CN104488048B - NdFeB系烧结磁体的制造方法 - Google Patents
NdFeB系烧结磁体的制造方法 Download PDFInfo
- Publication number
- CN104488048B CN104488048B CN201380039498.6A CN201380039498A CN104488048B CN 104488048 B CN104488048 B CN 104488048B CN 201380039498 A CN201380039498 A CN 201380039498A CN 104488048 B CN104488048 B CN 104488048B
- Authority
- CN
- China
- Prior art keywords
- hydrogen
- ndfeb
- micropowder
- based sintered
- sintered magnets
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C14/00—Alloys based on titanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/0266—Moulding; Pressing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/14—Treatment of metallic powder
- B22F1/142—Thermal or thermo-mechanical treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/004—Filling molds with powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/16—Both compacting and sintering in successive or repeated steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/10—Ferrous alloys, e.g. steel alloys containing cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/0536—Alloys characterised by their composition containing rare earth metals sintered
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0573—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/06—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
- H01F1/08—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/06—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
- H01F1/08—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
- H01F1/086—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together sintered
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/026—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C2202/00—Physical properties
- C22C2202/02—Magnetic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0577—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Hard Magnetic Materials (AREA)
- Powder Metallurgy (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
本发明的课题在于提供一种制造NdFeB系烧结磁体的方法,所述NdFeB系烧结磁体在用作晶界扩散法的基材时RH容易穿过富稀土相而扩散,进而基材自身的矫顽力高。该方法具备如下工序:氢破碎工序(步骤S1):通过使NdFeB系合金块吸存氢来将该NdFeB系合金块粗破碎,由此制作粗粉末;微粉碎工序(步骤S2):通过进一步粉碎该粗粉末而制作微粉末;填充工序(步骤S3):将该微粉末填充到填充容器中;取向工序(步骤S4):在将微粉末填充在填充容器中的状态下进行取向;烧结工序(步骤S5):在将取向工序后的微粉末填充在填充容器中的状态下进行烧结;进行从氢破碎工序到取向工序为止的各工序时,均不进行用于使该氢破碎工序中吸存的氢脱离的脱氢加热和抽真空,在无氧气氛下进行从氢破碎工序到烧结工序为止的各工序。
