[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN104487801B - 在机床上测量的方法以及相应的机床设备 - Google Patents

在机床上测量的方法以及相应的机床设备 Download PDF

Info

Publication number
CN104487801B
CN104487801B CN201380024772.2A CN201380024772A CN104487801B CN 104487801 B CN104487801 B CN 104487801B CN 201380024772 A CN201380024772 A CN 201380024772A CN 104487801 B CN104487801 B CN 104487801B
Authority
CN
China
Prior art keywords
probe
analogue probe
measurement range
preferred
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380024772.2A
Other languages
English (en)
Other versions
CN104487801A (zh
Inventor
迈克尔·伍尔德里奇
保罗·穆尔
约翰·奥尔德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renishaw PLC
Original Assignee
Renishaw PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renishaw PLC filed Critical Renishaw PLC
Priority to CN201811375373.1A priority Critical patent/CN110076630B/zh
Publication of CN104487801A publication Critical patent/CN104487801A/zh
Application granted granted Critical
Publication of CN104487801B publication Critical patent/CN104487801B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • G01B21/045Correction of measurements
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/401Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for measuring, e.g. calibration and initialisation, measuring workpiece for machining purposes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50063Probe, measure, verify workpiece, feedback measured values

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

一种方法,其应用安装在机床上的模拟探针扫描物体,以便沿着物体表面上的名义测量线收集扫描的测量数据,所述模拟探针具有优选的测量范围。所述方法包括控制所述模拟探针和/或物体以便根据相对运动路线执行扫描操作,所述相对运动路线被构造成使得基于物体表面的假设特性,将使所述模拟探针沿着所述物体表面上的名义测量线获得在其优选测量范围内的数据,并且使得所述模拟探针移出其优选测量范围。

Description

在机床上测量的方法以及相应的机床设备
技术领域
本发明涉及一种测量制品的方法,尤其涉及一种应用安装在机床上的模拟测量工具扫描制品的方法。
背景技术
已知将测量探针安装在机床主轴中,用于相对于工件运动,以便测量所述工件。实践中,所述探针通常是接触触发式探针,例如如美国专利N0.4,153,998(McMurtry)中所描述的,它在所述探针的触针接触工件表面的时候产生触发信号。获得所述触发信号以进行机床的数字控制器(NC)的所谓的“跳跃”式输入。作为响应,停止物体和工件的相对运动,并且所述控制器获得机器位置的瞬时读数(即,主轴和探针相对于机器的位置)。这从机器的测量装置(诸如编码器)中获得,所述编码器在用于机器运动的伺服控制环路中提供位置反馈信息。应用这种系统的缺陷是:测量过程相对较慢,从而如果需要很多数目的测量点,则需要较长的测量时间。
还已知模拟测量探针(通常也称为扫描探针)。接触式模拟探针通常包括用于接触工件表面的触针,以及位于所述探针内的传感器,所述传感器测量所述触针相对于探针本体的偏转。美国专利N0.4,084,323(McMurtry)中显示了一个例子。在使用中,所述模拟探针相对于工件的表面移动,从而所述触针扫描所述表面,并且获得所述探针传感器的连续读数。将所述探针的偏转输出与所述机器的位置输出结合起来,就允许获得坐标数据,从而允许在整个扫描期间在非常多的点处发现工件表面的位置。因此,相比较应用接触触发式探针实际可能获得的测量,模拟探针允许获得对工件表面形状的更详细的测量。
