CN104523266B - A kind of electrocardiosignal automatic classification method - Google Patents
A kind of electrocardiosignal automatic classification method Download PDFInfo
- Publication number
- CN104523266B CN104523266B CN201510005290.3A CN201510005290A CN104523266B CN 104523266 B CN104523266 B CN 104523266B CN 201510005290 A CN201510005290 A CN 201510005290A CN 104523266 B CN104523266 B CN 104523266B
- Authority
- CN
- China
- Prior art keywords
- hidden layer
- deep learning
- network
- data
- learning network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000013135 deep learning Methods 0.000 claims abstract description 28
- 238000001914 filtration Methods 0.000 claims abstract description 9
- 238000012545 processing Methods 0.000 claims abstract description 8
- 238000005070 sampling Methods 0.000 claims description 30
- 238000012549 training Methods 0.000 claims description 16
- 208000000418 Premature Cardiac Complexes Diseases 0.000 claims description 9
- 206010015856 Extrasystoles Diseases 0.000 claims description 8
- 206010006578 Bundle-Branch Block Diseases 0.000 claims description 6
- 230000000747 cardiac effect Effects 0.000 claims description 6
- 230000001746 atrial effect Effects 0.000 claims description 5
- 206010006582 Bundle branch block right Diseases 0.000 claims description 4
- 201000007916 right bundle branch block Diseases 0.000 claims description 4
- 230000002861 ventricular Effects 0.000 claims description 3
- 239000000284 extract Substances 0.000 abstract description 4
- 238000005065 mining Methods 0.000 abstract description 2
- 230000006870 function Effects 0.000 description 20
- 238000004458 analytical method Methods 0.000 description 12
- 238000000718 qrs complex Methods 0.000 description 11
- 238000001514 detection method Methods 0.000 description 9
- 238000000354 decomposition reaction Methods 0.000 description 8
- 230000009466 transformation Effects 0.000 description 8
- 230000008569 process Effects 0.000 description 7
- 230000004913 activation Effects 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 5
- 238000004422 calculation algorithm Methods 0.000 description 4
- 238000007635 classification algorithm Methods 0.000 description 4
- 210000002569 neuron Anatomy 0.000 description 4
- 238000005457 optimization Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 206010006580 Bundle branch block left Diseases 0.000 description 2
- 206010003119 arrhythmia Diseases 0.000 description 2
- 230000006793 arrhythmia Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 201000001715 left bundle branch hemiblock Diseases 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- FNMKZDDKPDBYJM-UHFFFAOYSA-N 3-(1,3-benzodioxol-5-yl)-7-(3-methylbut-2-enoxy)chromen-4-one Chemical compound C1=C2OCOC2=CC(C2=COC=3C(C2=O)=CC=C(C=3)OCC=C(C)C)=C1 FNMKZDDKPDBYJM-UHFFFAOYSA-N 0.000 description 1
- 208000009729 Ventricular Premature Complexes Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
- A61B5/346—Analysis of electrocardiograms
- A61B5/349—Detecting specific parameters of the electrocardiograph cycle
- A61B5/352—Detecting R peaks, e.g. for synchronising diagnostic apparatus; Estimating R-R interval
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Cardiology (AREA)
- Veterinary Medicine (AREA)
- Physics & Mathematics (AREA)
- Public Health (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Physiology (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Signal Processing (AREA)
- Psychiatry (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
本发明公开了一种心电信号自动分类方法,其是按如下的步骤实现的:a)获取人体的心电信号,并进行滤波处理,检测滤波后的心电信号的R波;b)检测到R波以后,构建数据集,所述数据集由若干组心拍数据构成,每组所述心拍数据均带有一种标签;c)构建稀疏自动编码深度学习网络;d)分步训练所述稀疏自动编码深度学习网络;e)根据步骤d)所得的第一隐含层的网络权值、第二隐含层的网络权值和softmax分类器的网络权值,将待测心拍数据输入所述稀疏自动编码深度学习网络,得到分类输出的心拍数据。本发明将稀疏自动编码深度学习网络应用于心拍数据的分类,利用其自主学习能力和深层特征挖掘的特性,提取信号更深层次的特征,而对心拍数据进行分类。
The invention discloses a method for automatic classification of electrocardiographic signals, which is realized according to the following steps: a) acquiring the electrocardiographic signals of the human body, performing filtering processing, and detecting the R wave of the filtered electrocardiographic signals; b) detecting After the R wave, build a data set, the data set is composed of several sets of heart beat data, each set of heart beat data has a label; c) construct a sparse automatic encoding deep learning network; d) train the sparse Automatically encode the deep learning network; e) according to the network weights of the first hidden layer, the network weights of the second hidden layer and the network weights of the softmax classifier obtained in step d), input the heartbeat data to be tested into the Sparse auto-encoding deep learning network to obtain heart beat data for classification output. The present invention applies the sparse auto-encoding deep learning network to the classification of heart beat data, utilizes its self-learning ability and the characteristics of deep feature mining, extracts deeper features of the signal, and classifies the heart beat data.
Description
技术领域technical field
本发明涉及心电信号自动检测与分析技术,特别涉及一种心电信号自动分类方法。The invention relates to an automatic detection and analysis technology of electrocardiographic signals, in particular to a method for automatic classification of electrocardiographic signals.
背景技术Background technique
心脏病具有隐蔽性和潜伏性,不发病的时候很难在心电图上表现出来,发病时又是短暂的,来不及观察心电图。为此需要给病人携带24小时Holter,进行24小时心电信号采集,再把心电数据交给医生,由医生对数据进行分析。此时产生的数据量巨大,医生需要大量时间来寻找不正常心拍。虽然Holter自带的软件系统能自动分析心拍,并给出统计信息,但是由于人体差异较大,心电变化复杂,有些心拍仍需要医生人工识别改正。在如此大量的数据中找到错误标记的心拍也是一项十分繁重的工作。为了极大地节约医生时间,提高诊断效率,稳定的自动分类算法是十分必要的。Heart disease is hidden and latent, and it is difficult to show it on the ECG when it does not occur, and it is short-lived when it occurs, and it is too late to observe the ECG. To this end, it is necessary to carry a 24-hour Holter to the patient to collect ECG signals for 24 hours, and then hand over the ECG data to the doctor, who will analyze the data. The amount of data generated at this time is huge, and doctors need a lot of time to find abnormal heart beats. Although Holter's built-in software system can automatically analyze heartbeats and give statistical information, due to the large differences in human body and complex ECG changes, some heartbeats still need to be manually recognized and corrected by doctors. Finding mislabeled heart beats in such a large amount of data is also a very laborious task. In order to greatly save doctors' time and improve diagnosis efficiency, a stable automatic classification algorithm is very necessary.
发明内容Contents of the invention
本发明的目的是提供一种心电信号自动分类方法,以解决现有分类算法在对不同人体,不同环境下心电信号分类的不稳定问题。The purpose of the present invention is to provide a method for automatic classification of electrocardiographic signals to solve the unstable problem of classification algorithms for electrocardiographic signals in different human bodies and environments.