Description
技术领域
本发明涉及NdFeB(钕·铁·硼)系烧结磁体的制造方法。此处,“NdFeB系磁体”是指以Nd2Fe14B为主相的磁体,但不限于仅含有Nd、Fe和B的磁体,也可以是含有Nd以外的稀土元素、Co、Ni、Cu、Al等其它元素的磁体。本发明的NdFeB系烧结磁体的制造方法包括如下两者:制造用于进行基于后述的晶界扩散法的处理(以下,称为“晶界扩散处理”)的基材的方法,以及制造其自身用作磁体而不进行晶界扩散处理的磁体的方法。
背景技术
NdFeB系烧结磁体于1982年被佐川(本发明人)等发现,其具有显著超越当时的永久磁体的特性,具有能够由Nd(稀土类的一种)、铁和硼这样的较丰富且廉价的原料来制造的优点。因此,NdFeB系烧结磁体被应用于混合动力汽车、电动汽车的驱动用马达、电动辅助型汽车用马达、产业用马达、硬盘等的音圈马达、高级扬声器、耳机、永久磁体式磁共振诊断装置等各种制品中。这些用途中使用的NdFeB系烧结磁体要求具有高矫顽力HcJ和高最大磁能积(BH)max。
已知在NdFeB系烧结磁体中,通过使内部存在Dy、Tb等重稀土元素RH,在施加与磁化方向相反的磁场时,难以产生反向磁畴,由此使矫顽力提高。反向磁畴具有最初在NdFeB系磁体的主相粒子的表面附近产生、并从该处向主相粒子的内部和相邻的主相粒子扩散这样的特性。因此,为了防止最初的反向磁畴的产生,只要RH存在于主相粒子的表面附近即可,由此能够防止在主相粒子表面产生反向磁畴。另一方面,若RH的含量增加,则剩余磁通密度Br降低,由此会产生最大磁能积(BH)max也降低这样的问题。因此,为了 尽量抑制最大磁能积(BH)max的降低、并且提高矫顽力(使反向磁畴难以形成),理想的是,与主相粒子的内部相比,使表面附近存在更高浓度的RH。
作为使NdFeB系烧结磁体中存在RH的方法,有在制作起始合金的阶段添加RH的方法(单合金法)。另外,有制作不含RH的主相系合金和添加了RH的晶界相系合金这2种起始合金的粉末并将它们相互混合、使其烧结的方法(双合金法)。进而,还有如下方法:在制作NdFeB系烧结磁体后,将其作为基材,通过对表面涂布、蒸镀等而使RH附着,并进行加热,由此使RH从基材表面穿过基材中的晶界而扩散至该基材内部(晶界扩散法)(专利文献1)。
这些方法之中,对于单合金法而言,由于在起始合金粉末的阶段中主相粒子内就均匀地包含RH,因此会导致基于其而制作的烧结磁体中在主相粒子内也包含RH。因此,通过单合金法制作的烧结磁体虽然矫顽力提高,但最大磁能积降低。与此相对,对于双合金法而言,能够使RH大多存在于主相粒子间的表面附近。因此,与单合金法相比可以抑制最大磁能积的降低。另外,与单合金法相比能够减少作为稀有金属的RH的用量。
另一方面,对于晶界扩散法而言,附着在基材表面的RH穿过因加热而液化的基材内的晶界并向其内部扩散。因此,晶界中的RH的扩散速度明显比从晶界向主相粒子内部的扩散速度快,RH被迅速地供给至基材内的深处。与此相对,由于主相粒子仍为固体,因此从晶界向主相粒子内的扩散速度慢。通过利用该扩散速度之差,调整热处理温度和时间,能够实现如下理想状态:仅在非常接近基材中的主相粒子的表面(晶界)的区域中Dy、Tb浓度高,在主相粒子的内部Dy、Tb浓度低。另外,晶界扩散处理时的热处理温度也比烧结温度低,与双合金法相比,由于抑制了主相粒子的熔融而比双合金法更加抑制RH向主相粒子内的侵入。因此,可以比双合金法更加抑制最大磁能积(BH)max的降低。另外,能够比双合金法更加抑制作为稀有金属的RH的用量。
另一方面,作为用于制造NdFeB系烧结磁体的方法,有加压磁体制造方法和无加压磁体制造方法。加压磁体制造方法为一直以来广泛使用的方法:将起始合金的微粉末(以下记为“合金粉末”)填充到模具中,利用压制机对合金粉末施加压力,并且施加磁场,由此同时进行压缩成型体的制作和该压缩成型体的取向处理,加热从模具中取出的压缩成型体并使其烧结。无加压磁体制造方法为近年发现的方法,该方法如下:对填充在规定填充容器中的合金粉末不进行压缩成型,而是以填充在该填充容器中的状态直接进行取向并烧结(专利文献2)。
对于加压磁体制造方法,为了制作压粉体而需要大型的压制机,因此难以在密闭空间内进行从填充到烧结为止的操作,与其相对,对于无加压磁体制造方法,由于不使用压制机,因此具有可以进行这样的操作的特长。
现有技术文献
专利文献
专利文献1:国际公开WO2006/043348号公报
专利文献2:日本特开2006-019521号公报
专利文献3:国际公开WO2011/004894号公报
非专利文献
