CN104518023A - 高压ldmos器件 - Google Patents
高压ldmos器件 Download PDFInfo
- Publication number
- CN104518023A CN104518023A CN201310460839.9A CN201310460839A CN104518023A CN 104518023 A CN104518023 A CN 104518023A CN 201310460839 A CN201310460839 A CN 201310460839A CN 104518023 A CN104518023 A CN 104518023A
- Authority
- CN
- China
- Prior art keywords
- type
- layer
- voltage
- withstand voltage
- ldmos device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910044991 metal oxide Inorganic materials 0.000 title abstract description 3
- 150000004706 metal oxides Chemical class 0.000 title abstract description 3
- 239000004065 semiconductor Substances 0.000 title abstract description 3
- 239000000758 substrate Substances 0.000 claims abstract description 15
- 108010075750 P-Type Calcium Channels Proteins 0.000 claims description 9
- 238000007493 shaping process Methods 0.000 claims description 5
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 238000001259 photo etching Methods 0.000 claims description 3
- 230000008901 benefit Effects 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 6
- 108091006146 Channels Proteins 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000005684 electric field Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7801—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/7816—Lateral DMOS transistors, i.e. LDMOS transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0607—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
- H01L29/0611—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
- H01L29/0615—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
- H01L29/0619—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
- H01L29/0623—Buried supplementary region, e.g. buried guard ring
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/08—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/0843—Source or drain regions of field-effect devices
- H01L29/0847—Source or drain regions of field-effect devices of field-effect transistors with insulated gate
- H01L29/0852—Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
- H01L29/0873—Drain regions
- H01L29/0878—Impurity concentration or distribution
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0607—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
- H01L29/0611—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
- H01L29/0615—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
- H01L29/063—Reduced surface field [RESURF] pn-junction structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/1095—Body region, i.e. base region, of DMOS transistors or IGBTs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42364—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
- H01L29/42368—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
