内的气象环境数据; The meteorological conditions refer to solar irradiance, ambient temperature, component temperature, wind speed, wind direction, air pressure, Meteorological environment data including humidity;

其中,判定阈值一般取为0.8,其调整范围为0.7-0.9,调整的原则是:若 判定阈值为0.8时筛选得到的理论出力数据较少,不能使b中的理论出力计算 模型得到充分训练,则适当减小该判定阈值,反之则适当增大该判定阈值; Among them, the judgment threshold is generally taken as 0.8, and its adjustment range is 0.7-0.9. The principle of adjustment is: if When the judgment threshold is 0.8, the theoretical output data screened is less, which cannot make the theoretical output calculation in b If the model is fully trained, the decision threshold should be appropriately reduced, otherwise, the decision threshold should be appropriately increased;

b、通过EMS系统的历史数据库获取各发电单元包括太阳辐照度、环境温度、 组件温度、风速、风向、气压、湿度等在内的气象环境数据,与各发电单元输 出功率数据。通过a中所述方法,从历史数据中筛选出理论出力建模所需的功 率数据。以筛选得到的功率数据作为输出,对应时刻的气象环境数据作为输入, 利用统计建模方法建立反映发电单元输入变量与输出功率之间关系映射的数学 模型,该模型即为理论出力计算模型。 b. Obtain each power generation unit through the historical database of the EMS system, including solar irradiance, ambient temperature, Meteorological environment data, including module temperature, wind speed, wind direction, air pressure, humidity, etc., are communicated with each power generation unit output power data. Through the method described in a, the work required for theoretical output modeling is screened out from historical data rate data. With the filtered power data as the output and the meteorological environment data at the corresponding time as the input, Using statistical modeling methods to establish a mathematical mapping that reflects the relationship between input variables and output power of a power generation unit model, which is the theoretical output calculation model.

c.以光伏电站实时运行条件信息作为输入、包括太阳辐照度、环境温度、 组件温度、风速、风向、气压和湿度,利用理论出力的计算模型计算得到每一 采样时刻各光伏发电单元的理论出力数值; c. Taking the real-time operating condition information of photovoltaic power plants as input, including solar irradiance, ambient temperature, Component temperature, wind speed, wind direction, air pressure and humidity are calculated using the calculation model of theoretical output to obtain each The theoretical output value of each photovoltaic power generation unit at the sampling time;

d.从EMS系统获取各光伏发电单元在每一采样时刻的实际出力并计算理论 出力与实际出力值之差,然后分别将每个光伏发电单元在某一指定时间段内的 各采样点的理论出力与实际出力值之差乘以采样周期后累加,得到每个光伏发 电单元在该时间段内的损失电量,同时将每个光伏发电单元在该时间段内各采 样点的理论出力乘以采样周期后累加,得到每个光伏发电单元在该时间段内的 理论电量; d. Obtain the actual output of each photovoltaic power generation unit at each sampling moment from the EMS system and calculate the theoretical The difference between the output and the actual output value, and then respectively calculate the output value of each photovoltaic power generation unit in a specified period of time The difference between the theoretical output and the actual output value of each sampling point is multiplied by the sampling period and accumulated to obtain the The power loss of the electric unit during this time period, and at the same time, each photovoltaic power generation unit takes The theoretical output of the sample point is multiplied by the sampling period and then accumulated to obtain the output of each photovoltaic power generation unit in this period Theoretical power;

e.用每个光伏发电单元在该时间段的损失电量分别除以对应的理论电量, 得到每个光伏发电单元在该时间段的损失系数; e. Divide the power loss of each photovoltaic power generation unit in the time period by the corresponding theoretical power, Obtain the loss coefficient of each photovoltaic power generation unit in this time period;

②确定光伏组件运行状态辨识参数指标集 ②Determine the identification parameter index set of photovoltaic module operating status

表征光伏发电单元运行状态的特征参数包括常规特征参数和自定义特征参 数: The characteristic parameters that characterize the operating state of photovoltaic power generation units include conventional characteristic parameters and custom characteristic parameters number:

a、常规特征参数 a. Conventional characteristic parameters

表征光伏发电单元运行状态变化规律的常规特征参数包括:光伏发电单元 在指定时间段内的损失系数的最大值、最小值、平均值、和方差; The conventional characteristic parameters that characterize the change law of the operating state of the photovoltaic power generation unit include: photovoltaic power generation unit The maximum value, minimum value, average value, and variance of the loss coefficient within the specified time period;

b、自定义特征参数 b. Custom feature parameters

表征光伏发电单元运行状态信息的自定义特征参数包括相关系数和离散 差, The self-defined characteristic parameters that characterize the operating state information of photovoltaic power generation units include correlation coefficient and discrete Difference,

一个光伏发电单元在某指定时间段内的相关系数rQq定义为: The correlation coefficient r Qq of a photovoltaic power generation unit in a specified period of time is defined as:

其中,Qi为第i个采样周期的理论电量,即第i个采样点的理论出力与采样 周期的乘积;qi为第i个采样周期的损失电量,即第i个采样点的理论出力与实 际出力值之差与采样周期的乘积,N为采样点的个数; Among them, Q i is the theoretical power of the i-th sampling period, that is, the product of the theoretical output of the i-th sampling point and the sampling period; q i is the power loss of the i-th sampling period, that is, the theoretical output of the i-th sampling point The difference between the actual output value and the product of the sampling period, N is the number of sampling points;