非专利文献1:Rex Harris and A.J.Williams、"Rare Earth Magnets"、[online]、2001年8月7日、[2012年7月17日检索]、Internet<URL:http://www.azom.com/article.aspx?ArticleID=637>
发明内容
发明要解决的问题
晶界扩散法中,通过蒸镀/涂布等而附着在基材表面的RH向基材内的扩散容易程度、能够进行扩散的从基材表面起的深度等明显受到晶界状态的影响。本发明人发现:存在于晶界中的富稀土相(与主相粒子相比稀土元素的比率更高的相)成为通过晶界扩散法使RH扩散时的主要通路,为了使RH从基材表面扩散至充分的深度,理想的是,在基材的晶界中,富稀土相连续而在中途无中断(专利文献3)。
其后,本发明人进一步进行实验时,发现了以下内容。在NdFeB系烧结磁体的制造中,从减小合金粉末的粒子间的摩擦、进行取向时粒子容易旋转等的理由出发,会在合金粉末中添加有机系润滑剂,但该润滑剂中含有碳。该碳的大部分残留在NdFeB系烧结磁体中。其中,残留在晶界三重点(被3个以上主相粒子包围的晶界部分)的碳相互聚集,在富稀土相中形成富碳相(碳浓度比NdFeB系烧结磁体整体的平均更高的相)。如上所述,存在于晶界中的富稀土相成为使RH向NdFeB系烧结磁体的内部扩散时的主要通路,但富稀土相中的富碳相发挥了像将RH的扩散通路堵塞的堤坝那样的作用,阻碍RH经由晶界的扩散。
本发明要解决的问题是:提供NdFeB系烧结磁体的制造方法,所述NdFeB系烧结磁体在用作晶界扩散法的基材时,RH容易穿过富稀土相而扩散,由此可获得更高的矫顽力。另外,根据本发明,还提供即使作为未进行晶界扩散处理的磁体也具有高矫顽力的NdFeB系烧结磁体及其制造方法。
用于解决问题的方案
本发明的NdFeB系烧结磁体的制造方法的特征在于,其具备如下工序:
a)氢破碎工序:通过使NdFeB系合金块吸存氢来将该NdFeB系合金块粗破碎,由此制作粗粉末;
b)微粉碎工序:通过进行进一步粉碎前述粗粉末的微粉碎来制作微粉末;
c)填充工序:将前述微粉末填充到填充容器中;
d)取向工序:在将上述微粉末填充在前述填充容器中的状态下使该微 粉末进行取向;
e)烧结工序:在将前述取向工序后的微粉末填充在前述填充容器中的状态下进行烧结;
进行从前述氢破碎工序到前述取向工序为止的各工序时,均不进行用于使在该氢破碎工序中吸存的氢脱离的脱氢加热和抽真空,
在无氧气氛下进行从前述氢破碎工序到前述烧结工序为止的各工序。
此处,对本申请使用的用语进行说明。
“脱氢加热”如上所述,是指出于使在氢破碎工序中NdFeB系合金粗粉末、NdFeB系合金微粉末吸存的氢脱离的目的而进行的加热,与用于使NdFeB系合金的微粉末烧结的加热有所区别。通常,脱氢加热在比用于烧结的加热更低的温度下进行。
“抽真空”是指减压至低于大气压。抽真空可以使用旋转泵、隔膜泵、干泵、涡轮分子泵等通常的真空装置。
“NdFeB系合金块”是指以NdFeB系合金为材料且比NdFeB系合金的粗粉末、微粉末大的物体。作为NdFeB系合金块,代表性的可列举出通过薄带铸造法制作的NdFeB系合金片,也包括其以外的NdFeB系合金制的块状物体。另外,“NdFeB系合金”除Nd、Fe、B这3种元素以外,也可以含有Nd以外的稀土元素、Co、Ni、Al等元素。
“微粉碎”是指粉碎通过将NdFeB系合金块进行氢破碎而得到的粗粉末。微粉碎可以使用喷磨法、球磨法等已知的方法。需要说明的是,本发明中,在氢破碎之后进行多个阶段的粉碎处理时,这些多个阶段的粉碎处理全部包括在“微粉碎”中。
如前所述,作为NdFeB系烧结磁体的制造方法,有加压磁体制造方法和无加压磁体制造方法,以往的加压磁体制造方法中,从以下两个理由出发进行用于使氢脱离的脱氢加热。第1理由是因为:包含氢化合物的合金粉末容易氧化,因此若不进行脱氢处理,则由于合金块中包含的Nd2Fe14B、稀土类吸存氢而产生的氢化合物氧化,由此制造后的磁体的磁特性降低。第2理由是因为:若不进行脱氢处理,则在成型工序后氢自然地或由于烧结时的加热而脱离,由此,在被完全烧结前的压粉体内部中,氢成为分子和气体并膨胀,有时会损坏压粉体。
另外,以往的无加压磁体制造方法中,也直接使用了在加压磁体制造方法中进行的脱氢工序。
本发明人为了制造磁特性更高的NdFeB系烧结磁体,重新回顾了各工序。其结果发现,不进行脱氢加热,通过预先使微粉末(合金粉末)包含氢化合物,从而可在进行取向前(通常在将合金粉末填充到填充容器中时)等利用合金粉末中添加的润滑剂烧结时的加热而被去除。认为这是因为,通过由该加热而产生的氢气,润滑剂氢化分解,碳链变短而蒸发。因此,通过本发明的制造方法制造的NdFeB系烧结磁体中,能够将含碳率和富碳相的体积比率抑制在低水平,因而能够提高磁特性。另外,将这样得到的NdFeB系烧结磁体作为基材进行晶界扩散处理时,可以使RH不受富碳相阻碍地穿过晶界中的富稀土相扩散至烧结体内部充分的深度,因此还能够得到矫顽力高的NdFeB系烧结磁体。
另外,脱氢加热通常需要数小时左右的时间,但本发明的NdFeB系烧结磁体的制造方法不进行脱氢加热,从而能够省略脱氢加热所需的时间。即,能够进行制造工序的简略化、制造时间的缩短和制造成本的削减。