正如将要理解的以及下面结合图2更详细解释的,模拟探针具有有限的测量范围。而且,所述模拟探针可以具有优选的测量范围。所述模拟探针能够获得在其优选测量范围之外的数据,但是在这个范围之外所获得的数据可能是较不优选的,例如因为它可能被认为相比较在优选测量范围内所获得的数据较不精确。优选测量范围的边界可以根据许多不同因素改变,包括探针的类型、所使用的校准常规,甚至例如被测量的物体。在许多情况下,优选确保当模拟探针沿着工件表面扫描时,使模拟探针保持在其优选测量范围内。接触式模拟探针的优选测量范围可以例如在任何给定尺寸下是+/-0.8毫米或者更小,例如在某些情况下小至在任何给定尺寸下是+/-0.3毫米。可以从触针的静止位置测量这些数值。另外,实际优选的测量范围可以比以上给出的数字甚至更小,因为可能需要最少量的偏转来输入优选测量范围。因此,虽然从所述静止位置所述优选测量范围可能是+/-0.5毫米,但是至少偏转的第一个+/-0.05毫米或者例如偏转的第一个+/-0.1毫米可能不在所述优选测量范围之内(这将在下面结合图2更详细地解释)。因此,正如将理解的,需要对探针/工件的位置关系进行实时的管理,以便避免以下情况:模拟探针落到其优选测量范围之外。
这就是为什么即使已经已知模拟探针本身很多年了,但模拟探针通常只是用于专用坐标测量机器(CMMs)。这是因为CMM具有专用的实时控制回路,以允许对探针偏转进行这种管理。特别地,在CMM中,提供一种控制器,所述控制器中装载有程序,所述程序限定测量探针相对于工件运动的预定运动路线。所述控制器由所述程序产生电机控制信号,所述控制信号被用来触发电机以便导致测量探针的运动。所述控制器还从机器的编码器接收实时位置数据,以及从模拟探针接收偏转数据(在接触式探针的情况下)。为了适应工件的材料条件的变化,存在专门的控制回路布置。这包括反馈模块,上述电机控制信号和偏转数据被供应到所述反馈模块中。所述反馈模块应用逻辑运算,以(基于所述偏转数据)连续地更新偏移控制矢量,进而在将所述偏移控制矢量发送至CMM的电机之前应用它调节从所述程序产生的上述电机控制信号,以便在模拟探针扫描工件时试图保持探针偏转位于所述优选测量范围内。这均发生在闭合控制环路内,并且反应时间小于l_2ms。例如在W02006/115923中对此进行了描述。
对于探针定位的这种紧密控制,加上处理实时触针偏转数据的能力,允许这种专门的CMM能够扫描与它们的期望形状偏离的复杂物体,甚至扫描未知形状的物体。
迄今为止,模拟探针还没有广泛地应用于机床扫描场合。这是由于许多商业上可获得的机床的内在性质,所述机床不会方便对CMM提供的模拟探针进行实时控制。这是因为机床主要被研制成机加工工件,并且在它们上面使用测量探针以测量工件基本上是事后的想法。因此机床通常不是构造成用于利用来自模拟测量探针的数据进行实时控制。事实上,情况常常是:机床没有内置的设置用于直接接收来自测量探针的偏转数据。相反,所述探针不得不与接口通讯(例如无线地),所述接口接收所述探针偏转数据并且将所述数据传输给一个分离的系统,所述系统随后将所述偏转数据与机器位置数据结合起来,以便随后形成完整的物体测量数据,例如如W02005/065884中所描述的。
这使得在机床上应用模拟探针来获得关于已知物体的扫描测量数据是困难的,这是因为与物体期望形状的任何变化可能造成探针的过偏转,因此造成测量过程失效(而在CMM上,探针的运动路线可以足够快地更新以确保探针没有过偏转)。这也使得难以在机床上应用模拟探针来获得关于未知物体的扫描测量数据,这是因为这内在地需要足够快地更新探针的运动路线以便避免过偏转。
已经研发了用于克服在机床上使用模拟扫描探针问题的技术。例如,已知点滴供给技术,其中以点滴供给的方式将程序指令装载到机床的控制器中。特别地,每个指令造成探针运动一个微小的距离(即,小于探针的优选偏转范围),分析所述探针的输出以便确定偏转的程度,这进而又被用来产生下一个指令以馈送到控制器中。但是,这种技术相比较扫描技术仍然有很多限制,可以在CMM上应用模拟扫描探针来执行所述扫描技术。特别地,这种方法是非常慢并且效率低的。
W02008/074989描述了一种用于测量已知物体的工艺,它涉及如果第一测量操作导致过偏转或欠偏转,则根据调节的路径重复测量操作。
当在机床上应用模拟探针时,该问题也可以被进一步组合,因为由于它们的构造(所述构造允许它们能够在机床提供的更严酷的环境中使用,它们暴露于更大的加速度和力,诸如在它们被自动改变到机床主轴中或从机床主轴卸下时),相比较用于CMM的那些模拟探针,它们经常具有小得多的测量范围。因此相比较用在CMM上的模拟探针,这可以给予甚至更小的误差空间。例如,机床模拟探针可以具有在任何尺寸下+/-0.8毫米的测量范围或者更小(从触针的静止位置测量),例如在有些情形下在任何给定尺寸下是+/-0.5毫米或者更小,例如在有些情形下在任何给定尺寸下不大于+/-0.3毫米。因此相比较用在CMM上的模拟探针,这能够给予甚至更小的误差空间。如上所述,可能也需要最小的偏转以便进入所述优选测量范围。
作为特定的例子,所述测量范围可以由最大偏转0.725毫米和最小偏转0.125毫米(从触针的静止位置测量)限定。因此,在这种情况下,这可以意味着所述表面可以是距离名义尺寸+/-0.3毫米,同时保持精确的测量。但是,该数字可以更小,例如,已知对于表面不定性它可以小至+/-0.1毫米,这相应于大约+/-0.325毫米的最大探针偏转以及+/-0.125毫米的最小探针偏转。
发明内容