离散差LS定义为: The discrete difference LS is defined as:

③建立支持向量机运行状态辨识模型 ③Establish a support vector machine operating state identification model

将步骤②确定的光伏发电单元运行状态识别参数指标集中的变量作为支持 向量机模型的输入,光伏发电单元的运行状态信息作为支持向量机模型的理想 输出,对每一光伏发电单元建立基于支持向量机的运行状态辨识模型; Use the variables in the identification parameter set of photovoltaic power generation unit operating status determined in step ② as support The input of the vector machine model, the operating status information of the photovoltaic power generation unit is used as the ideal support vector machine model Output, establish a support vector machine-based operating state identification model for each photovoltaic power generation unit;

④训练和验证支持向量机运行状态辨识模型 ④Training and verification of the support vector machine operating state identification model

针对已知光伏发电单元运行状态的历史数据,分别计算运行状态辨识参数 指标集中的各项特征参数,然后选择其中的一部分数据作为支持向量机辨识模 型的训练样本,训练该模型,其余部分作为验证数据,对模型的辨识效果进行 校验; According to the historical data of the operating state of the known photovoltaic power generation unit, the operating state identification parameters are calculated separately Each feature parameter in the index set, and then select a part of the data as the support vector machine identification model Type training samples to train the model, and the rest as verification data to check the identification effect of the model check;

⑤辨识光伏电站的运行状态 ⑤ Identify the operating status of the photovoltaic power station

针对待识别的时间段Δt,分别计算每个光伏发电单元的运行状态辨识参数 指标集中的各项特征参数,然后将上述参数序列输入步骤④训练好的支持向量 机辨识模型,得到该时间段内各个发电单元的运行状态,从而得到整个光伏电 站的运行状态集合。 For the time period Δt to be identified, calculate the operating state identification parameters of each photovoltaic power generation unit Each feature parameter in the index set, and then input the above parameter sequence into the trained support vector in step ④ machine identification model to obtain the operating status of each power generation unit within the time period, so as to obtain the A collection of operating states for a station.

上述基于损失电量特征参数的运行状态辨识方法,所述光伏电站的运行状 态还包括逆变器的运行状态,逆变器的运行状态通过EMS系统读取。 In the above operating state identification method based on the characteristic parameters of power loss, the operating state of the photovoltaic power station The state also includes the running state of the inverter, and the running state of the inverter is read through the EMS system.

上述基于损失电量特征参数的运行状态辨识方法,在支持向量机运行状态 辨识模型的训练和验证过程以及实际光伏电站运行状态辨识过程中,应对计算 得到的运行状态辨识参数指标集中的损失电量特征参数进行归一化处理。 The above-mentioned operating state identification method based on the characteristic parameters of the power loss, in the operating state of the support vector machine During the training and verification process of the identification model and the identification process of the actual photovoltaic power plant operating status, the calculation The characteristic parameters of power loss in the obtained operating state identification parameter index set are normalized.

上述基于损失电量特征参数的光伏电站运行状态辨识方法,为了提高光伏 电站运行状态辨识结果的准确性,需对光伏电站各个发电单元的理论出力计算 模型与运行状态辨识模型进行在线更新。 The above-mentioned identification method for the operating state of photovoltaic power plants based on the characteristic parameters of power loss The accuracy of the identification results of the operating status of the power station requires the calculation of the theoretical output of each power generation unit of the photovoltaic power station The model and the operating state identification model are updated online.

本发明利用损失电量特征参数对光伏电站的运行状态进行在线识别,大大 减少了光伏发电单元的监测工作量,而且可帮助值班人员及时发现并系统故障, 为电站的运行和维护提供了科学重要的依据。 The present invention utilizes the characteristic parameters of the power loss to carry out online identification of the operating state of the photovoltaic power station, greatly It reduces the monitoring workload of the photovoltaic power generation unit, and can help the on-duty personnel to detect and fix system failures in time, It provides an important scientific basis for the operation and maintenance of the power station.

附图说明 Description of drawings

下面结合附图对本发明作进一步详述。 The present invention will be described in further detail below in conjunction with the accompanying drawings.

图1为损失电量的计算步骤流程图; Fig. 1 is the flow chart of the calculation steps of the power loss;

图2为运行状态辨识流程图。 Figure 2 is a flow chart of running state identification.

文中各符号表示为:rQq为相关系数;LS为离散差;Qi为第i个采样周期的 理论电量;qi为第i个采样周期的损失电量;N为采样点的个数;为理论电量 均值;为损失电量均值。 The symbols in this paper are expressed as: r Qq is the correlation coefficient; LS is the discrete difference; Q i is the theoretical power of the i sampling period; q i is the loss of power in the i sampling period; N is the number of sampling points; is the theoretical average value of electricity; is the average value of power loss.

具体实施方式 detailed description

以下结合附图对本发明的原理和特征进行描述,所举实例只是用于解释本 发明,并非用于限定本发明的保护范围。 The principles and features of the present invention are described below in conjunction with the accompanying drawings, and examples are only used to explain the present invention. Invention is not intended to limit the protection scope of the present invention.