本发明的目的是这样实现的:本发明所提供的心电信号自动分类方法,包括以下步骤:The object of the present invention is achieved in that: the electrocardiogram automatic classification method provided by the present invention comprises the following steps:
a)获取人体的心电信号,并进行滤波处理,检测滤波后的心电信号的R波;a) Obtain the ECG signal of the human body, perform filtering processing, and detect the R wave of the filtered ECG signal;
b)检测到R波以后,构建数据集,所述数据集由若干组心拍数据构成,每组所述心拍数据均带有一种标签,所述标签总共有6种,分为正常心拍、左束支传导阻滞、右束支传导阻滞、室性早搏、房性早搏、融合性心跳:b) After the R wave is detected, a data set is constructed. The data set is composed of several groups of heart beat data, and each set of heart beat data has a label. There are 6 types of labels in total, which are divided into normal heart beat, left beam Branch block, right bundle branch block, ventricular premature beats, atrial premature beats, confluent beats:
每组所述心拍数据包含270个采样点,该270个采样点是根据检测到的R波的位置,在所述R波的波峰点前面选取90个采样点,在所述R波的波峰点的后面选取179个采样点;Each group of heart beat data includes 270 sampling points, the 270 sampling points are based on the position of the detected R wave, 90 sampling points are selected in front of the peak point of the R wave, and at the peak point of the R wave 179 sampling points are selected behind;
c)构建稀疏自动编码深度学习网络:c) Build a sparse auto-encoding deep learning network:
所述稀疏自动编码深度学习网络具有两个隐含层,后面连接softmax分类器,其中,所述两个隐含层分别为第一隐含层和第二隐含层;The sparse auto-coding deep learning network has two hidden layers, followed by a softmax classifier, wherein the two hidden layers are respectively the first hidden layer and the second hidden layer;
所述稀疏自动编码深度学习网络的输入为270个采样点,所述第一隐含层节点数为130,所述第二隐含层节点数为50;The input of the sparse automatic encoding deep learning network is 270 sampling points, the number of nodes in the first hidden layer is 130, and the number of nodes in the second hidden layer is 50;
d)分步训练所述稀疏自动编码深度学习网络:d) step-by-step training of the sparse auto-encoding deep learning network:
d-1)将所述数据集的心拍数据进行归一化处理,然后输入SAE模型,采用SAE模型训练所述稀疏自动编码深度学习网络的第一隐含层,得到第一隐含层的网络权值,并得到心拍数据的浅层特征;d-1) Normalize the heartbeat data of the data set, then input the SAE model, and use the SAE model to train the first hidden layer of the sparse auto-encoding deep learning network to obtain the network of the first hidden layer Weight, and get the shallow features of heart beat data;
d-2)采用同样的SAE模型,将所述浅层特征输入所述SAE模型,训练所述稀疏自动编码深度学习网络的第二隐含层,得到第二隐含层的网络权值,并得到所述若干组心拍数据的高层次特征;d-2) adopting the same SAE model, inputting the shallow features into the SAE model, training the second hidden layer of the sparse auto-encoding deep learning network, obtaining the network weights of the second hidden layer, and Obtaining the high-level features of the several groups of cardiac beat data;
d-3)将得到的高层次特征输入到softmax分类器,训练softmax分类器,得到softmax分类器的网络权值;d-3) Input the obtained high-level features into the softmax classifier, train the softmax classifier, and obtain the network weight of the softmax classifier;
e)根据步骤d)所得的第一隐含层的网络权值、第二隐含层的网络权值和softmax分类器的网络权值,将待测心拍数据输入所述稀疏自动编码深度学习网络,得到心拍数据的分类输出。e) According to the network weights of the first hidden layer obtained in step d), the network weights of the second hidden layer and the network weights of the softmax classifier, input the heartbeat data to be measured into the sparse automatic encoding deep learning network , to get the classification output of heart beat data.
所述步骤a)的具体过程如下:The concrete process of described step a) is as follows:
(1)信号采集:以250Hz的采集频率采集人体心电原始信号,并存储为TXT文档的数据形式,然后用Matlab软件将所述TXT文档存储的心电原始信号数据读取到电脑中;(1) signal collection: gather human body electrocardiogram original signal with the acquisition frequency of 250Hz, and store as the data form of TXT document, then read in the computer with the electrocardiogram original signal data of described TXT document storage with Matlab software;
(2)对所述心电原始信号数据进行滤波处理:(2) Carry out filter processing to described ECG original signal data:
(2-1)对所述心电原始信号进行小波分解:选择DB6小波,对信号进行8层分解,得到各个尺度上的小波系数di;(2-1) Carry out wavelet decomposition to described ECG original signal: select DB6 wavelet, carry out 8 layers of decomposition to signal, obtain the wavelet coefficient d i on each scale;
(2-2)采用改进的计算阈值方法,求取各尺度的阈值,对小波系数进行阈值化处理:(2-2) Using the improved calculation threshold method, the threshold value of each scale is obtained, and the wavelet coefficient is thresholded:
其中,Ti为改进的阈值,i表示小波分解层数,e是自然常数,n表示采样点数,σi为小波系数绝对值的均值: Among them, T i is the improved threshold, i represents the number of wavelet decomposition layers, e is a natural constant, n represents the number of sampling points, and σi is the mean value of the absolute value of wavelet coefficients:
(2-3)采用软阈值方法对信号进行阈值化处理:在不同尺度选取不同的阈值进行阈值化处理,得到滤波后的心电信号;(2-3) Thresholding the signal using a soft threshold method: selecting different thresholds at different scales for thresholding to obtain filtered ECG signals;
(3)根据QRS波群和P波、T波的频率分布范围的不同,选择QRS波群与P波、T波频率分布重叠最少的第3、4尺度进行小波重构,得到重构后的心电信号S';(3) According to the difference in the frequency distribution ranges of QRS complexes, P waves, and T waves, select the third and fourth scales with the least overlapping frequency distribution of QRS complexes, P waves, and T waves for wavelet reconstruction, and obtain the reconstructed ECG signal S';
(4)对经过小波重构的心电信号进行能量窗变换,并选取极大值点:(4) Carry out energy window transformation on the ECG signal reconstructed by wavelet, and select the maximum value point:
(4-1)能量窗变换:按下式,将经过小波重构的心电信号S'由时间域分析变换到能量域分析,得到心电信号能量曲线:(4-1) Energy window transformation: transform the wavelet reconstructed ECG signal S' from the time domain analysis to the energy domain analysis according to the following formula, and obtain the ECG signal energy curve:
其中,En表示第n个采样点的能量值;N为所选的窗口长度,取值26;M为总的采样点数;S'n表示所述小波重构后的心电信号S'的第n个数据;Wherein, E n represents the energy value of the nth sampling point; N is the selected window length, and takes a value of 26; M is the total number of sampling points; S' n represents the electrocardiographic signal S' after the wavelet reconstruction nth data;