一种高压LDMOS(横向双扩散金属氧化物半导体)器件,包括P型沟道区、N型漂移区、耐压层以及位于底部的P型衬底,所述耐压层位于P型衬底及N型漂移区之间。本发明高压LDMOS器件通过引入耐压层,使得工艺上降低了推阱时间,提高了电流通道截面面积,改善导通电阻,同时通过提高纵向耐压提升横向耐压。
Description
技术领域
本发明涉及集成电路领域,尤其涉及一种高压LDMOS器件。
背景技术
由于BCD(bipolar-CMOS-DMOS)技术的高压、低功耗、集成度高的优势,由BCD技术制成的HVIC(高压集成电路)、SPIC(智能功率集成电路)等集成电路越来越多的应用于马达驱动、大功率LED照明以及白色家电的IPM(智能功率模块)变频模块中。BCD技术的核心器件UHV-NLDMOS(超高压-N型横向双扩散金属氧化物半导体)更以耐压高、低导通电阻占据开发难度之首,各大公司竞相推出各具特色的器件结构。为了获得低导通电阻而形成深结、浓度高的N型(电子型)漂移区,但只能获得低耐压值;通过在N型漂移区表面形成沿沟道方向带状分布的P型(空穴型)降场层,经过推阱形成一定结深,以达到与N型深结内的电荷平衡来增强漂移区耗尽,提高耐压;而经过热过程后,N型漂移区杂质浓度受到P型降场层杂质的影响而降低,有效电流截面通道减小,削弱电流流经的路径,相反地提高了导通电阻。因此为获得高耐压、低导通电阻,必须通过其它途径降低P型降场层杂质对N型漂移区杂质浓度的负面影响,扩展有效电流通道,降低导通电阻并获得高耐压值。
由于现有技术无法同时兼顾高耐压及低导通电阻的正向需求,同时由于N型漂移区推阱时间长,带来成本和能耗的负面影响,需要提出新的器件以进行工艺和器件两方面的优化、改善。
发明内容
本发明要解决的技术问题是提供一种可增加耐压且降低导通电阻高压LDMOS器件。
本发明的技术方案为一种高压LDMOS器件,包括P型沟道区、N型漂移区、耐压层以及位于底部的P型衬底,所述耐压层位于P型衬底及N型漂移区之间。
如上所述的高压LDMOS器件,所述耐压层包括交错排列的P型埋层及N型埋层。
如上所述的高压LDMOS器件,所述耐压层延伸至LDMOS器件的水平两端侧。
如上所述的高压LDMOS器件,所述耐压层垂直邻接N型漂移区。
如上所述的高压LDMOS器件,所述P型沟道区与N型漂移区呈水平排列,且P型沟道区与N型漂移区均位于耐压层的正上方。
如上所述的高压LDMOS器件,所述P型衬底位于耐压层下方,而未延伸至耐压层的两端。
如上所述的高压LDMOS器件,所述P型埋层及N型埋层均垂直于N型漂移区。
如上所述的高压LDMOS器件,所述耐压层在形成外延前成型。
如上所述的高压LDMOS器件,所述耐压层由掩膜版光刻注入推结成型。
如上所述的高压LDMOS器件:所述耐压层包括至少两个N型埋层及位于N型埋层之间的若干P型埋层。
本发明高压LDMOS器件通过引入耐压层,使得工艺上降低了推阱时间,提高了电流通道截面面积,降低导通电阻,同时通过提高纵向耐压提升横向耐压。
附图说明
附图1为发明第一实施例中高压LDMOS器件的结构示意图;
附图2为发明第一实施例中高压LDMOS器件的部分示意图。
具体实施方式
下面结合附图所示的各实施方式对本发明进行详细说明,但应当说明的是,这些实施方式并非对本发明的限制,本领域普通技术人员根据这些实施方式所作的功能、方法、或者结构上的等效变换或替代,均属于本发明的保护范围之内。
图1是本发明第一实施例中高压LDMOS器件100的示意图,其包括P型衬底10、位于P型衬底上方的耐压层20、位于耐压层20上方的P型沟道区30、N型漂移区40及位于N型漂移区上方P型降场层50。
所述P型衬底10作为高压LDMOS器件100的基底,P型衬底设置于耐压 层20的下方,而未延伸至耐压层20两侧及上方。P型沟道区30与N型漂移区40则呈水平排列,且两者均位于耐压层20的正上方。所述耐压层20在形成外延之前,采用掩膜版光刻注入推结成型,经过外延及后续的热过程,减缓浓度梯度,纵向上可与高压漂移区相连,使电势分布更为均匀。
所述耐压层包括P型埋层21与N型埋层22,P型埋层21与N型埋层22呈水平交错排列,所述P型埋层21及N型埋层22均垂直于N型漂移区40。耐压层20水平延伸至高压LDMOS器件的两端侧,其与位于其上方的N型漂移区在竖直方向上至少部分对齐,耐压层中的N型埋层22可实现电流路径更大、导通电阻更小的功效。在较佳实施例中,耐压层20垂直邻接N型漂移区。
当漏端外加高压从而引入的高电位时,P型埋层21与N型埋层22可削弱电场的横向及纵向矢量,并将一部分耗尽层推向P型衬底10深处,从而降低N型漂移区40及P型沟道区30表面的电场,提高器件整体耐压水平。同时,N型埋层22还可实现增大电流通道及降低导通电阻目的;P型埋层21的设置,则降低了P型降场层50的杂质注入剂量,可得到最大化的纵向耐压,使其大于由P型降场层及N型漂移区的横向可耐受电压,实现横向可变P型降场层尺寸,最终降低导通电阻同时提高耐压,降低栅漏电容,改善其开关特性。另外,雪崩击穿首先发生在N型埋层而不是P型衬底表面,增强了高压LDMOS器件100的可靠性。
图2为本发明的第二实施例,图2为高压LDMOS器件500的部分示意图(省略元件请参见图1),本实施例中除耐压层的结构外,其他结构与第一实施 例相同,在此不再赘述。本实施中的耐压层50包括N型埋层51以及位于N型埋层之间的多个P型埋层52构成,藉由N型埋层51及P型埋层52同样可实现降低导通电阻及提高耐压的功效(具体原理请参考第一实施例)。
综上所述,本发明通过高压LDMOS器件引入耐压层,使得工艺上降低了推阱时间,提高了电流通道截面面积,改善导通电阻,同时通过提高纵向耐压藉以提升横向耐压。
Claims (10)
1.一种高压LDMOS器件,其特征在于:包括P型沟道区、N型漂移区、耐压层以及位于底部的P型衬底,所述耐压层位于P型衬底及N型漂移区之间。
2.如权利要求1所述的高压LDMOS器件,其特征在于:所述耐压层包括交错排列的P型埋层及N型埋层。
3.如权利要求2所述的高压LDMOS器件,其特征在于:所述耐压层延伸至高压LDMOS器件的水平两端侧。
4.如权利要求2所述的高压LDMOS结构,其特征在于:所述耐压层垂直邻接N型漂移区。
5.如权利要求3所述的高压LDMOS器件,其特征在于:所述P型沟道区与N型漂移区呈水平排列,且P型沟道区与N型漂移区均位于耐压层的正上方。