以某光伏电站中某区内5个光伏发电单元(依次编号为#1-#5)作为研究对 象,通过EMS系统获取其2011年的历史运行数据,数据采样间隔为1分钟。分 别以2011年9月3日10:00-14:00一号发电单元(#1),2011年10月18日 13:00-16:00五号发电单元(#5),2011年11月7日9:13-11:00二号发电单元 (#2)以及2011年12月24日12:00-14:00四号发电单元(#4)的实际运行状 态为测试样本集。 Taking 5 photovoltaic power generation units (numbered #1-#5) in a certain area in a photovoltaic power station as the research object For elephants, the historical operation data in 2011 is obtained through the EMS system, and the data sampling interval is 1 minute. Minute Don't take it as an example on September 3, 2011 10:00-14:00 Generation Unit One (#1), October 18, 2011 13:00-16:00 Generation Unit 5 (#5), Generation Unit 2 on November 7, 2011 9:13-11:00 (#2) and the actual operation status of No. The state is a test sample set.

所述辨识方法包括以下步骤: The identification method includes the following steps:

步骤1:从EMS系统中获取该区标准组件前8个月的输出功率数据。若相 同时刻其他光伏发电单元的归一化出力与同区内标准组件单元出力之比大于所 设定的判定阈值,则认为是理论出力。以此筛选出理论出力建模所需的功率数 据。判定阈值一般取为0.8,其调整范围为0.7-0.9,调整的原则是:计算当判 定阈值为0.8时,筛选得到理论出力数据,若得到的理论出力数据较少,不能 使SVM理论出力计算模型得到充分训练,则可适当减小该判定阈值,反之则适 当增大该判定阈值。 Step 1: Obtain the output power data of standard modules in the area for the first 8 months from the EMS system. Ruoxiang At the same time, the ratio of the normalized output of other photovoltaic power generation units to the output of standard module units in the same area is greater than the specified The set judgment threshold is considered to be theoretical contribution. In this way, the power numbers required for theoretical output modeling are screened out according to. The judgment threshold is generally taken as 0.8, and its adjustment range is 0.7-0.9. The principle of adjustment is: calculation should be judged When the threshold is set to 0.8, the theoretical output data is obtained by screening. If the obtained theoretical output data is less, it cannot If the SVM theoretical output calculation model is fully trained, the judgment threshold can be appropriately reduced, and vice versa. When increasing the decision threshold.

步骤2:利用上述方法筛选出5个发电单元的功率出力,将其作为SVM的 输出,将相应时刻每个发电单元的辐照度、环境温度、相对湿度、风速、气压 等气象环境参数作为SVM的输入,以前8个月的数据作为训练样本,分别建立 理论出力的SVM计算模型。 Step 2: Use the above method to screen out the power output of 5 power generation units, and use it as the SVM Output, the irradiance, ambient temperature, relative humidity, wind speed, air pressure of each power generation unit at the corresponding time Meteorological and environmental parameters are used as the input of SVM, and the data of the previous 8 months are used as training samples to establish SVM calculation model of theoretical output.

步骤3:分别计算各光伏发电单元的损失电量和理论电量,用损失电量分 别除以理论电量,得到各光伏发电单元的损失系数λ12,...λnStep 3: Calculate the power loss and theoretical power of each photovoltaic power generation unit respectively, and divide the power loss by the theoretical power respectively to obtain the loss coefficients λ 1 , λ 2 ,...λ n of each photovoltaic power generation unit.

步骤4:根据该光伏电站的实际情况选择合适的损失电量特征参数,确定 运行状态辨识参数指标集。这里选择{损失系数最大值,损失系数平均值,损 失系数最小值,损失系数方差,相关系数,离散差},共6维变量,作为运行状 态辨识参数指标集。 Step 4: Select the appropriate characteristic parameters of power loss according to the actual situation of the photovoltaic power plant, and determine Running state identification parameter index set. Here select {max value of loss coefficient, average value of loss coefficient, loss The minimum value of the loss coefficient, the variance of the loss coefficient, the correlation coefficient, and the discrete difference}, a total of 6 dimensional variables, as the operating state State identification parameter index set.

步骤5:将运行状态辨识参数指标集中的变量作为支持向量机模型的输入, 信息完备的运行状态信息作为模型的理想输出,建立支持向量机运行状态辨识 模型。需要辨识的运行状态主要是光伏组件的4类运行状态(①正常态,即发 电单元完好无损且单元表面清洁无积灰。②发电单元出现故障而单元表面清洁 无积灰。③发电单元完好无损而单元表面污染有积灰。④发电单元出现故障且 单元表面污染有积灰)。作为辨识模型输出使用时,分别用整数1、2、3、4代 表它们。 Step 5: Take the variables in the parameter index set of operating state identification as the input of the support vector machine model, The operating state information with complete information is used as the ideal output of the model, and the operating state identification of support vector machine is established Model. The operating states that need to be identified are mainly four types of operating states of photovoltaic modules (①normal state, namely The electrical unit is intact and the surface of the unit is clean and free of dust. ②The power generation unit fails and the surface of the unit is clean No dust accumulation. ③The power generation unit is intact but the surface of the unit is polluted and has dust accumulation. ④The power generation unit fails and The surface of the unit is contaminated with dust). When used as the output of the identification model, use integers 1, 2, 3, and 4 to represent table them.