根据本发明的第一方面,提供了一种应用安装在机床上的模拟探针扫描物体的方法,以便沿着所述物体表面上的名义测量线收集扫描的测量数据,所述模拟探针具有优选测量范围,所述方法包括:根据相对运动路线控制所述模拟探针和/或物体以便执行扫描操作,所述相对运动路线被构造成使得以下面的方式控制相对于所述物体表面的优选测量范围的位置:基于所述物体的表面的假设特性,沿着所述物体的表面上的所述名义测量线,预期所述模拟探针获得在其优选测量范围内的数据,并且预期所述模拟探针将移出其优选测量范围。
因此,代替试图总是使模拟探针保持在优选测量范围之内,本发明因此基于以下工作:预期模拟探针沿着物体表面上的名义测量线在它的优选测量范围之内及之外运动。这可以是这样的,预期模拟探针沿着物体表面上的名义测量线既在它的优选测量范围之内也在它的优选测量范围之外获得测量值。事实上,所述方法可以被构造成使得如此控制模拟探针的优选测量范围相对于物体表面的位置,使得所述模拟探针沿着所述物体表面上的名义测量线谨慎地获得在其优选测量范围之内及之外的测量值。这可以改善应用机床上的模拟探针获得物体测量数据的效率。
所述相对运动路线可以被构造成使得以下面的方式控制所述优选测量范围相对于物体表面的位置:基于物体表面的假设特性,使得沿着物体表面上的名义测量线,模拟探针获得它的优选测量范围之内的数据,以及使得模拟探针超过它的优选测量范围。所述相对运动路线可以被构造成使得以下面的方式控制所述优选测量范围相对于所述物体表面的位置:基于物体表面的假设特性,使得沿着物体表面上的名义测量线,模拟探针获得它的优选测量范围之内的数据,以及使得所述模拟探针超出或者不到它的优选测量范围。
所述方法可以被如此地构造,使得所述相对运动路线被构造成在扫描操作期间,基于物体表面的假设特性,沿着与物体表面垂直的方向(例如高度)所述优选测量范围相对于物体表面的位置沿着所述名义测量线改变。
所述方法可以进一步包括过滤从模拟探针获得的数据,以便获得选择的扫描测量数据。所述方法可以包括过滤从模拟探针获得的数据,以便获得与主要从模拟探针的优选测量范围之内或之外获得的扫描测量数据相关的数据。所述方法可以包括过滤从模拟探针获得的数据,以便获得主要与从模拟探针的优选测量范围之内获得的扫描测量数据相关的选择的扫描测量数据。所述方法可以包括过滤从模拟探针获得的数据,以便获得大致与仅仅从模拟探针的优选测量范围之内获得的扫描测量数据相关的选择的扫描测量数据。
所述方法可以包括将所述过滤的数据整理成另一个数据组。因此,例如,所述另一个数据组可以包括与物体的表面相关的扫描测量数据,所述扫描测量数据在模拟探针的优选测量范围之内获得。所述另一个数据组可以作为物体的测量数据输出。
因此,所述方法可以包括将在模拟探针的优选测量范围内获得的扫描测量数据作为物体的测量值收集和输出。与上面相符合,这种收集和输出可以包括过滤从模拟探针获得的数据,以便获得从模拟探针的优选测量范围内获得的选择的物体测量数据,并且作为物体的测量值提供。
所述优选测量范围可以小于模拟探针的总的测量范围。在接触式探针的情况下,所述优选测量范围可以小于模拟探针的总的偏转范围。因此,所述优选测量范围可以是模拟探针的整个测量范围的子集。如上所述,所述优选测量范围的精确边界可以随着探针的不同而改变,甚至对于给定探针随着测量操作的不同而改变。它可以是对于任何给定的测量操作已经校准模拟探针的范围,例如为了给出期望的精度水平。
所述方法可以包括基于在前一个扫描操作期间获得的测量数据产生并实施(例如作为第二次扫描操作的一部分)模拟探针和物体的新的相对运动路线。所述新的相对运动路线可以包括模拟探针横越穿过物体表面的大致相同的测量路线。然而,在这种情况下,所述相对运动可以被如此控制,使得所述模拟探针和物体的相对位置是这样的,即:相比较物体之前的测量,模拟探针在其优选测量范围内对于更大比例的测量路径获得测量值。特别地,模拟探针和物体要遵循的的新的相对运动路径可以被如此构造,使得模拟探针大致沿着相同名义线的整个长度在其优选测量范围内获得测量数据。
物体和模拟探针可以被构造成沿着预定的相对运动路径相对于彼此运动,从而所述模拟探针获得沿着所述物体表面上的名义测量线的扫描的测量数据。
所述预定的相对运动路径可以被构造成使得所述模拟探针以下面的方式行进:基于物体表面的假设特性,使得当模拟探针沿着所述名义测量线运动时,模拟探针的优选测量范围的位置相对于物体的表面反复地升高和下降。因此,可以是这样,以便基于物体表面的假设特性,所述模拟探针沿着所述名义测量线在其优选测量范围之内和之外在获得数据之间振荡(例如,在优选测量范围之下和之内,或者在优选测量范围之内和之上,或者在优选测量范围之下、之内和之上)。例如,所述预定的相对运动路径可以被如此构造,使得当模拟探针沿着所述名义测量线运动时它以起伏的正弦曲线或者波浪线方式运动。
所述预定的相对运动路径可以被如此构造,使得基于所述物体表面的假设特性,当所述模拟探针沿着所述名义测量线运动时,它被保持为与物体的表面成位置感测关系。对于上述实施例尤其是这种情况,在上述实施例中,所述预定的相对运动路径被构造成使得模拟探针下面的方式行进,即:基于物体表面的假设特性,使得当模拟探针沿着所述名义测量线运动时,模拟探针的优选测量范围的位置相对于物体的表面反复地升高和下降。
所述相对运动路线可以被构造成使得在扫描操作期间,所述模拟探针的优选测量范围沿着所述名义测量线横越穿过物体多次。模拟探针和物体的位置关系对于不同的横越可以是不同的。对于不同的横越,所述模拟探针可以获得在其整个测量范围的不同区域中的测量数据。对于每次横越,模拟探针和物体相对于彼此所采取的路线的形式可以是大致相同的,从而沿着物体的表面上的所述名义测量线多次测量所述物体。然而,对于不同的横越,所述模拟探针和物体的位置可以相对于彼此偏移。