(4-2)选取极大值点:将所得到的心电信号能量曲线进行硬阈值化处理,即:(4-2) Select the maximum value point: the obtained ECG energy curve is subjected to hard thresholding, namely:
其中,Th为所选取的阈值,取Th=0.3*median(En),Wherein, T h is the selected threshold value, taking Th h =0.3*median(E n ),
然后选择经过硬阈值化处理后的心电信号能量曲线的波峰位置作为极大值点;Then select the peak position of the ECG energy curve after hard thresholding as the maximum point;
(5)优化极大值点:设定2个时间阈值t1和t2,且t1<t2当任意两个极大值点的时间间隔小于t1时,就去掉这两个极大值点之间幅值较小的那个;当任意两个极大值点的时间间隔大于t2时,就在这两个极大值点之间寻找另一未被识别的极值点;当任意两个极大值点的时间间隔既大于t1,又小于t2,则该两个极大值点均保留,最终得到的经优化的极大值点,并且每一个所述经优化的极大值点对应一个QRS波群;(5) Optimizing the maximum point: set two time thresholds t 1 and t 2 , and t 1 <t 2 When the time interval between any two maximum points is less than t 1 , remove these two maximum points The one with the smaller amplitude between the two maximum value points; when the time interval between any two maximum value points is greater than t 2 , look for another unrecognized extreme value point between these two maximum value points; when If the time interval between any two maximum points is greater than t 1 and smaller than t 2 , then the two maximum points are retained, and the optimized maximum points are finally obtained, and each of the optimized The maximum point corresponds to a QRS complex;
(6)根据步骤(5)中每个极大值点所在的时间点,在步骤(2)中所述滤波后的心电信号上相应的时间点左右各7个采样点的范围内搜寻信号幅值最大的点,做为检测到的R波。(6) According to the time point where each maximum value point is located in step (5), search for the signal within the scope of each 7 sampling points at the corresponding time point on the ECG signal after filtering described in step (2). The point with the largest amplitude is taken as the detected R wave.
本发明将稀疏自动编码深度学习网络应用于心拍数据的分类,充分利用其自主学习能力和深层特征挖掘的特性,提取信号更深层次的特征,进而对心拍数据进行分类。本发明所构建的特定的稀疏自动编码深度学习网络,可以充分利用心电信号的大数据特性,挖掘心电信号的深层次特征,使其对于复杂环境下不同个体的心电信号分析具有了很好的稳定性,通过设计合理的网络结构和适当的网络训练方法,实现了复杂个体以及复杂环境下的心电信号的自动分类,解决了现有技术中在应对个体差异和复杂坏境下心电信号分类算法不稳定的问题,准确、稳定的实现了6类常见心律失常节拍的精确识别。The present invention applies the sparse automatic encoding deep learning network to the classification of heart beat data, makes full use of its autonomous learning ability and the characteristics of deep feature mining, extracts deeper features of the signal, and then classifies the heart beat data. The specific sparse automatic coding deep learning network constructed by the present invention can make full use of the big data characteristics of ECG signals, dig out the deep-level features of ECG signals, and make it very useful for the analysis of ECG signals of different individuals in complex environments. Good stability, through the design of a reasonable network structure and appropriate network training methods, the automatic classification of ECG signals in complex individuals and complex environments is realized, which solves the problem of dealing with individual differences and ECG signals in complex environments in the prior art. The signal classification algorithm is unstable, and the precise identification of 6 common arrhythmia beats is realized accurately and stably.
另外,本发明对信号进行小波分解过程中选取特定的小波基函数及小波分解层数,同时在对信号进行阈值化处理过程中采用改进的阈值方法,使得滤波后的信号在滤除心电信号中夹杂的肌电干扰,基线漂移和工频干扰的同时,尽可能多的保留了有用的信息,改善了通用阈值过度平滑的现象。本发明通过进行小波重构,将QRS波群提取出来,而将P波、T波当作噪声剔除,有效避免了高大的P波、T波在检测中造成的误检,提高了检测的精度。本发明采用了能量窗变换方法,将信号变换到能量域去分析从而解决了时域分析中,信号易受高频噪声的影响,且在滤波中不能被全部滤除的问题。在能量窗变换中,本发明充分考虑了心电信号的时域特征及QRS波群的跨越时间,进行窗长的选择。实验结果证明只有窗长为26时,噪声的伪波峰产生的多检及低幅值的QRS波造成的漏检现象才能最有效的避免。In addition, the present invention selects specific wavelet basis functions and wavelet decomposition layers in the wavelet decomposition process of the signal, and adopts an improved threshold value method in the threshold value processing process of the signal, so that the filtered signal can be used to filter out the electrocardiogram signal. While the electromyographic interference, baseline drift and power frequency interference are mixed in, as much useful information as possible is retained, and the phenomenon of over-smoothing of the general threshold is improved. The invention extracts the QRS wave group by performing wavelet reconstruction, and removes the P wave and T wave as noise, effectively avoiding the false detection caused by the tall P wave and T wave in the detection, and improving the detection accuracy . The invention adopts an energy window transformation method to transform the signal into the energy domain for analysis, thereby solving the problem that the signal is easily affected by high-frequency noise and cannot be completely filtered out in the time domain analysis. In the energy window transformation, the present invention fully considers the time domain characteristics of the ECG signal and the spanning time of the QRS complex, and selects the window length. The experimental results prove that only when the window length is 26, the multiple detection caused by the false peak of the noise and the missed detection caused by the low-amplitude QRS wave can be most effectively avoided.
附图说明Description of drawings
图1为本发明的流程图。Fig. 1 is a flowchart of the present invention.
图2为心电原始信号。Figure 2 is the original ECG signal.
图3为进行滤波后的心电信号。Figure 3 is the filtered ECG signal.
图4为进行重构后的心电信号。FIG. 4 is the reconstructed ECG signal.
图5为进行硬阈值化处理后的选取极大值点的心电信号。Fig. 5 is the electrocardiographic signal of the selected maximum value point after hard thresholding processing.
图6为对极大值点进行优化的流程图。Fig. 6 is a flow chart of optimizing the maximum point.
图7为所检测到的R波。Figure 7 shows the detected R wave.
图8为稀疏自动编码深度学习网络结构图。Figure 8 is a structural diagram of the sparse auto-encoding deep learning network.
图9为深度学习网络训练过程图。Figure 9 is a diagram of the deep learning network training process.
具体实施方式detailed description
实施例1:Example 1:
本实施例在Intel Xeon CPU E5-2697@2.70GHz,内存为128.00GB,Win7,64位操作系统的计算机中实现,整个心电信号自动分类算法采用Matlab语言实现。This embodiment is implemented in a computer with Intel Xeon CPU E5-2697@2.70GHz, internal memory 128.00GB, Win7, 64-bit operating system, and the entire ECG signal automatic classification algorithm is implemented in Matlab language.