步骤6:将前8个月运行信息完整的历史数据数作为支持向量机辨识模型 的训练样本,训练该模型。分别计算运行状态信息完整的历史数据对应运行状 态辨识参数指标集的各损失电量特征参数,并对其进行归一化处理,用于支持 向量机辨识模型的训练。 Step 6: Use the historical data with complete operating information in the first 8 months as the support vector machine identification model training samples to train the model. Separately calculate the running status information and complete historical data corresponding to the running status The characteristic parameters of each power loss in the state identification parameter index set are normalized to support Training of the vector machine identification model.

步骤7:读取9月3日10:00-14:00时间段内一号发电单元逆变器的运行 状态,结果显示正常。同时分别计算该时间段内1号光伏组件运行状态类型辨 识参数指标集的各损失电量特征参数,实际计算结果:#1-#5这5个发电单元 损失系数分别为0.78,0.14,0.11,0.08,0.16,损失系数的最大值为0.78,最小 值为0.08,平均值为0.254,方差为0.0874,各发电单元的相关系数分别为0.26, 0.79,0.82,0.88,0.83,离散差分别为3.55,11.49,18.98,15.65,16.44。进 行归一化处理后将其输入支持向量机辨识模型,SVM输出2,转换为对应时间段 内光伏发电单元的运行状态为②发电单元出现故障而单元表面清洁无积灰,经 实际检查测试后发现确为发电单元出现故障而表面处于清洁状态,识别结果正 确。 Step 7: Read the operation of the inverter of power generation unit No. 1 during the time period of 10:00-14:00 on September 3 Status, the result shows normal. At the same time, calculate the operating state type identification of No. 1 photovoltaic module in this period of time. The characteristic parameters of each power loss in the knowledge parameter index set, the actual calculation results: #1-#5 these 5 power generation units The loss coefficients are 0.78, 0.14, 0.11, 0.08, 0.16 respectively, the maximum value of the loss coefficient is 0.78, and the minimum The value is 0.08, the average value is 0.254, the variance is 0.0874, and the correlation coefficients of each power generation unit are 0.26, 0.79, 0.82, 0.88, 0.83, the discrete difference is 3.55, 11.49, 18.98, 15.65, 16.44 respectively. Enter After performing normalization processing, input it into the support vector machine identification model, and the SVM outputs 2, which is converted into the corresponding time period The operating status of the internal photovoltaic power generation unit is ② the power generation unit fails and the surface of the unit is clean and free of dust. After the actual inspection and test, it was found that the power generation unit was indeed faulty and the surface was in a clean state, and the identification result was correct. indeed.

步骤8:同理分别计算测试样本集中其他样本 Step 8: Calculate other samples in the test sample set separately in the same way

对于2011年10月18日13:00-16:00五号发电单元,逆变器处于正常态, #1-#5这5个发电单元损失系数分别为0.1,0.12,0.11,0.15,0.12,损失系数的 最大值为0.15,最小值为0.1,平均值为0.12,方差为0.00035,各发电单元 的相关系数分别为0.85,0.82,0.82,0.88,0.83,离散差分别为12.55,13.69, 15.98,18.65,16.44。进行归一化处理后将其输入支持向量机辨识模型,SVM输 出1,转换为对应时间段内光伏发电单元的运行状态为①正常态,即发电单元 完好无损且单元表面清洁无积灰,经实际测试,发电单元确实处于正常状态, 识别结果正确。 For power generation unit No. 5 from 13:00 to 16:00 on October 18, 2011, the inverter was in normal state, The loss coefficients of the 5 generating units #1-#5 are 0.1, 0.12, 0.11, 0.15, 0.12 respectively. The maximum value is 0.15, the minimum value is 0.1, the average value is 0.12, and the variance is 0.00035. Each power generation unit The correlation coefficients are 0.85, 0.82, 0.82, 0.88, 0.83, and the dispersion differences are 12.55, 13.69, 15.98, 18.65, 16.44. After normalization processing, it is input into the support vector machine identification model, and the SVM input Out of 1, it is converted into the operating state of the photovoltaic power generation unit in the corresponding period of time is ① normal state, that is, the power generation unit It is intact and the surface of the unit is clean and free of dust. After actual testing, the power generation unit is indeed in a normal state. The recognition result is correct.

对于2011年11月7日9:13-11:00二号发电单元,逆变器处于故障状态, 光伏发电单元处于正常态,经测试识别结果正确。 For power generation unit No. 2 from 9:13 to 11:00 on November 7, 2011, the inverter was in a fault state, The photovoltaic power generation unit is in a normal state, and the identification result of the test is correct.