因此,所述运动路线可以被构造成使得对于不同的横越,所述模拟探针沿着物体表面上的相同的名义测量线,对于物体的不同部分获得在其优选测量范围之内的测量数据。对于连续的横越,所述优选测量范围相对于所述表面采取的路线的形式可以是大致相同的。因此,在沿着名义测量线(优选沿着名义测量线的整个长度)的至少一个点处,所述路线距离所述表面的高度对于不同的横越可以是不同的。特别地,所述横越可以彼此偏移,从而对于不同的横越,所述模拟探针沿着物体表面上的相同的名义测量线,获得对于物体不同部分的在其优选测量范围内的测量数据。换言之,所述运动路线可以被构造成使得所述优选测量范围沿着所述名义测量线横越穿过物体至少两次,每次横越大致彼此平行,但是相对于物体的表面位于不同的名义高度。所述名义高度可以随着连续的横越增加。优选地,所述名义高度随着连续的横越减小。
因此,所述运动路线可以构造成使得执行至少第一次横越和第二次横越,并且在第二次横越期间,所述模拟探针对于物体的至少一部分获得在其优选测量范围之内的测量数据,对于该物体的至少一部分,在第一次横越期间是在探针的优选测量范围之外获得数据的。
如上所述,对于不同的横越,位于物体表面上方的所述模拟探针的优选测量范围的位置可以是不同的。在连续的横越中,所述模拟探针的优选测量范围相对于物体表面的位置可以升高。优选地,在连续的横越中,所述模拟探针的优选测量范围相对于物体表面的位置下降。所述位置可以在相对于所述优选测量范围的参考点(例如,位于优选测量范围之内的点,诸如优选测量范围的中点)和所述物体的表面(例如物体的名义表面)之间测量。因此,例如,优选地平均来说,在连续的横越中,所述优选测量范围的中心对于每次穿过所遵循的路线可以相对于物体的表面逐渐地下降(例如更靠近/穿刺更深)。这可以以逐步的方式发生,例如在每次横越的结束。
所述相对运动路线可以被构造成使得前一横越和后一横越之间的差别足够的小,从而如果沿着前一横越没有获得表面测量数据,则后一横越将不会造成模拟探针获得超出它的整个测量范围的物体表面测量数据,例如将不会造成模拟探针获得超越其优选测量范围的数据。可选地,所述横越在不大于(例如小于)探针的整个测量范围的各步中彼此偏离。例如,所述横越可以在不大于(例如小于)探针的优选测量范围的各步中彼此偏移。
可以核对来自不同横越的在优选测量范围内获得的表面测量数据,以便形成测量数据组,所述测量数据组代表沿着所述名义测量线的物体表面。如上所述,所述运动路线可以被构造成使得对于不同的横越,所述模拟探针沿着物体表面上的相同的名义测量线,获得对于物体不同部分的在其优选测量范围之内的测量数据。优选地,所述运动路线被构造成使得:在连续的穿越之间,针对其在优选测量范围内获得测量数据的所述表面部分交叠。在这种情况下,所述测量数据组可以代表沿着名义测量线的所述表面的连续长度,并且优选地代表沿着所述名义测量线的整个长度的表面。然而,也可以是,所述部分不交叠,因此这可以意味着在测量数据组中可能有间隙。
所述物体的名义表面形状可以不是已知的。所述物体的名义表面形状可以是已知的。在这种情况下,穿过所述物体的测量路径的形状可以被构造成大致平行于名义表面形状。也就是,所述优选测量范围所采取的穿过所述物体的路径大致平行于所述名义表面形状。
所述模拟探针可以是非接触式模拟探针,例如光学、电容或电感式探针。在这种情况下,所述优选测量范围可以是模拟探针的一部分(例如工件感测部分)与工件表面之间的距离或分离范围。因此,所述优选测量范围可以包括与最大和最小探针-物体间隔相关的上边界和下边界或阙值。所述模拟探针可以是接触式模拟探针。例如,所述模拟探针可以是具有用于接触物体的可偏转触针的接触式模拟探针。在这种情况下,所述优选测量范围可以是优选触针偏转范围。因此,所述优选测量范围可以包括与最大和最小触针偏转相关的上边界和下边界或阙值。
所述物体可以是在机器上被(和/或待)加工的物体,其中所述模拟探针安装在所述机器上。因此,所述方法可以包括例如在上述测量步骤之前对物体进行机加工的相同的机床。可选地,可以在上述测量步骤之后进行所述机加工。这种后测量机加工可以发生在相同的机床上,在所述机床上发生测量。这种后测量机加工可以基于在上述测量步骤期间获得的测量数据。所述机床可以是切削机,诸如金属切削机。
所述模拟探针可以是密封模拟探针。也就是,所述模拟探针可以被密封以便保护内部传感器部件免受外部污染。例如,所述探针可以包括探针本体,它容纳用于直接或间接地测量物体表面的传感器,其中所述传感器被密封以防止外部污染。例如,在接触式探针的情况下,所述探针可以包括探针本体、触针元件以及用于测量触针元件相对于壳体的位移的传感器,其中提供至少第一柔性密封元件,它在探针本体与相对可移动的触针元件之间延伸,从而所述传感器被包含在密封腔室内,从而被密封以免受外部污染。
所述物体可以是叶片。例如,所述叶片可以是涡轮发动机的叶片。
因此,本申请描述了一种应用安装在机床上的模拟探针扫描物体的方法,所述模拟探针具有优选测量范围,所述方法包括:执行扫描测量操作,它包括相对于彼此移动所述物体和模拟探针,使得所述模拟探针沿着物体表面上的名义测量线获得扫描的测量数据,其中在沿着名义测量线的扫描测量操作期间所获得的一些数据位于所述模拟探针的优选测量范围之内,并且一些数据位于探针的优选测量范围之外。
根据本发明的第二方面,提供了一种计算机可读介质,它包括指令,当由机床设备实施所述指令时,使得所述机床设备执行上述方法。