6.如权利要求2所述的高压LDMOS器件,其特征在于:所述P型衬底位于耐压层下方,而未延伸至耐压层的两端。
7.如权利要求第2项所述的高压LDMOS器件,其特征在于:所述P型埋层及N型埋层均垂直于N型漂移区。
8.如权利要求2至7项中任一项所述的高压LDMOS器件,其特征在于:所述耐压层在形成外延前成型。
9.如权利要求8所述的高压LDMOS器件,其特征在于:所述耐压层由掩膜版光刻注入推结成型。
10.如权利要求1所述的高压LDMOS器件,其特征在于:所述耐压层包括至少两个N型埋层及位于N型埋层之间的若干P型埋层。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310460839.9A CN104518023B (zh) | 2013-09-30 | 2013-09-30 | 高压ldmos器件 |
PCT/CN2014/087970 WO2015043543A1 (zh) | 2013-09-30 | 2014-09-30 | 高压ldmos器件 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310460839.9A CN104518023B (zh) | 2013-09-30 | 2013-09-30 | 高压ldmos器件 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104518023A true CN104518023A (zh) | 2015-04-15 |
CN104518023B CN104518023B (zh) | 2017-12-15 |
Family
ID=52742102
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310460839.9A Active CN104518023B (zh) | 2013-09-30 | 2013-09-30 | 高压ldmos器件 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104518023B (zh) |
WO (1) | WO2015043543A1 (zh) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105679831A (zh) * | 2016-03-16 | 2016-06-15 | 上海华虹宏力半导体制造有限公司 | 横向扩散场效应晶体管及其制造方法 |
CN106231213A (zh) * | 2016-09-29 | 2016-12-14 | 北方电子研究院安徽有限公司 | 一种可消除smear效应的带快门ccd像元结构 |
CN107180856A (zh) * | 2017-05-26 | 2017-09-19 | 电子科技大学 | 一种pmos器件结构 |
CN108346696A (zh) * | 2017-01-22 | 2018-07-31 | 中芯国际集成电路制造(上海)有限公司 | Ldmos器件及其制造方法 |
TWI695434B (zh) * | 2018-05-25 | 2020-06-01 | 大陸商矽力杰半導體技術(杭州)有限公司 | 橫向擴散金屬氧化物半導體結構和其形成方法 |
CN112599599A (zh) * | 2020-12-03 | 2021-04-02 | 杰华特微电子(杭州)有限公司 | 横向双扩散晶体管及其制造方法 |
CN113410299A (zh) * | 2020-03-16 | 2021-09-17 | 电子科技大学 | 一种高耐压的n沟道LDMOS器件及其制备方法 |
CN113594254A (zh) * | 2021-07-29 | 2021-11-02 | 上海华虹宏力半导体制造有限公司 | 改善跨导的ldmos器件结构 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5883413A (en) * | 1995-07-19 | 1999-03-16 | U.S. Philips Corporation | Lateral high-voltage DMOS transistor with drain zone charge draining |
CN102034876A (zh) * | 2009-09-30 | 2011-04-27 | 株式会社电装 | 具有soi衬底的半导体装置及其制造方法 |
CN102130164A (zh) * | 2010-01-18 | 2011-07-20 | 上海华虹Nec电子有限公司 | Ldmos的埋层 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1996616A (zh) * | 2006-12-15 | 2007-07-11 | 东南大学 | 厚栅高压p型金属氧化物半导体管及其制备方法 |
CN201732791U (zh) * | 2010-08-12 | 2011-02-02 | 四川和芯微电子股份有限公司 | 横向扩散金属氧化物半导体结构 |
CN101969074B (zh) * | 2010-10-28 | 2012-07-04 | 电子科技大学 | 一种高压ldmos器件 |
CN102522428B (zh) * | 2011-12-21 | 2014-12-17 | 成都成电硅海科技股份有限公司 | 高压ldmos结构 |
-
2013
- 2013-09-30 CN CN201310460839.9A patent/CN104518023B/zh active Active
-
2014
- 2014-09-30 WO PCT/CN2014/087970 patent/WO2015043543A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5883413A (en) * | 1995-07-19 | 1999-03-16 | U.S. Philips Corporation | Lateral high-voltage DMOS transistor with drain zone charge draining |
CN102034876A (zh) * | 2009-09-30 | 2011-04-27 | 株式会社电装 | 具有soi衬底的半导体装置及其制造方法 |