本发明的实施过程如图1所示:Implementation process of the present invention is as shown in Figure 1:
a)获取人体心电原始信号,并进行滤波处理,检测滤波后的心电信号的R波,其具体按以下步骤操作:a) Obtain the original ECG signal of the human body, perform filtering processing, and detect the R wave of the filtered ECG signal, which specifically operates according to the following steps:
(1)心电原始信号采集:本发明利用北京蓬阳丰业的MedSun18导联Holter长时间采集人体的心电信号,其采样输出频率为250Hz,采集心电数据以TXT的形式存储。其可以很容易的读取到Matlab环境中进行显示,其形态如图2。(1) ECG original signal collection: The present invention utilizes the MedSun 18-lead Holter of Beijing Pengyang Fengye to collect the ECG signal of the human body for a long time, and its sampling output frequency is 250 Hz, and the collected ECG data is stored in the form of TXT. It can be easily read into the Matlab environment for display, and its shape is shown in Figure 2.
(2)对所采集的心电原始信号数据进行滤波处理:(2) Filtering the collected ECG raw signal data:
(2-1)对心电原始信号进行小波分解:选择Daubechies小波系列的DB6小波,进行8层分解,如表1所示:(2-1) Decompose the original ECG signal by wavelet: select the DB6 wavelet of the Daubechies wavelet series, and perform 8-layer decomposition, as shown in Table 1:
表1:在250Hz的采样频率下对DB6小波进行8层分解Table 1: 8-layer decomposition of DB6 wavelet at a sampling frequency of 250Hz
然后提取各尺度上的小波系数di。Then extract the wavelet coefficients d i on each scale.
(2-2)采用改进的计算阈值的方法,求取各尺度的阈值,以得到经改进的阈值,即:(2-2) Adopt the improved method of calculating the threshold value to obtain the threshold value of each scale to obtain the improved threshold value, namely:
··········式(Ⅰ) ··········Formula (I)
式(Ⅰ)中,i表示小波分解层数,Ti为改进的阈值,e是自然常数,n表示采样点数,σi为小波系数绝对值的均值,其表达式为 In formula (I), i represents the number of wavelet decomposition layers, T i is the improved threshold, e is a natural constant, n represents the number of sampling points, σ i is the mean value of the absolute value of wavelet coefficients, and its expression is
相比现有的固定阈值方法和极大极小阈值法,按式(Ⅰ)对阈值的算法进行改进之后,改进后的阈值具有边带自适应性,且保持了良好的去噪重构特性。Compared with the existing fixed threshold method and maximin threshold method, after the threshold algorithm is improved according to formula (I), the improved threshold has sideband adaptability and maintains good denoising and reconstruction characteristics .
(2-3)采用软阈值方法,在各尺度上选取相应经改进的阈值,按式(Ⅱ)对心电信号进行阈值化处理,即:(2-3) Using the soft threshold method, select the corresponding improved threshold on each scale, and perform threshold processing on the ECG signal according to formula (II), namely:
··········式(Ⅱ) ··········Formula (Ⅱ)
其中j=i;where j = i;
从而得到滤波后的心电信号,如图3所示。Thus, the filtered ECG signal is obtained, as shown in FIG. 3 .
滤波后的心电信号,尽可能多的保留了有用的信息,改善了通用阈值过度平滑的现象,使滤波效果更加稳定。The filtered ECG signal retains as much useful information as possible, improves the over-smoothing phenomenon of the general threshold, and makes the filtering effect more stable.
(3)正常的心电信号QRS波群的频率分布范围是5-45Hz,从表1中可以看出,其主要集中于3、4尺度上,而P波和T波的频率分布范围为0.05到10Hz,在3、4尺度上没有或仅有少量分布,因此,根据QRS波群和P波、T波的频率分布范围的差别,选择QRS波群与P波、T波分布频率重叠最少的3、4尺度对经滤波后的心电信号进行小波重构,即:(3) The frequency distribution range of the normal ECG QRS complex is 5-45Hz. It can be seen from Table 1 that it is mainly concentrated on the 3 and 4 scales, while the frequency distribution range of the P wave and T wave is 0.05 From 10Hz to 10Hz, there is no or only a small amount of distribution on the 3 and 4 scales. Therefore, according to the difference in the frequency distribution range of the QRS complex and the P wave and T wave, select the one with the least frequency overlap between the QRS complex and the P wave and T wave distribution. 3, 4 scales perform wavelet reconstruction on the filtered ECG signal, namely:
·········式(Ⅲ) ·········Formula (Ⅲ)
式(Ⅲ)中,和分别为按步骤(2)对3、4尺度上的心电信号经阈值化处理后的结果。In formula (Ⅲ), with They are the results of thresholding the ECG signals on scales 3 and 4 according to step (2), respectively.
经过小波重构以后,所得到的心电信号主要为QRS波群的信息,起到了凸显QRS波群的作用,如图4所示。After wavelet reconstruction, the obtained ECG signal is mainly the information of the QRS complex, which plays a role in highlighting the QRS complex, as shown in Figure 4.
(4)对小波重构后的心电信号进行能量窗变换,并选取极大值点:(4) Carry out energy window transformation on the ECG signal after wavelet reconstruction, and select the maximum value point:
(4-1)能量窗变换:按如下式(Ⅳ),将经过小波重构的心电信号S'由时间域分析变换到能量域分析,得到心电信号能量曲线:(4-1) Energy window transformation: According to the following formula (Ⅳ), the ECG signal S' reconstructed by wavelet is transformed from time domain analysis to energy domain analysis, and the energy curve of ECG signal is obtained:
·········式(Ⅳ) ·········Formula (Ⅳ)
其中,En表示第n个采样点的能量值;N为所选的窗口长度(N=26),M为总的采样点数,S'n表示步骤(3)小波重构后的心电信号S'的第n个数据。Wherein, E n represents the energy value of the nth sampling point; N is the selected window length (N=26), M is the total sampling point number, and S' n represents the electrocardiographic signal after step (3) wavelet reconstruction The nth data of S'.
能量窗变换中,窗长度的选取是一个关键,其直接决定R波检测算法是否有效。本发明充分考虑了心电信号的时域特征及QRS波群的跨越时间,其N值的选择是按如下方法确定的:本实施例心电信号的采样频率为250Hz,而正常的QRS波群一般不超过0.1s,为25个采样点,我们选取窗长为偶数,为26。实验结果证明只有窗长为26时,噪声的伪波峰产生的多检及低幅值的QRS波造成的漏检现象才能最有效的避免。In the energy window transformation, the selection of the window length is a key, which directly determines whether the R-wave detection algorithm is effective. The present invention fully considers the time-domain characteristics of the electrocardiographic signal and the spanning time of the QRS wave group, and the selection of its N value is determined as follows: the sampling frequency of the electrocardiographic signal in this embodiment is 250 Hz, and the normal QRS wave group Generally, it does not exceed 0.1s, which is 25 sampling points. We choose the window length as an even number, which is 26. The experimental results prove that only when the window length is 26, the multiple detection caused by the false peak of the noise and the missed detection caused by the low-amplitude QRS wave can be most effectively avoided.