进而,本发明通过在无氧气氛下进行从氢破碎工序到烧结工序为止的各工序,可防止由氢吸存产生的包含氢化合物的合金粉末发生氧化。另外,本发明中,由于进行无加压磁体制造方法,因此也不会像加压磁体制造方法那样产生氢成为气体而膨胀、损坏压粉体这样的问题。
其中,为了形成无氧气氛而进行抽真空时,存在由于该抽真空而使氢从 合金粉末脱离的担心。因此,本发明的NdFeB系烧结磁体的制造方法中,在从氢破碎工序到前述取向工序为止的工序中,不进行抽真空。需要说明的是,此时,作为在无氧气氛下进行微粉碎工序和取向工序的方法,例如可列举出用氮、氩等非活性气体充满合金粉末的周围。尤其理想的是使用稀有气体。
烧结工序中,理想的是,至少从开始升温至达到烧结温度以下的规定温度为止的阶段不进行抽真空。以下说明其理由。
已知通常在对吸存了氢的NdFeB系合金进行加热时,在从室温到400℃的温度范围内,与主相中所吸存的氢、富稀土相键合的氢的一部分会脱离(参照非专利文献1)。由于这样脱离的氢气体而使润滑剂发生氢化分解,能够促进润滑剂的蒸发。假设在高于500℃的高温的状态下有润滑剂残留,则NdFeB系合金与润滑剂反应,导致合金中的碳量增加。
因此,通过从开始升温至达到前述规定温度为止的阶段不进行抽真空,延长由合金产生的氢气与润滑剂接触的时间,由此能够效率良好且充分地进行氢化分解,因此能够更加减少NdFeB系烧结磁体的碳含量。此处,规定温度典型的是设为氢的脱离温度的范围内的100~400℃。需要说明的是,达到该氢脱离温度后,为了提高烧结密度,理想的是进行抽真空。
进而,根据本发明,通过使氢遍布在合金块中,粗粉末的粒子变得更细并且粗粉末脆化,因此能够提高微粉碎的速度,由此能够提高制造效率。
发明的效果
根据本发明的NdFeB系烧结磁体的制造方法,能够得到含碳率低、由此磁特性高的NdFeB系烧结磁体。另外,通过将这样得到的NdFeB系烧结磁体作为基材进行晶界扩散处理,可以使RH不受富碳相阻害地穿过晶界中的富稀土相扩散至烧结体内部充分的深度,因此能够得到矫顽力高的NdFeB系烧结磁体。进而,能够得到制造工序的简略化、制造时间的缩短、制造成本的削减等各种效果。
附图说明
图1是表示本发明的NdFeB系烧结磁体的制造方法的一个实施例的流程图。
图2是表示比较例的NdFeB系烧结磁体的制造方法的流程图。
图3是表示本实施例的NdFeB系烧结磁体的制造方法中的氢破碎工序的温度历程的图表。
图4是表示比较例的NdFeB系烧结磁体的制造方法中的氢破碎工序的温度历程的图表(a)、以及将图3的图表对应图4的(a)图表的刻度而表示的(b)。
具体实施方式
以下,说明本发明的NdFeB系烧结磁体的制造方法的一个实施例。
本实施例的NdFeB系烧结磁体的制造方法如图1所示,具备如下工序:氢破碎工序(步骤S1):通过使利用薄带铸造法预先制作的NdFeB系合金的合金片吸存氢来将该NdFeB系合金片粗破碎;微粉碎工序(步骤S2):在氢破碎工序中NdFeB系合金片被氢破碎后未进行脱氢加热而得到的NdFeB系合金的粗粉末中,混合0.05~0.1wt%的辛酸甲酯等润滑剂,使用喷磨装置,在氮气气流中进行微粉碎,使得利用激光衍射法测定的粒度分布的中值(D50)为3.2μm以下;填充工序(步骤S3):在经微粉碎的微粉末(合金粉末)中混合0.05~0.15wt%的月桂酸甲酯等润滑剂,并以3.0~3.5g/cm3的密度填充到模具(填充容器)内;取向工序(步骤S4):使模具内的合金粉末在室温下在磁场中取向;烧结工序(步骤S5):对经取向的模具内的合金粉末进行烧结。
步骤S3~S5的工序通过无加压工序进行。另外,步骤S1不进行抽真空, 而是在氢气中进行,步骤S2~S4不进行抽真空,而是在非活性气体中进行。需要说明的是,在步骤S1之前,为了防止合金的氧化并且防止氢与氧的爆鸣反应而确保安全性,也可以进行抽真空,但这是在开始氢破碎工序前的工序。另外,对于步骤S5,在本实施例的温度上升至烧结温度为止的过程中,直至达到500℃为止在氩气中进行,其后在真空中进行。需要说明的是,在这些各步骤中,非活性气体可以使用氩气、氦气等稀有气体、氮气、或者它们的混合气体等。
此处,为了比较,使用图2对进行脱氢加热和/或抽真空的例子进行说明。该例子中的制造方法除了以下两处不同点之外与图1的流程图所示的方法相同。第一处不同点是:在氢破碎工序中使NdFeB系合金吸存氢后,进行为了使该氢脱离的脱氢加热和/或抽真空(步骤S1A)。即,步骤S1A中,进行以下的任一种操作:(i)进行脱氢加热(不进行抽真空)、(ii)进行抽真空(不进行脱氢加热)、(iii)进行脱氢加热和抽真空。第二处不同点是:在取向工序中,在磁场中取向之前或过程中,可以对合金粉末进行加热(但不必须)(步骤S4A)。伴随着这样的加热的取向称作“升温取向”。该升温取向是出于如下目的而进行的:在如本实施例这样使用矫顽力高的合金粉末时,在取向工序时暂时降低合金粉末的各粒子的矫顽力而抑制粒子间的排斥,由此提高制造后的NdFeB系烧结磁体的取向度,但由于包括加热工序和冷却工序而生产效率差。因此,本实施例中不进行升温取向。