CN102130164A (zh) * | 2010-01-18 | 2011-07-20 | 上海华虹Nec电子有限公司 | Ldmos的埋层 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105679831A (zh) * | 2016-03-16 | 2016-06-15 | 上海华虹宏力半导体制造有限公司 | 横向扩散场效应晶体管及其制造方法 |
CN106231213A (zh) * | 2016-09-29 | 2016-12-14 | 北方电子研究院安徽有限公司 | 一种可消除smear效应的带快门ccd像元结构 |
CN106231213B (zh) * | 2016-09-29 | 2023-08-22 | 北方电子研究院安徽有限公司 | 一种可消除smear效应的带快门ccd像元结构 |
CN108346696A (zh) * | 2017-01-22 | 2018-07-31 | 中芯国际集成电路制造(上海)有限公司 | Ldmos器件及其制造方法 |
CN107180856A (zh) * | 2017-05-26 | 2017-09-19 | 电子科技大学 | 一种pmos器件结构 |
CN107180856B (zh) * | 2017-05-26 | 2020-01-17 | 电子科技大学 | 一种pmos器件结构 |
TWI695434B (zh) * | 2018-05-25 | 2020-06-01 | 大陸商矽力杰半導體技術(杭州)有限公司 | 橫向擴散金屬氧化物半導體結構和其形成方法 |
CN113410299A (zh) * | 2020-03-16 | 2021-09-17 | 电子科技大学 | 一种高耐压的n沟道LDMOS器件及其制备方法 |
CN112599599A (zh) * | 2020-12-03 | 2021-04-02 | 杰华特微电子(杭州)有限公司 | 横向双扩散晶体管及其制造方法 |
CN113594254A (zh) * | 2021-07-29 | 2021-11-02 | 上海华虹宏力半导体制造有限公司 | 改善跨导的ldmos器件结构 |
CN113594254B (zh) * | 2021-07-29 | 2024-01-23 | 上海华虹宏力半导体制造有限公司 | 改善跨导的ldmos器件结构 |
Also Published As
Publication number | Publication date |
---|---|
WO2015043543A1 (zh) | 2015-04-02 |
CN104518023B (zh) | 2017-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104518023A (zh) | 高压ldmos器件 | |
CN101510561B (zh) | 超结纵向双扩散金属氧化物半导体管 | |
CN103165678B (zh) | 一种超结ldmos器件 | |
CN104992977B (zh) | Nldmos器件及其制造方法 | |
CN101552291B (zh) | N沟道超结纵向双扩散金属氧化物半导体管 | |
CN102376762B (zh) | 超级结ldmos器件及制造方法 | |
CN105070759A (zh) | Nldmos器件及其制造方法 | |
CN103280462B (zh) | 一种高鲁棒性的p型对称横向双扩散场效应晶体管 | |
CN109755241B (zh) | 一种功率mosfet器件 | |
CN104617149B (zh) | 隔离型nldmos器件及其制造方法 | |
CN103413830A (zh) | 一种横向高压mosfet及其制造方法 | |
CN106129117A (zh) | 一种高可靠性的横向双扩散金属氧化物半导体管 | |
CN104659091A (zh) | Ldmos器件及制造方法 | |
CN105206675A (zh) | Nldmos器件及其制造方法 | |
CN102263125A (zh) | 一种横向扩散金属氧化物功率mos器件 | |
CN104037231B (zh) | 一种高边横向双扩散场效应晶体管 | |
CN103413831A (zh) | 一种横向高压器件及其制造方法 | |
CN103035525A (zh) | 高压隔离n型ldmos器件的制造方法 | |
CN104201203B (zh) | 高耐压ldmos器件及其制造方法 | |
CN101393857A (zh) | 在超高密度沟槽型功率器件设计中实现分阱结构的方法 | |
CN102522428A (zh) | 高压ldmos结构 | |
CN102790092A (zh) | 一种横向高压dmos器件 | |
CN103560148B (zh) | 一种超结器件的结终端结构及其制造方法 | |
CN102983161A (zh) | 非埋层的双深n型阱高压隔离n型ldmos及制造方法 | |
CN103426913B (zh) | 一种部分soi超结高压功率半导体器件 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20171031 Address after: 214028 Xinzhou Road, Wuxi national hi tech Industrial Development Zone, Jiangsu, China, No. 8 Applicant after: Wuxi Huarun Shanghua Technology Co., Ltd. Address before: 214028 Xinzhou Road, Wuxi national hi tech Industrial Development Zone, Jiangsu, China, No. 8 Applicant before: Wuxi CSMC Semiconductor Co., Ltd. |
|
TA01 | Transfer of patent application right | ||
GR01 | Patent grant | ||
GR01 | Patent grant |