对于2011年12月24日12:00-14:00四号发电单元(#4),逆变器处于正 常状态,#1-#5这5个发电单元损失系数分别为0.45,0.4,0.42,0.46,0.39,损 失系数的最大值为0.46,最小值为0.39,平均值为0.424,方差为0.00093, 各发电单元的相关系数分别为0.65,0.69,0.67,0.62,0.7,离散差分别为6.66, 8.89,7.58,6.32,9.56。进行归一化处理后将其输入支持向量机辨识模型,SVM 输出3,转换为对应时间段内光伏发电单元的运行状态为③发电单元完好无损 而单元表面污染有积灰,经实际测试,识别结果正确。 For generating unit No. 4 (#4) from 12:00 to 14:00 on December 24, 2011, the inverter was in positive In the normal state, the loss coefficients of the five generating units #1-#5 are 0.45, 0.4, 0.42, 0.46, and 0.39 respectively. The maximum value of the loss coefficient is 0.46, the minimum value is 0.39, the average value is 0.424, and the variance is 0.00093. The correlation coefficients of each power generation unit are 0.65, 0.69, 0.67, 0.62, 0.7, and the dispersion difference is 6.66, 8.89, 7.58, 6.32, 9.56. After normalization processing, it is input into the support vector machine identification model, SVM Output 3, converted to the operating state of the photovoltaic power generation unit in the corresponding time period is ③The power generation unit is intact However, the surface of the unit is contaminated with dust, and the identification result is correct after actual testing.

上述具体实施方案仅为本发明的优选实施方案,并不用于限制本发明。任 何熟悉本领域的技术人员可轻易想到的变化和替换方法,均应涵盖在本发明的 保护范围之内。 The above specific embodiments are only preferred embodiments of the present invention, and are not intended to limit the present invention. appoint Any changes and replacement methods that can be easily imagined by those skilled in the art should be covered by the scope of the present invention. within the scope of protection.

Claims (4)