时域分析中,信号易受高频噪声的影响,且在滤波中不能被全部滤除,针对此问题,采用能量床变换的方法将时间域分析变换到能量域分析。能量域相比于时间域分析,对噪声具有更好的鲁棒性。如图5,经能量窗变换以后,信号的QRS波群位置点变得更加突出,心拍与心拍之间的间隔更加明显,高频噪声的影响也相应的变弱。In time-domain analysis, the signal is easily affected by high-frequency noise and cannot be completely filtered out in filtering. To solve this problem, the method of energy bed transformation is used to transform the time-domain analysis into energy-domain analysis. The energy domain is more robust to noise than the time domain analysis. As shown in Figure 5, after the energy window transformation, the position of the QRS complex of the signal becomes more prominent, the interval between heart beats is more obvious, and the influence of high-frequency noise is correspondingly weakened.
(4-2)选取极大值点:将得到的信号能量曲线进行硬阈值化处理:(4-2) Select the maximum value point: perform hard thresholding on the obtained signal energy curve:
········式(Ⅴ) ········Formula (Ⅴ)
式(Ⅴ)中,Th为所选取的阈值,取Th=0.3*median(En)。In the formula (Ⅴ), Th is the selected threshold value, and Th h = 0.3*median(E n ).
然后选取经硬阈值化处理后的心电信号能量曲线的波峰位置作为极大值点,如图5所示。Then select the peak position of the energy curve of the ECG signal after hard thresholding as the maximum point, as shown in FIG. 5 .
(5)优化极大值点:如图6所给出的流程图,设定2个时间阈值t1和t2,且t1<t2当任意两个极大值点的时间间隔小于t1时,就去掉这两个极大值点之间幅值较小的那个;当任意两个极大值点的时间间隔大于t2时,就在这两个极大值点之间寻找另一未被识别的极值点;如两个极大值点的时间间隔既大于t1,又小于t2,则该两个极大值点均保留,如此最终得到的经优化的每个极大值点都对应一个QRS波群。(5) Optimizing the maximum point: as shown in the flowchart in Figure 6, set two time thresholds t 1 and t 2 , and t 1 <t 2 when the time interval between any two maximum points is less than t 1 , remove the one with the smaller amplitude between the two maximum points; when the time interval between any two maximum points is greater than t 2 , find another one between the two maximum points An unrecognized extreme point; if the time interval between two extreme points is both greater than t 1 and less than t 2 , then the two extreme points are kept, so that each optimized extreme point finally obtained The large value points all correspond to a QRS complex.
图6中,Et表示步骤(4-2)所得到的所有极大值点的时间间隔的平均值,t1=0.5×Et,t2=1.5×Et。In Fig. 6, E t represents the average value of time intervals of all maximum points obtained in step (4-2), t 1 =0.5×E t , t 2 =1.5×E t .
(6)根据步骤(5)中所确定的每个极大值点所在的时间点,在步骤(2)中滤波后心电信号上相应的时间点左右各7个采样点的范围内搜寻信号幅值最大的点,即为检测到的R波(图7)。(6) According to the time point where each maximum value point is determined in step (5), search for the signal in the range of 7 sampling points around the corresponding time point on the ECG signal after filtering in step (2) The point with the largest amplitude is the detected R wave (Figure 7).
在实际应用过程中,可以根据需要选择其它频率进行心电信号的采集,以及选择Haar、Daubechies或Symlets中任意一种小波进行合适层数的分解,并根据实际情况自行确定后续进行小波重构所选尺度和能量窗变换时窗长的选择。对于不同的应用对象深度学习网络的结构和相应的隐含层节点数应略有不同。训练方法也要灵活变化,不拘泥于固定形式。In the actual application process, you can choose other frequencies to collect ECG signals according to your needs, and choose any wavelet from Haar, Daubechies or Symlets to decompose the appropriate number of layers, and determine the subsequent wavelet reconstruction according to the actual situation. Select the scale and the selection of the window length when transforming the energy window. For different application objects, the structure of the deep learning network and the corresponding number of hidden layer nodes should be slightly different. The training method should also be flexible and change, not stick to a fixed form.
b)在得到R波位置后构建数据集,该数据集由33950组心拍数据组成,每组心拍数据都带有一种标签,标签总共有6种,分别代表正常心拍、左束支传导阻滞、右束支传导阻滞、室性早搏、房性早搏、融合性心跳:b) After obtaining the R wave position, construct a data set. The data set consists of 33,950 sets of heart beat data. Each set of heart beat data has a label. There are 6 labels in total, representing normal heart beat, left bundle branch block, Right bundle branch block, ventricular premature beats, atrial premature beats, confluent beats:
每组心拍数据包含270个采样点,该270个采样点是根据步骤a)得到的R波的位置,在滤波后的心电信号图中该R波峰点前面选取90个采样点,后面选取179个采样点,即每一组心拍数据包含270个采样点。Each group of cardiac beat data includes 270 sampling points, the 270 sampling points are the position of the R wave obtained according to step a), and 90 sampling points are selected in front of the R wave peak point in the filtered electrocardiogram, and 179 sampling points are selected in the back sampling points, that is, each set of heart beat data contains 270 sampling points.
本实施例中的数据集包含了来自多个人和同一个人不同时期的33950组心拍数据,数据集中包含各种类型的心拍,并将其中22350组心拍数据作为训练数据集,剩余的11600组心拍数据作为测试数据集。训练数据集和测试数据集中均包含六种类型的标签。The data set in this embodiment contains 33950 sets of heart beat data from multiple people and the same person in different periods. as a test data set. Both the training dataset and the testing dataset contain six types of labels.
c)构建稀疏自动编码深度学习网络(简称学习网络)c) Construct a sparse auto-encoding deep learning network (referred to as learning network)
该稀疏自动编码深度学习网络结构如图8所示,其具有两个隐含层(第一隐含层和第二隐含层),在第二隐含层的后面连接softmax分类器。The sparse auto-encoding deep learning network structure is shown in Figure 8, which has two hidden layers (the first hidden layer and the second hidden layer), and a softmax classifier is connected behind the second hidden layer.
学习网络的输入为270个采样点,第一隐含层节点数为130(经过第一隐含层可得到130个浅层特征),第二隐含层节点数为50(经过第二隐含层可得到50个高层次特征)。The input of the learning network is 270 sampling points, the number of nodes in the first hidden layer is 130 (130 shallow features can be obtained through the first hidden layer), and the number of nodes in the second hidden layer is 50 (through the second hidden layer layer can get 50 high-level features).
d)分步训练稀疏自动编码深度学习网络d) Step-by-step training of sparse autoencoding deep learning networks
d-1)将训练数据集的22350组心拍数据进行归一化处理:d-1) Normalize the 22350 sets of heart beat data in the training data set:
其中xmin和xmax分别为所输入心拍幅值的最大和最小值。in x min and x max are the maximum and minimum values of the input heart beat amplitude respectively.