根据本发明的第三方面,提供了一种机床设备,它包括机床、安装在机床上的模拟探针、以及控制器,所述控制器构造成控制所述模拟探针与待测量物体之间的相对运动,以便沿着物体表面上的名义测量线收集扫描的测量数据,特别是根据相对运动路线控制模拟探针和/或物体,使得所述优选测量范围相对于物体表面的位置以下面的方式被控制,即:基于所述物体的表面的假设特性,将沿着物体表面上的名义测量线,预期所述模拟探针获得位于其优选测量范围内的数据,以及预期超出其优选测量范围。
附图说明
下面将参照附图并仅仅借助例子来描述本发明的实施例,其中:
图1是显示了用于机床的系统架构的示意图;
图2(a)至2(c)是显示了模拟测量探针的测量范围的示意图;
图3是系统流程图,其显示了根据本发明实施例的在测量操作期间的控制流程;
图4示意性地显示了根据本发明第一实施例的触针尖端的名义路径;
图5(a)和5(b)示意性地示出了根据本发明第二实施例的触针尖端的名义路径的侧视图和等角视图;
图6(a)和6(b)分别示出了根据本发明第三和第四实施例的触针尖端的名义路径;以及
图7示出了根据本发明又一实施例的根据初步扫描的触针尖端的名义路径,以及基于在所述初步扫描期间所获得的数据而产生的随后扫描。
具体实施方式
参照图1,显示了包括机床4、控制器6、PC8以及发射器/接收器接口10的机床设备2。所述机床4包括用于移动主轴12的电机(未示出),所述主轴12相对于位于工作台15上的工件16保持模拟探针14。所述主轴12(以及因此所述模拟探针14)的位置应用编码器或类似物以已知方式精确地测量。这种测量提供了在机器坐标系统(x,y,z)中限定的主轴位置数据。数字控制器(NC)18(它是控制器6的一部分)控制主轴12在机床的工作区域中的x、y、z运动以及收与主轴位置相关的所接收的数据。
正如将理解的,在替换实施例中,可以通过工作台15相对于主轴的运动而提供在x、y和z维度的任意一个或所有中的相对运动。另外,模拟探针14和工件16的相对旋转运动可以由主轴12的一部分(例如安装在主轴上的旋转/铰接头)和/或工作台15的一部分(例如旋转工作台)所提供。另外,所述运动可能被限制为更少的维度,例如,仅仅x和/或y。另外,所述实施例包括笛卡尔机床,然而将会理解这不是必须的情况,也可以是非笛卡尔机床。另外,许多其它不同类型的机床,包括车床,平行运动机器,以及机器人臂是已知的,并且可以用于本发明。
在所述实施例中,模拟探针14是接触式模拟探针,其包括探针本体20、从所述探针本体20延伸的工件接触触针22,并且所述模拟探针14具有表面检测区域,所述表面检测区域的形式是位于触针22的远端的工件接触尖端24(在这个情况下是球形触针球的形式)。所述模拟探针14测量触针22在探针几何系统(a、b、c)中的偏转(然而,正如将要理解的,这不是必然的情况,例如,模拟探针可以测量在仅仅一个或二个维度上的偏转,或者甚至提供表示偏转程度的输出,而没有指示偏转的方向)。所述探针14还包括发射器/接收器(未示出),所述发射器/接收器与所述发射器/接收器接口10无线地通讯(例如,借助无线电、光学或其它无线传输机构)。
如上所述,模拟测量探针具有有限的测量范围。例如关于接触式模拟探针,它们可以具有在x、y和z维度上偏转的物理最大量。不仅如此,探针还能够构造成使得它在最大物理范围的特定子范围内最佳地工作。例如,图2(a)示出了图1的模拟探针,实线表示在静止位置(例如未偏转)时触针22的位置。以虚线显示的最外触针位置表示触针在x维度上的最大物理偏转。然而,可以是这样的:探针被构造成使得当触针偏转的量小于所述最大物理量时触针偏转。也可以是这样的:所述探针被构造成使得当触针偏转最小下阙值时它是最精确的。例如,所述模拟探针14可以具有优选测量范围,所述优选测量范围的最上和最下边界通过图2(a)中以虚线表示的触针位置显示。因此,如所见的,在接近触针静止位置的中间存在死空间d’(在x维度上),它位于所述优选测量范围之外。
正如将理解的,对于y维度上偏转也是同样的情况。另外,在所述实施例中,在z轴上也具有最大物理偏转范围,以及z轴偏转的子范围(优选测量范围),在所述z轴偏转的子范围中所述探针构造成提供最精确的结果。
图2(b)所示的虚线28示意性地显示了在x和z维度上获得的模拟探针14的优选测量范围的幅度。正如将理解的,这种范围实际上沿着三个维度延伸,因此实际上大约是在中间切有小孔的压扁半球的形状。
图2(c)的虚线还示意性地显示了用于非接触式探针(诸如电感式探针)的优选测量范围。所述内部和外部虚线表示对于最佳测量性能的最小和最大探针/工件分离边界。正如将要理解的,用于非接触式探针的所示优选测量范围可以是用于探针的整个测量范围或者整个测量范围的仅仅一个子集。正如将要理解的,所述整个测量范围可以被认为是称为非接触式探针的表面检测区域。
正如将要理解的,所述优选测量范围的尺寸将随着探针的不同而改变。对于接触式模拟探针,它可以例如在任何给定维度上不超过+/-0.8毫米,例如在任何给定维度上不超过+/-0.725毫米,例如在任何给定维度上不超过+/-0.5毫米,例如在一些情形下在任何给定维度上不超过+/-0.3毫米(从触针静止位置获取)。当然,也可能具有紧紧围绕触针位置的死区,在触针进入优选测量范围之前,触针不得不偏转超过所述死区,它例如可以是从触针静止位置起在任何给定维度上不小于+/-0.2毫米,例如在任何给定维度上从所述触针静止位置不小于+/-0.1毫米,例如在任何给定维度上不小于+/-0.125毫米(仍从触针静止位置测量)。