接着,着眼于脱氢加热和抽真空之中的前者,使用氢破碎工序的温度历程对有无脱氢加热的区别进行说明。图3的图表是在无脱氢加热的NdFeB系烧结磁体的制造方法中的氢破碎工序(步骤S1、或比较例的步骤S1A之中上述(ii)的情况)的温度历程、图4的(a)的图表是有脱氢加热的NdFeB系烧结磁体的制造方法中的氢破碎工序(步骤S1A之中上述(i)、(iii)的情况)的温度历程。需要说明的是,图4的(b)的图表是将图3的图表的纵轴和横 轴的刻度对应于图4的(a)的图表的刻度而表示的。
在氢破碎工序中,使NdFeB系合金块吸存氢。该氢吸存过程是放热反应,因此NdFeB系合金块通过自身发热而温度上升至200~300℃左右。在该过程中,合金块中的富Nd相与氢反应而膨胀、产生大量开裂(裂纹)而破碎。另外,氢的一部分也被主相吸存。通常在自然放冷后,出于抑制合金的氧化的目的,为了使与富Nd相反应的氢的一部分脱离而加热至500℃左右(脱氢加热),自此自然冷却至室温。图4的(a)所示的有脱氢加热的例子中,包括使氢脱离所需要的时间,氢破碎工序需要约1400分钟的时间。
另一方面,无脱氢加热时,如图3和图4的(b)所示,在氢吸存过程中的发热造成的温度上升后,即使稍微延长冷却至室温的时间,也能够以约400分钟结束氢破碎工序。因此,与图4的(a)的例子相比,能够将制造时间缩短约1000分钟(16.7小时)。如此,通过不进行脱氢加热,可以进行制造工序的简略化以及大幅缩短制造时间。
以下示出利用本实施例的方法和比较例的方法实际制作NdFeB系烧结磁体的实验结果。本实施例中使用的非活性气体在微粉碎工序(步骤S2)中为氮气、在其以外的工序中为氩气。在比较例中,未进行氢破碎工序(步骤S1A)中的脱氢加热和取向工序(步骤S4A)中的升温取向,但进行了氢破碎工序中的抽真空(即,采用上述(ii)的方法)。原料的NdFeB系合金块在本实施例、比较例中均使用具有相同组成的合金块。其组成为:Nd:26.95、Pr:4.75、Dy:0、Co:0.94、B:1.01、Al:0.27、Cu:0.1、Fe:剩余部分(单位均为重量%)。
该实验的结果,比较例制作的NdFeB系烧结磁体的矫顽力为17.6kOe,而本实施例制作的NdFeB系烧结磁体的矫顽力提高到18.1kOe。
另外,将本实施例和比较例制作的NdFeB系烧结磁体作为基材,如下所述地进行实施晶界扩散处理的实验。
首先,向以重量比80:20的比例混合Tb:92wt%、Ni:4.3wt%、Al:3.7wt%的TbNiAl合金粉末与有机硅润滑脂而成的混合物10g中添加0.07g硅油,将由此获得的糊剂在基材的两磁极面(7mm×7mm的面)分别涂布10mg。
接着,将涂布有上述糊剂的长方体基材载置于设置有多个尖形的支撑部的钼制托盘中,用该支撑部支撑长方体基材,并在10-4Pa的真空中加热。加热温度和加热时间分别设为880℃、10小时。其后,骤冷至室温附近,接着以500℃加热2小时,再次骤冷至室温。由此,完成晶界扩散处理。
该晶界扩散处理实验的结果,比较例制作的NdFeB系烧结磁体的矫顽力为25.5kOe,而本实施例制作的NdFeB系烧结磁体的矫顽力提高到26.4kOe。
如上所述,在本实施例中确认到,通过不进行抽真空,得到的NdFeB系烧结磁体的磁特性提高。
另外,本实施例中,不仅磁特性提高、微粉碎工序中的粉碎速度也提高。具体而言,从粗粉末微粉碎至平均粒径2μm(用激光法测定的D50值)时,粉碎速度在比较例中为12g/min,而在本实施例中为21g/min,提高了约7成。可认为这是因为:在本实施例中,以在粗粉末中吸存了更多氢的状态进行微粉碎,尤其是在主相中的氢的吸存量多。如上所述,通过不进行用于脱氢的抽真空,能够缩短成为大量生产NdFeB系烧结磁体时的时间瓶颈的微粉碎工序,能够提高制造效率。
Claims (2)
1.一种NdFeB系烧结磁体的制造方法,其特征在于,其具备如下工序:
a)氢破碎工序:通过使NdFeB系合金块吸存氢来将该NdFeB系合金块粗破碎,由此制作粗粉末;
b)微粉碎工序:通过进行进一步粉碎所述粗粉末的微粉碎来制作微粉末;
c)填充工序:将所述微粉末填充到填充容器中;
d)取向工序:在将所述微粉末填充在所述填充容器中的状态下使该微粉末进行取向;
e)烧结工序,在将所述取向工序后的微粉末填充在所述填充容器中的状态下进行烧结;
进行从所述氢破碎工序到所述取向工序为止的各工序时,均不进行用于使在该氢破碎工序中吸存的氢脱离的脱氢加热和抽真空,
在无氧气氛下进行从所述氢破碎工序到所述烧结工序为止的各工序,
所述烧结工序的至少从开始升温至达到烧结温度以下的100~500℃的范围内的规定温度为止的阶段不进行抽真空。
2.根据权利要求1所述的NdFeB系烧结磁体的制造方法,其特征在于,所述规定温度为100~400℃的范围内的温度。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012164206 | 2012-07-24 | ||
JP2012-164206 | 2012-07-24 | ||