将归一化处理后的心拍数据输入SAE模型,采用SAE模型训练学习网络第一隐含层,其流程如图9所示。Input the normalized cardiac beat data into the SAE model, and use the SAE model to train and learn the first hidden layer of the learning network. The process is shown in Figure 9.
具体的,SAE模型的输入为一组心拍数据(270采样点),隐含层节点个数为130。选择sigmoid函数f(z)=1/(1+exp(-z))作为神经元的激活函数;第一隐含层节点激活值函数为h(g)=f(W1g+b1),其中为权值矩阵,为偏置向量。SAE的输出为 为权值矩阵,为偏置向量。Specifically, the input of the SAE model is a set of heartbeat data (270 sampling points), and the number of hidden layer nodes is 130. Select the sigmoid function f(z)=1/(1+exp(-z)) as the activation function of the neuron; the activation value function of the first hidden layer node is h(g)=f(W 1 g+b 1 ) ,in is the weight matrix, is the bias vector. The output of SAE is is the weight matrix, is the bias vector.
为了使输出无限接近g,引入代价函数,通过最小化代价函数训练网络,得到网络权值W1和W2,并得到心拍数据的130个浅层特征,具体的:In order to make the output Infinitely close to g, introduce a cost function, train the network by minimizing the cost function, get the network weights W 1 and W 2 , and get 130 shallow features of the heart beat data, specifically:
当训练样本(训练数据集中经归一化处理后的一个心拍即为一个训练样本)的个数为q时,SAE的代价函数表述为:When the number of training samples (a normalized heartbeat in the training data set is a training sample) is q, the cost function of SAE is expressed as:
其中,是稀疏惩罚因子,β控制了稀疏惩罚因子的权重,是该隐含层第j个神经元在q个训练样本上的平均激活度,ρ是稀疏性参数,我们选取λ=3×10-10,β=3,ρ=0.2;in, Is the sparse penalty factor, β controls the weight of the sparse penalty factor, is the average activation degree of the jth neuron in the hidden layer on q training samples, ρ is the sparsity parameter, we choose λ=3×10 -10 , β=3, ρ=0.2;
然后我们采用L-BFGS优化方法来最小化代价函数JW,b(g),最大迭代步数设置为400,这样我们得到了心拍数据的130个浅层特征。Then we use the L-BFGS optimization method to minimize the cost function J W,b (g), and the maximum number of iterations is set to 400, so that we get 130 shallow features of the heartbeat data.
d-2)将得到的130个浅层特征输入同样的SAE模型,采用同样的方法训练学习网络第二隐含层,得到第二层网络权值,并得到心拍数据的50个高层次特征H。d-2) Input the obtained 130 shallow features into the same SAE model, use the same method to train and learn the second hidden layer of the network, obtain the weight of the second layer network, and obtain 50 high-level features H of heart beat data .
具体的,第二隐含层节点数为50,同样选择sigmoid函数作为神经元的激活函数,第二隐含层节点激活值函数为H(g)=f(W3h(g)+b3),其中为权值矩阵,为偏置向量。此时SAE的输出为 为权值矩阵,为偏置向量。为了使输出无限接近h,引入相同的代价函数,通过最小化代价函数训练网络得到权值W3和W4,并得到心拍数据的50个高层次特征,具体的:Specifically, the number of nodes in the second hidden layer is 50, and the sigmoid function is also selected as the activation function of neurons, and the activation value function of the nodes in the second hidden layer is H(g)=f(W 3 h(g)+b 3 ),in is the weight matrix, is the bias vector. At this time, the output of SAE is is the weight matrix, is the bias vector. In order to make the output Infinitely close to h, introduce the same cost function, train the network by minimizing the cost function to obtain weights W 3 and W 4 , and obtain 50 high-level features of heartbeat data, specifically:
当训练样本个数为q时,SAE的代价函数表述为:When the number of training samples is q, the cost function of SAE is expressed as:
其中,是稀疏惩罚因子,β控制了稀疏惩罚因子的权重,是该隐含层第j个神经元在q个训练样本上的平均激活度,ρ是稀疏性参数。我们选取λ=3×10-10,β=3,ρ=0.2;in, Is the sparse penalty factor, β controls the weight of the sparse penalty factor, is the average activation of the jth neuron in the hidden layer on q training samples, and ρ is the sparsity parameter. We choose λ=3×10 -10 , β=3, ρ=0.2;
然后我们采用L-BFGS优化方法来最小化代价函数JW,b(g),最大迭代步数设置为400,这样就得到了心拍数据的50个高层次特征。Then we use the L-BFGS optimization method to minimize the cost function J W,b (g), and the maximum number of iteration steps is set to 400, thus obtaining 50 high-level features of the heart beat data.
d-3)将d-2)中提取到的心拍数据的深层特征H输入Softmax分类器,训练softmax分类器,得到softmax分类器的网络权值,具体如下:d-3) input the deep feature H of the heartbeat data extracted in d-2) into the Softmax classifier, train the softmax classifier, and obtain the network weight of the softmax classifier, as follows:
Softmax分类器可表示为:Softmax classifier can be expressed as:
其中rθ(H(i))中的每一个分量p(y(i)=j|H(i);θ)代表H(i)属于第j类的概率,i=1,2,…50,j为1,2,…6,θ为网络权值矩阵, Each component in r θ (H (i) ) p(y (i) =j|H (i) ; θ) represents the probability that H (i) belongs to the jth class, i=1,2,...50 , j is 1,2,...6, θ is the network weight matrix,
所选取的代价函数定义为:The chosen cost function is defined as:
其中1{y(i)=j}为指示函数,花括号之中的表达式为真则指示函数值为1,否则指示函数值为0。上式中加号后面的部分是为了防止模型发生过拟合而添加的权值衰减项,选为α=6×10-7。Wherein 1{y (i) =j} is an indicator function, and the expression in curly braces is true if the indicator function value is 1, otherwise the indicator function value is 0. The part after the plus sign in the above formula is the weight attenuation item added to prevent the model from overfitting, and is selected as α=6×10 -7 .