如上所述,本发明偏离以下传统的观点:探针必须被保持成使得沿着物体表面上的名义测量线,探针总是在它的优选测量范围内收集数据。相反,从以下描述的实施例中清楚可见,本发明允许既在探针优选测量范围之内也在探针优选测量范围之外获得沿着名义测量线的测量,并且随后按照需要过滤。
图3显示了根据本发明一个实施例所涉及的大体过程100。所述方法从步骤102开始,在步骤102中,待测量零件的模型装载到PC8中。如下面更详细解释的,在待测量工件是未知的实施例中,该步骤不是必须被执行。在步骤104中,产生限定用于模拟探针14的运动路线的程序,以获得工件16的扫描测量数据。在所述实施例中,运动路线被构造成使得模拟探针将沿着物体表面上的名义测量线在它的优选测量范围之内和之外获得测量数据。正如将要理解的,在工件16也能移动或者代替模拟探针14移动(例如借助可移动工作台15)的实施例中,程序也可以限定工件16的运动路线。换言之,步骤104包括规划模拟探针14与工件16之间的相对运动路线,使得模拟探针14能够收集关于工件16的扫描测量数据。在步骤106中,所述程序借助API26被装载到NC18中。步骤108涉及执行所述测量操作并记录测量数据。特别地,执行所述测量操作包括NC18解释程序的指令并且产生电机控制信号,所述电机控制信号被用来指示机床的四个电机(未示出),以便根据预定的运动路线移动模拟探针14。记录测量数据包括多个过程。特别地,主轴位置数据(x、y和z)(如上所述由机床4上的编码器提供)经由NC18传递给PC8。而且,探针偏转数据(a、b、c)(如上所述通过模拟探针获得)也经由探针发送器/接收器接口10被传递给PC8。PC8将主轴位置数据(x、y、z)和探针偏转数据(a、b、c)结合起来以便提供一组测量值,所述测量值限定表面在机器坐标几何系统中的位置。
步骤110包括PC8过滤所记录的测量数据。在所述特定实施例中,这包括:对于在模拟探针的优选测量范围内获得的测量数据,PC8过滤所记录的测量数据。正如将理解的,所述数据可以以其它方式过滤,例如,对于在模拟探针的优选测量范围之外获得的测量数据。正如从以上描述的不同实施例中清楚可见的,所述过滤如何执行以及所获得的最终结果根据实施例的不同而改变。
例如(并且如下面更详细解释的),图4显示了根据本发明的用于测量已知零件的技术,其中以波浪形的方式将触针尖端移动穿过工件16,以便收集位于它的优选测量范围之内和之外的数据。图5显示了一种技术,其通过在不同的名义触针尖端位置穿过零件表面上的相同的名义测量线来回横越而测量未知零件,并且图6显示了类似的技术,但是它应用于测量已知零件。
首先参照图4,它显示了触针尖端24可以构造成使得它的总运动(由淡虚线30表示)大体平行于工件16的表面17。然而,如深色虚线32所示,模拟探针和工件16的相对运动路线被构造成使得当所述名义触针尖端中心点23沿着物体16的表面17上的名义测量线19行进时,它朝着所述表面以及远离所述表面波浪形起伏。所述虚圆24A、24B、24C代表沿着物体16的表面上的所述名义测量线在三个不同点处触针尖端的名义位置。正如将要理解的,这些触针尖端位置24A、24B、24C是名义的,因为这是如果物体不在那里,则尖端将沿着所述名义测量线在那些点处的位置。所述名义测量线19(它在显示本发明不同实施例的图5(b)中更容易看见)是在物体的表面17上的线,在所述线上将要收集测量数据。所述线是名义的,因为这是在物体上的期望的测量线。正如将要理解的,如果所述物体16的位置和/或材料条件与所期望的不同,则所述实际测量线可以是不同的。
例如可以通过在探针横越穿过所述工件16时改变探针相对于工件16的表面17的基准距而实现所述名义触针尖端中心点23的这种波浪起伏。可选地,如果探针被安装在铰接头上,那么这可以通过改变探针关于所述头的旋转轴线的至少一个的角位置而实现。
在所述实施例中,所述运动路线被如此地构造,使得所述名义波浪起伏运动32被构造成使得对于理想工件16(即,实际工件精确地对应于模型工件),所述探针14的触针22被构造成当探针14沿着工件16的表面17行进时,探针14的触针22在过偏转与欠偏转之间振荡,在其间所述模拟探针14收集在它的优选测量范围之内的测量数据。例如,如图4所示,在名义触针尖端位置24A,所述触针偏转是这样的,使得探针14获得在它的优选测量范围之内的测量数据,而触针的名义触针尖端位置24B和24C分别是欠偏转的和过偏转的。因此,从图4的实施例可以看出,当所述触针尖端24穿过所述表面行进时,在它的优选测量范围内将仅仅获得触针偏转位于它的偏转范围之内的选择部分(由虚线和点划线区段34显示),因此仅仅获得从测量探针获得的数据的选择部分。
正如将理解的,所述触针中心尖端的起伏位置的幅值A在图4中显著地夸大以便帮助显示。正如将理解的,所述幅值A的程度将依据许多因素改变,包括优选测量范围的程度、可偏转触针的实际物理范围的程度、名义工件尺寸以及表面位置的期待变化水平。然而,仅仅借助例子,所述幅值A可以小于5毫米,例如小于2毫米,并且例如大于0.5毫米,例如是1毫米。而且,所述波浪起伏运动的间距P将依据许多因素改变,诸如以上所述的那些以及例如所需测量的密度,例如可以小于100毫米,并且例如大于10毫米,例如是50毫米。
虽然图4的方法导致在探针的优选测量范围之内获得仅仅一些测量数据,但是该测量方法能够有助于确保在优选测量范围内获得至少一些测量数据,而不管工件16的材料条件与所期望的不同。例如,参照图4,如果工件16的实际位置稍微偏离,使得它的表面17位于更靠近所述名义探针尖端中心线32的一部分,则将仍然获得测量数据,但是代替在由虚线和点划线部分34示出的点处获得测量数据,所述优选测量数据将在名义探针尖端中心线32的峰值处获得。