PCT/JP2013/067677 WO2014017249A1 (ja) | 2012-07-24 | 2013-06-27 | NdFeB系焼結磁石の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104488048A CN104488048A (zh) | 2015-04-01 |
CN104488048B true CN104488048B (zh) | 2017-11-28 |
Family
ID=49997065
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201380039498.6A Active CN104488048B (zh) | 2012-07-24 | 2013-06-27 | NdFeB系烧结磁体的制造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9837207B2 (zh) |
EP (1) | EP2879142B1 (zh) |
JP (1) | JP6271425B2 (zh) |
KR (1) | KR101599663B1 (zh) |
CN (1) | CN104488048B (zh) |
WO (1) | WO2014017249A1 (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014148356A1 (ja) | 2013-03-18 | 2014-09-25 | インターメタリックス株式会社 | RFeB系焼結磁石製造方法及びRFeB系焼結磁石 |
WO2014148353A1 (ja) * | 2013-03-18 | 2014-09-25 | インターメタリックス株式会社 | RFeB系磁石製造方法、RFeB系磁石及び粒界拡散処理用塗布物 |
KR101711859B1 (ko) * | 2015-12-21 | 2017-03-03 | 주식회사 포스코 | 희토류 영구 자석의 제조 방법 |
CN108746640A (zh) * | 2018-05-22 | 2018-11-06 | 中铝山东依诺威强磁材料有限公司 | 一种利用烧结钕铁硼铸片同时进行热处理和氢碎的工艺 |
US11232890B2 (en) | 2018-11-06 | 2022-01-25 | Daido Steel Co., Ltd. | RFeB sintered magnet and method for producing same |
CN111029075B (zh) * | 2019-12-31 | 2020-12-29 | 烟台首钢磁性材料股份有限公司 | 一种钕铁硼磁粉的制备方法 |
CN111968813B (zh) * | 2020-07-10 | 2023-11-07 | 瑞声科技(南京)有限公司 | NdFeB系磁粉、NdFeB系烧结磁体及制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1969347A (zh) * | 2004-07-01 | 2007-05-23 | 因太金属株式会社 | 磁各向异性稀土类烧结磁体的制造方法及其制造装置 |
JP2012079726A (ja) * | 2010-09-30 | 2012-04-19 | Hitachi Metals Ltd | R−t−b−m系焼結磁石用合金の製造方法およびr−t−b−m系焼結磁石の製造方法 |
CN102498531A (zh) * | 2009-08-28 | 2012-06-13 | 因太金属株式会社 | NdFeB系烧结磁铁的制造方法、制造装置、及该制造方法所制造的NdFeB系烧结磁铁 |
CN103503087A (zh) * | 2011-12-27 | 2014-01-08 | 因太金属株式会社 | NdFeB系烧结磁体 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0917674A (ja) | 1995-06-26 | 1997-01-17 | Sumitomo Metal Ind Ltd | 希土類系焼結磁石の製造方法 |
WO1997001855A1 (fr) | 1995-06-26 | 1997-01-16 | Sumitomo Special Metals Company Limited | Procede de fabrication d'aimants en terres rares frittes |
EP1164599B1 (en) * | 2000-06-13 | 2007-12-05 | Shin-Etsu Chemical Co., Ltd. | R-Fe-B base permanent magnet materials |
JP2002246253A (ja) * | 2001-02-14 | 2002-08-30 | Tdk Corp | 焼結磁石の製造方法 |