我们采用L-BFGS优化方法微调softmax分类器的网络权值,通过选择L-BFGS优化方法来最小化代价函数J(θ),设置最大迭代步数为400,当算法收敛时Softmax回归计算的最大概率值对应的标签即为心律失常自动识别算法预测的心拍类别。We use the L-BFGS optimization method to fine-tune the network weights of the softmax classifier, minimize the cost function J(θ) by selecting the L-BFGS optimization method, set the maximum number of iterations to 400, and when the algorithm converges, the maximum The label corresponding to the probability value is the beat category predicted by the automatic arrhythmia recognition algorithm.
e)验证:根据步骤d)所得的第一隐含层的网络权值、第二隐含层的网络权值和softmax分类器的网络权值,将测试数据集输入学习网络,得到分类输出的心拍数据,实现心拍的自动分类。e) Verification: According to the network weights of the first hidden layer, the network weights of the second hidden layer and the network weights of the softmax classifier obtained in step d), the test data set is input into the learning network to obtain the classification output Heart beat data, to achieve automatic classification of heart beats.
采用本发明的方法对心拍数据进行分类的结果与心拍数据自身标签对比,结果如表1所示,可见本发明的方法对正常心拍、左束支传导阻滞、右束支传导阻滞、室性早搏、房性早搏、融合性心跳6种常见的心拍的分类效果非常好,均达到的非常高的分类精度。The result of using the method of the present invention to classify the cardiac beat data is compared with the self-label of the cardiac beat data. The classification effect of 6 common heartbeats, premature beats, atrial premature beats, and fusion heartbeats is very good, and all of them have achieved very high classification accuracy.
表1 分类结果测试表Table 1 Classification result test table
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510005290.3A CN104523266B (en) | 2015-01-07 | 2015-01-07 | A kind of electrocardiosignal automatic classification method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510005290.3A CN104523266B (en) | 2015-01-07 | 2015-01-07 | A kind of electrocardiosignal automatic classification method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104523266A CN104523266A (en) | 2015-04-22 |
CN104523266B true CN104523266B (en) | 2017-04-05 |
Family
ID=52839037
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510005290.3A Active CN104523266B (en) | 2015-01-07 | 2015-01-07 | A kind of electrocardiosignal automatic classification method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104523266B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110236518A (en) * | 2019-04-02 | 2019-09-17 | 武汉大学 | Method and device for joint classification of ECG and cardiac shock signals based on neural network |
Families Citing this family (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104866727A (en) | 2015-06-02 | 2015-08-26 | 陈宽 | Deep learning-based method for analyzing medical data and intelligent analyzer thereof |
CN105125206B (en) * | 2015-09-15 | 2019-01-22 | 中山大学 | A kind of intelligent ECG monitoring method and device |
US10467548B2 (en) | 2015-09-29 | 2019-11-05 | Huami Inc. | Method, apparatus and system for biometric identification |
US9787676B2 (en) | 2015-09-29 | 2017-10-10 | Anhui Huami Information Technology Co., Ltd. | Multi-modal biometric identification |
US9824287B2 (en) | 2015-09-29 | 2017-11-21 | Huami Inc. | Method, apparatus and system for biometric identification |
CN105447306A (en) * | 2015-11-12 | 2016-03-30 | 杨松 | Ballistocardiogram signal cycle calculating method and apparatus |
CN106725420A (en) * | 2015-11-18 | 2017-05-31 | 中国科学院苏州纳米技术与纳米仿生研究所 | VPB recognition methods and VPB identifying system |
CN105426839A (en) * | 2015-11-18 | 2016-03-23 | 清华大学 | Power system overvoltage classification method based on sparse autocoder |
US20170156592A1 (en) * | 2015-12-02 | 2017-06-08 | Mediatek Inc. | Healthcare systems and monitoring method for physiological signals |
CN106562782A (en) * | 2016-05-20 | 2017-04-19 | 彭慧敏 | Dedicated ECG monitor for pediatric nursing |
CN105943030B (en) * | 2016-06-02 | 2017-03-29 | 浙江铭众科技有限公司 | A kind of intelligent terminal for realizing the automatic delimitations of multichannel electrocardiogram QRS |
CN105919590B (en) * | 2016-06-02 | 2017-03-29 | 浙江铭众科技有限公司 | A kind of automatic demarcation methods of the Electrocardiographic QRS of multichannel |
CN106108880B (en) * | 2016-06-28 | 2020-10-16 | 吉林大学 | A kind of heart beat automatic recognition method and system |
CN108113647A (en) * | 2016-11-28 | 2018-06-05 | 深圳先进技术研究院 | A kind of electrocardiosignal sorter and method |
CN106725426A (en) * | 2016-12-14 | 2017-05-31 | 深圳先进技术研究院 | A kind of method and system of electrocardiosignal classification |
US11321561B2 (en) | 2017-03-14 | 2022-05-03 | Huawei Technologies Co., Ltd. | Electrocardiogram waveform signal processing method and apparatus |
CN107239684A (en) * | 2017-05-22 | 2017-10-10 | 吉林大学 | A kind of feature learning method and system for ECG identifications |
CN108932452A (en) * | 2017-05-22 | 2018-12-04 | 中国科学院半导体研究所 | Arrhythmia cordis beat classification method based on multiple dimensioned convolutional neural networks |
CN109934243A (en) * | 2017-12-19 | 2019-06-25 | 中国科学院深圳先进技术研究院 | ECG data classification method, apparatus, electronic equipment and system |
CN109948396B (en) * | 2017-12-20 | 2021-07-23 | 深圳市理邦精密仪器股份有限公司 | Heart beat classification method, heart beat classification device and electronic equipment |
EP3506125A1 (en) | 2017-12-28 | 2019-07-03 | Tata Consultancy Services Limited | Systems and methods for obtaining optimal mother wavelets for facilitating machine learning tasks |
CN108324264A (en) * | 2018-01-23 | 2018-07-27 | 江苏康尚生物医疗科技有限公司 | A kind of detection method and system of atrial fibrillation |
CN108403107B (en) * | 2018-02-06 | 2019-12-31 | 北京大学深圳研究生院 | Method and system for identifying arrhythmia |
CN108577830B (en) * | 2018-03-15 | 2021-10-26 | 上海乐普云智科技股份有限公司 | User-oriented physical sign information dynamic monitoring method and system |
CN108647584B (en) * | 2018-04-20 | 2022-04-22 | 西安交通大学 | Cardiac arrhythmia recognition and classification method based on sparse representation and neural network |
CN108846410A (en) * | 2018-05-02 | 2018-11-20 | 湘潭大学 | Power Quality Disturbance Classification Method based on sparse autocoding deep neural network |
CN109091138B (en) * | 2018-07-12 | 2021-10-26 | 上海微创电生理医疗科技股份有限公司 | Arrhythmia origin point judging device and mapping system |
CN109480825B (en) * | 2018-12-13 | 2021-08-06 | 武汉中旗生物医疗电子有限公司 | Electrocardio data processing method and device |
CN110169767B (en) * | 2019-07-08 | 2021-09-21 | 河北大学 | Retrieval method of electrocardiosignals |
CN110464368A (en) * | 2019-08-29 | 2019-11-19 | 苏州中科先进技术研究院有限公司 | Brain attention rate appraisal procedure and system based on machine learning |
CN110974213A (en) * | 2019-12-20 | 2020-04-10 | 哈尔滨理工大学 | Electrocardiosignal identification method based on deep stack network |