图5(a)和5(b)显示了一个替换实施例,其中待测量零件是未知的。在这种情况下,没有零件模型在步骤102被装载到PC中,并且步骤104包括产生标准运动路线,所述标准运动路线可以被用来获得关于未知零件的测量数据。所述零件可以是未知的,因为它的至少一个特征的形状和尺寸是未知的并且将要被确定。在所述实施例中,所述预定运动路线被构造成使得所述名义探针尖端中心23沿着物体16的表面17上的相同名义测量线19来回运动,但是在距离表面17的不同名义距离处,如虚线40所示。在所示实施例中,穿过物体表面的每次横越大体是沿着直线,并且也被限制在一个平面内,然而正如将要理解的,这不是必然的情况。实际上,例如,每次横越可以涉及造成所述名义触针尖端中心点波浪起伏,非常类似图4所示情形。另外,每次横越的路径可以沿着侧移方向(例如一侧到一侧的运动)曲折行进。而且,所述预定运动路线不是必须沿着前后方式移动所述名义探针尖端中心。例如,每次横越可以发生在相同方向上。而且,每次横越可以例如包括穿过物体表面以弯曲(例如螺旋式)方式移动所述名义探针尖端中心。
如图所示,在连续的横越中,模拟探针的优选测量范围的位置将相对于物体16的表面17下降。特别地,它在所述表面上方沿着所述名义测量线的平均位置在连续的横越中下降。在所述实施例中,在第一次横越中,所述触针尖端24没有足够地偏转以进入它的优选偏转范围,并因此在所述优选测量范围内没有获得数据。在第二次横越中,所述表面17的顶峰使得触针尖端24在它的优选偏转范围内偏转,并且因此对于所述穿过的一部分(由虚线和点划线部分42显示)在探针的优选测量范围内获得测量数据。正如对于第三次和第四次横越所看见的,触针在它的优选测量范围之内偏转,以便对于所述经过的部分42获得在探针的优选测量范围之内的测量数据。在步骤110期间,已经在优选测量范围内获得的测量数据的这些部分42可以从整个测量数据组中被过滤并且整理,以便提供关于所述物体的一组新的测量数据,所有这些都在模拟探针14的优选测量范围之内获得。在所示实施例中,探针尖端中心23的名义路线是这样的,即:在所述优选测量范围内获得的数据的部分42在连续穿越之间交叠。然而,不是必须是这个情况,因此这意味着:在任何最终数据组中可能存在间隙,从在模拟探针14的优选测量范围内获得的数据中产生所述最终数据组。而且,对于图4,在每次穿越之间朝着工件的步进被夸大以便于显示。所述步进的实际尺寸取决于多个因数而变化,包括探针的测量范围,但是通常可以例如小至0.2毫米以及大至0.8毫米。另外,虽然显示的是名义触针尖端中心点在每次横越之后朝着所述物体步进,但是不是必须是这种情况。例如,所述名义触针尖端中心点可以名义上沿着所述穿越的长度逐渐地靠近,从而它沿着每个横越逐渐地接近物体。
在结合图5描述的实施例中,所述模拟探针的触针偏转超过它的优选测量范围,但是永远不会偏转超过它的最大偏转阙值。然而,在其它实施例中,它可能是这样的:物体的形状和尺寸和/或相对运动的预定路径是这样的,使得所述模拟探针存在其触针偏转超过它的最大偏转阙值的风险。在这个情况下,在扫描操作期间,所述模拟探针的输出能够被监控以便对于这种情形进行检查并且采取校正行为。这种校正行为可以是暂停或中断扫描操作。可选地,这种校正行为可以是调节相对运动的预定路径,从而避免触针偏转超出其最大偏转阙值。例如,在每次横越的结束时,可以确定是否在下一次横越或者在今后的横越中触针可能偏转超出它的最大偏转阙值,如果是这样,就调节所述相对运动的预定路径。
即使工件的名义形状是已知的,结合图5所述的用于未知零件的所采用的这种光栅方法也是有用的。例如,参考图6(a),显示了一种情形,即:工件16的实际表面形状17与它的名义表面形状17’偏离,因为它具有未预期的凹陷27。因此,如果触针尖端24要遵循大致平行于预期名义表面形状17的路径50,则它将导致对于所述表面的凹陷部分在模拟探针的优选测量范围之内不会获得测量数据。然而,如图6(b)所示,应用采取光栅方法的路径52允许过滤和整理沿着路径52所获得的测量数据(它是在模拟探针的优选测量范围之内获得的(该数据由虚线和点划线部分54显示)),以便因此提供对于实际表面形状17的、针对整个名义测量线19的、在模拟探针的优选测量范围内所获得的测量数据。
正如将理解的,可以以许多不同的方法实现所述过滤。例如,它可以在源头进行,因为只有在探针的优选测量范围之内所获得的数据才由模拟探针和/或接收器/发射器接口10报告。可选地,报告来自模拟探针的所有数据,只有那些在模拟探针的优选测量范围内获得的测量值与心轴(即,模拟探针)位置数据相结合。在替换实施例中,所有模拟探针数据与心轴位置数据结合,随后将所述结合数据过滤以便除掉包含位于优选测量范围之外的模拟探针数据的所述结合数据。
上述实施例过滤并校对在模拟探针的优选测量范围之内获得的数据。正如将理解的,这不是必须的情况,事实上,例如,根据本发明的方法可以过滤并校对位于所述优选测量范围之外的数据,或者实际上仅仅报告位于优选测量范围之外的数据。例如当知道何时零件位于公差之外(以及可能地例如位于公差之外多少)才重要的时候,这可能是有用的。