1.一种基于损失电量特征参数的光伏电站运行状态辨识方法,其特征是, 所述方法首先利用光伏电站能量管理系统EMS的历史数据计算得到电站各发 电单元的损失电量信息,然后通过支持向量机方法建立各发电单元的运行状态 辨识模型,拟合该单元损失电量特征参数与运行状态之间的映射关系,最后利 用这些运行状态辨识模型对各发电单元的运行状态进行识别,进而得到整个光 伏电站的运行状态集合,所述方法包括以下步骤: 1. A photovoltaic power plant operating state identification method based on the characteristic parameters of the loss of electricity, characterized in that, The method first uses the historical data of the energy management system EMS of the photovoltaic power station to calculate and obtain the The power loss information of the power unit, and then establish the operating status of each power generation unit through the support vector machine method Identify the model, fit the mapping relationship between the characteristic parameters of the unit’s power loss and the operating state, and finally use Use these operating state identification models to identify the operating state of each power generation unit, and then get the entire light A set of operating states of a volt power station, the method may further comprise the steps of: ①计算损失系数 ①Calculation of loss coefficient a、对于每个光伏电站,按照气象条件划分成若干个区,在每个区安装一个 标准组件,并将其功率出力采集记录到EMS系统中;通过各个发电单元的归一 化出力与同区内标准光伏组件出力之比是否大于设定的阈值来判断该单元的出 力是否为理论出力; a. For each photovoltaic power station, divide it into several areas according to the meteorological conditions, and install a Standard components, and record their power output collection into the EMS system; through the normalization of each power generation unit The output of the unit is judged by whether the ratio of the output of the photovoltaic module to the output of the standard photovoltaic module in the same area is greater than the set threshold. Whether the force is a theoretical effort; b、通过EMS系统的历史数据库获取各发电单元包括太阳辐照度、环境温度、 组件温度、风速、风向、气压、湿度在内的气象环境数据与各发电单元的输出 功率数据;通过步骤a中所述方法,从历史数据中筛选出理论出力建模所需的 功率数据;以筛选得到的功率数据作为输出,对应时刻的气象环境数据作为输 入,利用统计建模方法建立反映发电单元输入变量与输出功率之间关系映射的 数学模型,该模型即为理论出力计算模型; b. Obtain each power generation unit through the historical database of the EMS system, including solar irradiance, ambient temperature, Meteorological environmental data including module temperature, wind speed, wind direction, air pressure, and humidity, and the output of each power generation unit Power data; through the method described in step a, filter out the theoretical output required for modeling the theoretical output from the historical data Power data; the filtered power data is used as the output, and the meteorological environment data at the corresponding time is used as the output input, using the statistical modeling method to establish a map that reflects the relationship between the input variables and output power of the power generation unit Mathematical model, which is the theoretical output calculation model; c、以光伏电站实时运行条件信息作为输入,利用理论出力的计算模型计算 得到每一采样时刻各光伏发电单元的理论出力数值; c. Taking the real-time operating condition information of photovoltaic power plants as input, and using the calculation model of theoretical output to calculate Obtain the theoretical output value of each photovoltaic power generation unit at each sampling moment; d、从EMS系统获取各光伏发电单元在每一采样时刻的实际出力并计算理论 出力与实际出力值之差,然后分别将每个光伏发电单元在某一指定时间段内的 各采样点的理论出力与实际出力值之差乘以采样周期后累加,得到每个光伏发 电单元在该时间段的损失电量,同时将每个光伏发电单元在该时间段内各采样 点的理论出力乘以采样周期后累加,得到每个光伏发电单元在该时间段内的理 论电量; d. Obtain the actual output of each photovoltaic power generation unit at each sampling moment from the EMS system and calculate the theoretical The difference between the output and the actual output value, and then respectively calculate the output value of each photovoltaic power generation unit in a specified period of time The difference between the theoretical output and the actual output value of each sampling point is multiplied by the sampling period and accumulated to obtain the The power loss of the electric unit in this time period, and each photovoltaic power generation unit is sampled in this time period The theoretical output of each point is multiplied by the sampling period and accumulated to obtain the theoretical output of each photovoltaic power generation unit in this period of time. On electricity; e、用每个光伏发电单元在该时间段的损失电量分别除以对应的理论电量, 得到每个光伏发电单元在该时间段的损失系数; e. Divide the power loss of each photovoltaic power generation unit in the time period by the corresponding theoretical power, Obtain the loss coefficient of each photovoltaic power generation unit in this time period; ②确定光伏发电单元的运行状态辨识参数指标集 ②Determine the identification parameter index set of the operating state of the photovoltaic power generation unit 表征光伏发电单元运行状态的特征参数包括常规特征参数和自定义特征参 数: The characteristic parameters that characterize the operating state of photovoltaic power generation units include conventional characteristic parameters and custom characteristic parameters number: a、常规特征参数 a. Conventional characteristic parameters 表征光伏发电单元运行状态变化规律的常规特征参数包括:光伏发电单元 在指定时间段内的损失系数的最大值、最小值、平均值、方差和累计值; The conventional characteristic parameters that characterize the change law of the operating state of the photovoltaic power generation unit include: photovoltaic power generation unit The maximum value, minimum value, average value, variance and cumulative value of the loss coefficient within the specified time period; b、定义特征参数 b. Define characteristic parameters 表征光伏发电单元运行状态信息的自定义特征参数包括相关系数和离散 差, The self-defined characteristic parameters that characterize the operating state information of photovoltaic power generation units include correlation coefficient and discrete Difference, 一个光伏发电单元在某指定时间段内的相关系数rQq定义为: The correlation coefficient r Qq of a photovoltaic power generation unit in a specified period of time is defined as: <mrow> <msub> <mi>r</mi> <mrow> <mi>Q</mi> <mi>q</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mfrac> <mn>1</mn> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <mrow> <mo>(</mo> <msub> <mi>Q</mi> <mi>i</mi> </msub> <mo>-</mo> <mover> <mi>Q</mi> <mo>&amp;OverBar;</mo> </mover> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mi>i</mi> </msub> <mo>-</mo> <mover> <mi>q</mi> <mo>&amp;OverBar;</mo> </mover> <mo>)</mo> </mrow> </mrow> <mrow> <msqrt> <mrow> <mfrac> <mn>1</mn> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msup> <mrow> <mo>(</mo> <msub> <mi>Q</mi> <mi>i</mi> </msub> <mo>-</mo> <mover> <mi>Q</mi> <mo>&amp;OverBar;</mo> </mover> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <msqrt> <mrow> <mfrac> <mn>1</mn> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msup> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mi>i</mi> </msub> <mo>-</mo> <mover> <mi>q</mi> <mo>&amp;OverBar;</mo> </mover> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> <mo>,</mo> </mrow> <mrow><msub><mi>r</mi><mrow><mi>Q</mi><mi>q</mi></mrow></msub><mo>=</mo><mfrac><mrow><mfrac><mn>1</mn><mrow><mi>N</mi><mo>-</mo><mn>1</mn></mrow></mfrac><munderover><mo>&amp;Sigma;</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><mrow><mo>(</mo><msub><mi>Q</mi><mi>i</mi></msub><mo>-</mo><mover><mi>Q</mi><mo>&amp;OverBar;</mo></mover><mo>)</mo></mrow><mrow><mo>(</mo><msub><mi>q</mi><mi>i</mi></msub><mo>-</mo><mover><mi>q</mi><mo>&amp;OverBar;</msub>mo></mover><mo>)</mo></mrow></mrow><mrow><msqrt><mrow><mfrac><mn>1</mn><mrow><mi>N</mi><mo>-</mo><mn>1</mn></mrow></mfrac><munderover><mo>&amp;Sigma;</mo><mrow><mi>i</mo>mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><msup><mrow><mo>(</mo><msub><mi>Q</mi><mi>i</mi></msub><mo>-</mo><mover><mi>Q</mi><mo>&amp;OverBar;</mo></mover><mo>)</mo></mrow><mn>2</mn></msup></mrow></msqrt><msqrt><mrow><mfrac><mn>1</mn><mrow><mi>N</mi><mo>-</mo><mn>1</mn></mrow></mfrac><munderover><mo>&amp;Sigma;</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><msup><mrow><mo>(</mo><msub><mi>q</mi><mi>i</mi></msub><mo>-</mo><mover><mi>q</mi><mo>&amp;OverBar;</mo></mover><mo>)</mo></mrow><mn>2</mn></msup></mrow></msqrt></mrow></mfrac><mo>,</mo></mrow> 其中,Qi为第i个采样周期的理论电量,即第i个采样点的理论出力与采样 周期的乘积;qi为第i个采样周期的损失电量,即第i个采样点的理论出力与实 际出力值之差与采样周期的乘积,N为采样点的个数;为理论电量均值;为 损失电量均值; Among them, Q i is the theoretical power of the i-th sampling period, that is, the product of the theoretical output of the i-th sampling point and the sampling period; q i is the power loss of the i-th sampling period, that is, the theoretical output of the i-th sampling point The difference between the actual output value and the product of the sampling period, N is the number of sampling points; is the theoretical average value of electricity; is the average value of power loss; 离散差LS定义为: The discrete difference LS is defined as: <mrow> <mi>L</mi> <mi>S</mi> <mo>=</mo> <msqrt> <mrow> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msup> <mrow> <mo>(</mo> <msub> <mi>Q</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>q</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mo>,</mo> </mrow> <mrow><mi>L</mi><mi>S</mi><mo>=</mo><msqrt><mrow><mfrac><mn>1</mn><mi>N</mi></mfrac><munderover><mo>&amp;Sigma;</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><msup><mrow><mo>(</mo><msub><mi>Q</mi><mi>i</mi></msub><mo>-</mo><msub><mi>q</mi><mi>i</mi></msub><mo>)</mo></mrow><mn>2</mn></msup></mrow></msqrt><mo>,</mo></mrow> ③建立支持向量机运行状态辨识模型 ③Establish a support vector machine operating state identification model 将步骤②确定的光伏发电单元运行状态识别参数指标集中的变量作为支持 向量机模型的输入,光伏发电单元的运行状态信息作为支持向量机模型的理想 输出,对每一个光伏发电单元建立基于支持向量机的运行状态辨识模型; Use the variables in the identification parameter set of photovoltaic power generation unit operating status determined in step ② as support The input of the vector machine model, the operating status information of the photovoltaic power generation unit is used as the ideal support vector machine model Output, establish a support vector machine-based operating state identification model for each photovoltaic power generation unit; ④训练和验证支持向量机运行状态辨识模型 ④Training and verification of the support vector machine operating state identification model 针对已知光伏光伏发电单元运行状态的历史数据,分别计算运行状态辨识 参数指标集中的各项特征参数,然后选择其中的一部分数据作为支持向量机辨 识模型的训练样本,训练该模型,其余部分作为验证数据,对模型的辨识效果 进行校验; According to the historical data of the operating state of known photovoltaic photovoltaic power generation units, the operating state identification is calculated separately Each feature parameter in the parameter index set, and then select a part of the data as the support vector machine to identify Identify the training samples of the model, train the model, and use the rest as verification data to determine the recognition effect of the model to verify; ⑤辨识光伏电站的运行状态集合 ⑤ Identify the operating state set of photovoltaic power plants 针对待识别的时间段Δt,分别计算每个光伏发电单元的运行状态辨识参数 指标集中的各项特征参数,然后将上述参数序列输入步骤④训练好的支持向量 机辨识模型,得到该时间段内各个发电单元的运行状态,从而得到整个光伏电 站的运行状态集合。 For the time period Δt to be identified, calculate the operating state identification parameters of each photovoltaic power generation unit Each feature parameter in the index set, and then input the above parameter sequence into the trained support vector in step ④ machine identification model to obtain the operating status of each power generation unit within the time period, so as to obtain the A collection of operating states for a station. 2.根据权利要求1所述的基于损失电量特征参数的光伏电站运行状态辨识 方法,其特征是,所述光伏电站的运行状态还包括逆变器的运行状态,逆变器 的运行状态通过EMS系统读取。 2. The operating state identification of photovoltaic power plants based on the characteristic parameters of power loss according to claim 1 The method is characterized in that the operating state of the photovoltaic power plant also includes the operating state of the inverter, and the inverter The operating status of the machine is read through the EMS system. 3.根据权利要求3所述的基于损失电量特征参数的光伏电站运行状态辨识 方法,其特征是,在支持向量机运行状态辨识模型的训练和验证过程以及实际 光伏电站运行状态辨识过程中,应对计算得到的运行状态辨识参数指标集中的 损失电量特征参数进行归一化处理。 3. According to claim 3, the identification of the operating state of the photovoltaic power plant based on the characteristic parameters of the power loss The method is characterized in that the training and verification process of the support vector machine running state identification model and the actual In the process of operating state identification of photovoltaic power plants, it is necessary to deal with the concentration of the calculated operating state identification parameter indicators. The characteristic parameters of power loss are normalized. 4.根据权利要求4所述的基于损失电量特征参数的光伏电站运行状态辨识 方法,其特征是,为了提高光伏电站运行状态辨识结果的准确性,需对光伏电 站各个发电单元的理论出力计算模型和运行状态辨识模型进行在线更新。 4. According to claim 4, the operating state identification of photovoltaic power plants based on the characteristic parameters of power loss The method is characterized in that, in order to improve the accuracy of the identification results of the operating state of the photovoltaic power station, it is necessary to The theoretical output calculation model and operating state identification model of each power generation unit in the station are updated online.
CN201510049730.5A 2015-01-30 2015-01-30 A kind of photovoltaic plant running status discrimination method based on loss electricity characteristic parameter Active CN104574221B9 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510049730.5A CN104574221B9 (en) 2015-01-30 2015-01-30 A kind of photovoltaic plant running status discrimination method based on loss electricity characteristic parameter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510049730.5A CN104574221B9 (en) 2015-01-30 2015-01-30 A kind of photovoltaic plant running status discrimination method based on loss electricity characteristic parameter