CN111161874A (en) * | 2019-12-23 | 2020-05-15 | 乐普(北京)医疗器械股份有限公司 | An intelligent electrocardiogram analysis device |
CN111523361B (en) * | 2019-12-26 | 2022-09-06 | 中国科学技术大学 | A method of human behavior recognition |
CN111084621B (en) * | 2019-12-30 | 2022-09-06 | 上海数创医疗科技有限公司 | QRS wave group form identification method and device based on depth self-encoder |
CN111297350B (en) * | 2020-02-27 | 2021-08-31 | 福州大学 | A three-beat multi-model comprehensive decision-making method for ECG feature classification with source-side influence |
CN111904411B (en) * | 2020-08-25 | 2022-09-23 | 浙江工业大学 | Multi-lead heartbeat signal classification method and device based on multi-scale feature extraction |
CN112568908A (en) * | 2020-12-14 | 2021-03-30 | 上海数创医疗科技有限公司 | Electrocardiogram waveform positioning and classifying model device adopting multi-scale visual field depth learning |
CN114027846B (en) * | 2021-11-04 | 2022-08-26 | 湖南万脉医疗科技有限公司 | Intelligent electrocardiosignal processing method |
CN116304777B (en) * | 2023-04-12 | 2023-11-03 | 中国科学院大学 | Adaptive ECG signal denoising method and system based on reference signal at rest |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101810476A (en) * | 2009-12-22 | 2010-08-25 | 李顶立 | Classification method of heart beat template of dynamic electrocardiogram |
CN102389302A (en) * | 2011-07-20 | 2012-03-28 | 哈尔滨工业大学深圳研究生院 | Analysis method of dynamic characteristics of electrocardiosignal |
CN102715915A (en) * | 2012-07-16 | 2012-10-10 | 山东大学 | Portable heart sound automatic sorting assistant diagnostic apparatus |
CN103156599A (en) * | 2013-04-03 | 2013-06-19 | 河北大学 | Detection method of electrocardiosignal R characteristic waves |
CN103584852A (en) * | 2012-08-15 | 2014-02-19 | 深圳中科强华科技有限公司 | Personalized electrocardiogram intelligent auxiliary diagnosis device and method |
CN104224164A (en) * | 2014-09-25 | 2014-12-24 | 新乡医学院第一附属医院 | Electrocardio signal analysis and processing device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8909332B2 (en) * | 2010-01-26 | 2014-12-09 | Stmicroelectronics S.R.L. | Method and device for estimating morphological features of heart beats |
WO2014030162A1 (en) * | 2012-08-22 | 2014-02-27 | Ben-Gurion University Of The Negev Research & Development Authority | Separating clinically relevant sources of electrical activity in ecg signals |
US8825145B1 (en) * | 2013-03-14 | 2014-09-02 | Medtronic, Inc. | Beat-morphology matching scheme for cardiac sensing and event detection |
-
2015
- 2015-01-07 CN CN201510005290.3A patent/CN104523266B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101810476A (en) * | 2009-12-22 | 2010-08-25 | 李顶立 | Classification method of heart beat template of dynamic electrocardiogram |
CN102389302A (en) * | 2011-07-20 | 2012-03-28 | 哈尔滨工业大学深圳研究生院 | Analysis method of dynamic characteristics of electrocardiosignal |
CN102715915A (en) * | 2012-07-16 | 2012-10-10 | 山东大学 | Portable heart sound automatic sorting assistant diagnostic apparatus |
CN103584852A (en) * | 2012-08-15 | 2014-02-19 | 深圳中科强华科技有限公司 | Personalized electrocardiogram intelligent auxiliary diagnosis device and method |
CN103156599A (en) * | 2013-04-03 | 2013-06-19 | 河北大学 | Detection method of electrocardiosignal R characteristic waves |
CN104224164A (en) * | 2014-09-25 | 2014-12-24 | 新乡医学院第一附属医院 | Electrocardio signal analysis and processing device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110236518A (en) * | 2019-04-02 | 2019-09-17 | 武汉大学 | Method and device for joint classification of ECG and cardiac shock signals based on neural network |
Also Published As
Publication number | Publication date |
---|---|
CN104523266A (en) | 2015-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104523266B (en) | A kind of electrocardiosignal automatic classification method | |
CN111449645B (en) | Intelligent classification and recognition method of electrocardiogram heartbeat | |
Dang et al. | A novel deep arrhythmia-diagnosis network for atrial fibrillation classification using electrocardiogram signals | |
CN110840402B (en) | Atrial fibrillation signal identification method and system based on machine learning | |
Li et al. | Classification of ECG signals based on 1D convolution neural network | |
CN108714026B (en) | Fine-grained electrocardiosignal classification method based on deep convolutional neural network and online decision fusion | |
Chen et al. | Atrial fibrillation detection using a feedforward neural network | |
Kumar et al. | Investigating cardiac arrhythmia in ECG using random forest classification | |
CN109117730B (en) | Real-time electrocardiogram atrial fibrillation judgment method, device and system and storage medium | |
Mishra et al. | Local fractal dimension based ECG arrhythmia classification | |
Zhao et al. | ECG classification using deep CNN improved by wavelet transform | |
CN109758145B (en) | An automatic sleep staging method based on the causal relationship of EEG signals | |
CN111449644A (en) | A Bioelectric Signal Classification Method Based on Time-Frequency Transform and Data Enhancement Technology | |
Liu et al. | Automatic identification of abnormalities in 12-lead ECGs using expert features and convolutional neural networks | |
CN106805965A (en) | A kind of electrocardiosignal sorting technique and device | |
CN109165556A (en) | One kind being based on GRNN personal identification method | |
CN104173043A (en) | Electrocardiogram (ECG) data analysis method suitable for mobile platform | |
CN107239684A (en) | A kind of feature learning method and system for ECG identifications | |
CN110313894A (en) | Arrhythmia cordis sorting algorithm based on convolutional neural networks | |
Khan et al. | Electrocardiogram heartbeat classification using convolutional neural networks for the detection of cardiac Arrhythmia | |
Zeng et al. | Ensemble learning on heartbeat type classification | |
CN113116300A (en) | Physiological signal classification method based on model fusion | |
CN111053552B (en) | QRS wave detection method based on deep learning | |
Singh et al. | Short and noisy electrocardiogram classification based on deep learning | |
CN110960207A (en) | Tree model-based atrial fibrillation detection method, device, equipment and storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20250116 Address after: Room 269, 2nd Floor, Building 1, Suteng Zhongtai Technology Park, No. 16 Xianqiao Road, Zhongtai Street, Yuhang District, Hangzhou City, Zhejiang Province 311100 Patentee after: Hangzhou Humai Technology Co.,Ltd. Country or region after: China Address before: 071002 No. 54 East 180 Road, Hebei, Baoding Patentee before: HEBEI University Country or region before: China |