US7056393B2 (en) * | 2001-05-30 | 2006-06-06 | Neomax, Co., Ltd. | Method of making sintered compact for rare earth magnet |
JP2005268538A (ja) | 2004-03-18 | 2005-09-29 | Neomax Co Ltd | 焼結型希土類永久磁石およびその製造方法 |
RU2367045C2 (ru) | 2004-10-19 | 2009-09-10 | Син-Эцу Кемикал Ко., Лтд. | Получение материала редкоземельного постоянного магнита |
JP2006274306A (ja) * | 2005-03-28 | 2006-10-12 | Tdk Corp | 希土類焼結磁石の製造方法 |
JP4391980B2 (ja) | 2005-11-07 | 2009-12-24 | インターメタリックス株式会社 | 磁気異方性希土類焼結磁石の製造方法及び製造装置 |
JP4798357B2 (ja) * | 2006-03-02 | 2011-10-19 | Tdk株式会社 | 希土類焼結磁石の製造方法 |
CN102842420B (zh) | 2006-09-15 | 2016-03-16 | 因太金属株式会社 | 耐腐蚀NdFeB烧结磁铁的制造方法 |
RU2427050C1 (ru) * | 2007-12-25 | 2011-08-20 | Улвак, Инк. | Способ изготовления постоянного магнита |
CN102483979B (zh) | 2009-07-10 | 2016-06-08 | 因太金属株式会社 | NdFeB烧结磁铁的制造方法 |
DE102010034230A1 (de) * | 2010-08-07 | 2012-02-09 | Daimler Ag | Expansionsvorrichtung zur Verwendung in einem Arbeitsmittelkreislauf und Verfahren zum Betrieb einer Expansionsvorrichtung |
JP5750915B2 (ja) | 2011-01-31 | 2015-07-22 | 日立金属株式会社 | 希土類系磁石用原料合金の水素粉砕粉の製造方法及び製造装置 |
CN103797549B (zh) * | 2011-12-27 | 2016-07-06 | 因太金属株式会社 | NdFeB系烧结磁体 |
WO2013100011A1 (ja) * | 2011-12-27 | 2013-07-04 | インターメタリックス株式会社 | NdFeB系焼結磁石 |
CN105206372A (zh) | 2011-12-27 | 2015-12-30 | 因太金属株式会社 | NdFeB系烧结磁体 |
-
2013
- 2013-06-27 EP EP13822695.6A patent/EP2879142B1/en not_active Not-in-force
- 2013-06-27 CN CN201380039498.6A patent/CN104488048B/zh active Active
- 2013-06-27 WO PCT/JP2013/067677 patent/WO2014017249A1/ja active Application Filing
- 2013-06-27 KR KR1020147032439A patent/KR101599663B1/ko active IP Right Grant
- 2013-06-27 JP JP2014526830A patent/JP6271425B2/ja active Active
- 2013-06-27 US US14/397,564 patent/US9837207B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1969347A (zh) * | 2004-07-01 | 2007-05-23 | 因太金属株式会社 | 磁各向异性稀土类烧结磁体的制造方法及其制造装置 |
CN102498531A (zh) * | 2009-08-28 | 2012-06-13 | 因太金属株式会社 | NdFeB系烧结磁铁的制造方法、制造装置、及该制造方法所制造的NdFeB系烧结磁铁 |
JP2012079726A (ja) * | 2010-09-30 | 2012-04-19 | Hitachi Metals Ltd | R−t−b−m系焼結磁石用合金の製造方法およびr−t−b−m系焼結磁石の製造方法 |