Publications (3)

Publication Number Publication Date
CN104574221A CN104574221A (en) 2015-04-29
CN104574221B CN104574221B (en) 2017-10-24
CN104574221B9 true CN104574221B9 (en) 2017-12-22

Family

ID=53090211

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510049730.5A Active CN104574221B9 (en) 2015-01-30 2015-01-30 A kind of photovoltaic plant running status discrimination method based on loss electricity characteristic parameter

Country Status (1)

Country Link
CN (1) CN104574221B9 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105141255A (en) * 2015-08-12 2015-12-09 河海大学常州校区 Fault diagnosis method of photovoltaic array
CN105787810A (en) * 2016-03-14 2016-07-20 上海电气集团股份有限公司 Method for evaluating power generation capability of wind driven generator
CN106353584A (en) * 2016-08-31 2017-01-25 常州旷达阳光能源有限公司 Method for testing attenuation value of photovoltaic module
CN108649892B (en) * 2018-04-23 2020-08-04 华北电力科学研究院有限责任公司 Defect diagnosis method and device for photovoltaic power station
CN117764223B (en) * 2023-11-28 2024-08-02 北京潞电电力建设有限公司 Photovoltaic operation method and system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102594215A (en) * 2012-03-16 2012-07-18 云南电力试验研究院(集团)有限公司电力研究院 Model parameter identification method for photovoltaic plant
CN202649353U (en) * 2012-06-26 2013-01-02 英利能源(中国)有限公司 Monitoring system for intelligent photovoltaic power station
CN103675524A (en) * 2013-11-14 2014-03-26 国家电网公司 Photovoltaic power generation system model parameter identification test method
US20140188410A1 (en) * 2012-12-28 2014-07-03 Locus Energy, Llc Methods for Photovoltaic Performance Disaggregation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102594215A (en) * 2012-03-16 2012-07-18 云南电力试验研究院(集团)有限公司电力研究院 Model parameter identification method for photovoltaic plant
CN202649353U (en) * 2012-06-26 2013-01-02 英利能源(中国)有限公司 Monitoring system for intelligent photovoltaic power station
US20140188410A1 (en) * 2012-12-28 2014-07-03 Locus Energy, Llc Methods for Photovoltaic Performance Disaggregation
CN103675524A (en) * 2013-11-14 2014-03-26 国家电网公司 Photovoltaic power generation system model parameter identification test method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
An Approach of Distribution Systems Stabilization for a Large-scale PV Systems Installation Environment;Ken Kuroda 等;《2013 4th IEEE PES Innovative Smart Grid Technologies Europe》;20131009;第1-5页 *
Automatic supervision and fault detection of PV systems based on power losses analysis;A. Chouder 等;《Energy Conversion and Management》;20100320(第51期);第1929-1937页 *
光伏阵列故障状态的识别研究;王培珍;《中国博士学位论文全文数据库 工程科技Ⅱ辑》;20050915;第2005年卷(第5期);C042-35 *

Also Published As

Publication number Publication date
CN104574221A (en) 2015-04-29
CN104574221B (en) 2017-10-24

Similar Documents

Publication Publication Date Title
CN106712713B (en) The monitoring system and monitoring and abnormal localization method of a kind of photovoltaic plant
CN105846780B (en) A kind of photovoltaic module method for diagnosing faults based on decision-tree model
CN104753461B (en) Method for diagnosing and classifying faults of photovoltaic power generation arrays on basis of particle swarm optimization support vector machines
CN104156892B (en) A kind of active power distribution network Voltage Drop emulation and appraisal procedure
CN104574221B9 (en) A kind of photovoltaic plant running status discrimination method based on loss electricity characteristic parameter
CN103020462B (en) Take into account the wind energy turbine set probability output power calculation algorithms of complicated wake effect model
CN107742053B (en) Wind turbine abnormality identification method and device
CN106411257A (en) Photovoltaic power station state diagnosis method and device
CN105760617A (en) Calculation method applied to multi-parameter fault prediction and judgment indexes of wind generating set
CN106777984A (en) A kind of method that photovoltaic array Working state analysis and fault diagnosis are realized based on density clustering algorithm
CN103904682B (en) A kind of power forecasting method based on scene mixed model
CN109447441B (en) Transient stability risk assessment method considering uncertainty of new energy unit
CN104915747A (en) Electricity generation performance evaluation method of generator set and equipment thereof
CN104504607A (en) Method for diagnosing photovoltaic power station faults on the basis of fuzzy clustering algorithm
CN108072524B (en) Wind turbine generator gearbox bearing fault early warning method
CN106230378B (en) Diagnosis method for group string fault of photovoltaic power station
CN110224673A (en) A kind of solar photovoltaic cell panel fault detection method based on deep learning
CN106570790A (en) Wind farm output power data restoration method considering segmental characteristics of wind speed data
CN108667005A (en) A combined static and dynamic vulnerability assessment method of power grid considering the impact of new energy
CN103825272A (en) Reliability determination method for power distribution network with distributed wind power based on analytical method
CN104361529A (en) Reliability detecting and evaluating method of power distribution system on basis of cloud model
CN112508338B (en) A comprehensive evaluation system and method for grid-connected performance of new energy stations
CN103852255B (en) Based on neutral net wind power generating set typical case&#39;s drive failures intelligent diagnosing method
CN105069236A (en) Generalized load joint probability modeling method considering node spatial correlation of wind power plant
KR102523701B1 (en) Solar module quality prediction apparatus and method using ai

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CI03 Correction of invention patent

Correction item: Description|Claims

Correct: Correct

False: Error

Number: 43-01

Page: full text

Volume: 33

CI03 Correction of invention patent