CN103503087A (zh) * | 2011-12-27 | 2014-01-08 | 因太金属株式会社 | NdFeB系烧结磁体 |
Non-Patent Citations (1)
Title |
---|
《Preparation of sintered Nd-Fe-B magnets by pressless process》;Popov A G et al;《The Physics of Metals and Metallography》;20120417;第113卷(第4期);第331-340页 * |
Also Published As
Publication number | Publication date |
---|---|
KR101599663B1 (ko) | 2016-03-03 |
EP2879142A4 (en) | 2015-08-19 |
WO2014017249A1 (ja) | 2014-01-30 |
US9837207B2 (en) | 2017-12-05 |
US20150125336A1 (en) | 2015-05-07 |
JP6271425B2 (ja) | 2018-01-31 |
JPWO2014017249A1 (ja) | 2016-07-07 |
KR20140145632A (ko) | 2014-12-23 |
EP2879142B1 (en) | 2016-11-02 |
CN104488048A (zh) | 2015-04-01 |
EP2879142A1 (en) | 2015-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104488048B (zh) | NdFeB系烧结磁体的制造方法 | |
CN106941038B (zh) | 稀土烧结磁体及其制造方法 | |
JP4873008B2 (ja) | R−Fe−B系多孔質磁石およびその製造方法 | |
CN102918611B (zh) | 稀土类永磁体的制造方法和稀土类永磁体 | |
JP5999106B2 (ja) | R−t−b系焼結磁石の製造方法 | |
JP5218869B2 (ja) | 希土類−鉄−窒素系合金材、希土類−鉄−窒素系合金材の製造方法、希土類−鉄系合金材、及び希土類−鉄系合金材の製造方法 | |
WO2011007758A1 (ja) | R-t-b系焼結磁石の製造方法およびr-t-b系焼結磁石 | |
US8317937B2 (en) | Alloy for sintered R-T-B-M magnet and method for producing same | |
JP5120710B2 (ja) | RL−RH−T−Mn−B系焼結磁石 | |
JP4872887B2 (ja) | R−Fe−B系永久磁石用多孔質材料およびその製造方法 | |
US8262808B2 (en) | Permanent magnet and method of manufacturing same | |
KR101966785B1 (ko) | Nd-Fe-B계 자석의 제조방법 | |
CN103493159B (zh) | 稀土类磁铁的制造方法 | |
JP2011086830A (ja) | R−Fe−B系希土類焼結磁石及びその製造方法 | |
JP2013149862A (ja) | 希土類磁石の製造方法 | |
JP2012079726A (ja) | R−t−b−m系焼結磁石用合金の製造方法およびr−t−b−m系焼結磁石の製造方法 | |
JP6471669B2 (ja) | R−t−b系磁石の製造方法 | |
CN109940139A (zh) | R-t-b系稀土烧结磁铁用合金和r-t-b系稀土烧结磁铁 | |
JP2012253247A (ja) | 複合磁性材及びその製造方法 | |
JP2012195392A (ja) | R−t−b系永久磁石の製造方法 | |
JP6198103B2 (ja) | R−t−b系永久磁石の製造方法 | |
JP6691667B2 (ja) | R−t−b系磁石の製造方法 | |
JP2014192460A (ja) | R−t−x系圧粉磁石の製造方法、及びr−t−x系圧粉磁石 | |
JP2016169438A (ja) | R−t−b系希土類焼結磁石及びr−t−b系希土類焼結磁石用合金 | |
JP2004137582A (ja) | 希土類焼結磁石およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20200330 Address after: Aichi Patentee after: DAIDO STEEL Co.,Ltd. Address before: Gifu County, Japan Patentee before: INTERMETALLICS Co.,Ltd. |
|
TR01 | Transfer of patent right |