在上面描述的实施例中,模拟探针和物体相对于彼此沿着其移动的路径是预定的。特别地,在开始扫描操作之前确定所述整个路径。然而,不是必须是这种情况。例如,相对于结合图5和图6所描述的实施例,可以在逐个横越的基础上产生所述相对运动路径。例如,可以完成沿着所述名义测量线的第一次横越,并且如果确定了不是所有沿着名义测量线获得的测量数据均位于模拟探针的优选测量范围之内,则可以执行随后的横越,在该随后的横越中,探针的优选测量范围的位置沿着所述名义测量线沿着所述横越相对于所述物体位于不同的位置。该过程可以被连续地重复,直到沿着所述名义测量线的整个长度已经获得了位于模拟探针的优选测量范围之内的测量数据。
在其它实施例中,本发明的方法可以包括基于在前一个扫描操作期间(例如,在根据图4、5和6的实施例的扫描操作期间)所获得的测量数据产生并实施模拟探针和物体的新的相对运动路线(例如作为第二扫描操作的一部分)。所述新的相对运动路线可以包括所述模拟探针穿过物体的表面横越大致相同的测量线。然而,在该情况下,可以控制所述相对运动,从而模拟探针和物体的相对位置是这样的:相比较对于物体的之前测量,模拟探针对于测量路径的更大部分获得位于它的优选测量范围之内的测量值。特别地,模拟探针和物体所要遵循的所述新的相对运动路径可以被如此构造,使得所述模拟探针获得沿着相同名义线的大致整个长度的位于它的优选测量范围之内的测量数据。
这是图7所显示的情况,图7是图6(b)的复制,除了实线56显示探针尖端中心的路径之外,从由虚线52所显示的扫描期间所获得的数据中产生所述探针尖端中心的路径。
上述扫描操作可以以高速执行(例如,工件感测部(例如触针尖端24)和物体相对于彼此以至少16mm/s行进,优选至少以25mm/s行进,更优选至少以50mm/s行进,特别优选以至少100mm/s行进,例如至少以250mm/s行进),原因是探针15是否获得位于它的优选测量范围之外的数据是没有关系的。

Claims (15)

1.一种应用安装在机床上的接触式模拟探针扫描物体以便沿着所述物体的表面上的名义测量线收集扫描的测量数据的方法,所述接触式模拟探针包括用于接触物体的可偏转触针,所述模拟探针具有优选测量范围,所述方法包括:
根据相对运动路线控制所述接触式模拟探针和/或物体以便执行扫描操作,所述相对运动路线被构造成使得基于所述物体的表面的假设特性,沿着所述物体的表面上的所述名义测量线,预期所述模拟探针获得位于其优选测量范围之内的数据,以及预期所述模拟探针将移出其优选测量范围。
2.根据权利要求1所述的方法,包括收集和输出在所述接触式模拟探针的优选测量范围之内获得的扫描的测量数据,作为所述物体的测量值。
3.根据权利要求2所述的方法,其中,所述收集和输出包括将从所述接触式模拟探针获得的数据过滤,以便获得从接触式模拟探针的优选测量范围之内获得的选择的物体测量数据,并作为所述物体的测量值提供。
4.根据权利要求1所述的方法,其中,所述接触式模拟探针以以下方式行进:基于物体的表面的假设特性,使得当所述接触式模拟探针沿着所述名义测量线运动时,所述接触式模拟探针的优选测量范围的位置相对于所述物体的表面反复地升高和下降。
5.根据权利要求1所述的方法,其中,当所述接触式模拟探针运动时,保持它与所述物体的表面的位置感测关系,以便收集沿着所述名义测量线的数据。
6.根据权利要求1所述的方法,其中,所述相对运动路线被构造成使得在所述扫描操作期间,所述接触式模拟探针的优选测量范围沿着所述名义测量线横越穿过所述物体多次。
7.根据权利要求6所述的方法,其中,对于不同的横越,所述接触式模拟探针沿着所述名义测量线对于所述物体的不同部分在其优选测量范围内获得测量数据。
8.根据权利要求6或7所述的方法,其中,对于连续的横越,所述优选测量范围相对于所述表面所采取的路线的形式是相同的,但是对于不同的横越,在沿着所述名义测量线的至少一个点处所述路线距离所述表面的高度是不同的。
9.根据权利要求6至7中任意一项所述的方法,其中,来自不同横越的在所述优选测量范围内获得的表面测量数据被核对,以便形成测量数据组,所述测量数据组代表沿着所述名义测量线的物体的表面。
10.根据权利要求8所述的方法,其中,来自不同横越的在所述优选测量范围内获得的表面测量数据被核对,以便形成测量数据组,所述测量数据组代表沿着所述名义测量线的物体的表面。
11.根据权利要求1所述的方法,包括:作为第二扫描操作的一部分,产生并执行所述模拟探针和物体的新的相对运动路线。
12.根据权利要求11所述的方法,其中,所述新的相对运动路线包括所述接触式模拟探针穿过所述物体的表面横越相同的测量线,但是所述相对运动被如此控制,使得相比较所述扫描操作的运动路线,所述接触式模拟探针对于更大比例的运动路线在其优选测量范围内获得测量。
13.根据权利要求1所述的方法,其中,所述接触式模拟探针的优选测量范围是所述接触式模拟探针的偏转的优选范围。
14.一种计算机可读介质,包括指令,当所述指令由机床设备实施时使得所述机床设备执行如权利要求1至13中任意一项所述的方法。
15.一种机床设备,包括机床、安装在所述机床上的具有可偏转触针的接触式模拟探针、以及控制器,所述控制器构造成控制所述接触式模拟探针与待测量物体的相对运动,以便收集沿着所述物体的表面上的名义测量线的扫描的测量数据,特别是以便根据相对运动路线控制所述接触式模拟探针和/或物体,从而以下面的方式控制所述优选测量范围相对于所述物体的表面的位置:基于所述物体的表面的假设特性,将沿着所述物体的表面上的所述名义测量线,预期所述接触式模拟探针获得在其优选测量范围之内的数据,以及预期超越其优选测量范围。
CN201380024772.2A 2012-04-18 2013-04-16 在机床上测量的方法以及相应的机床设备 Active CN104487801B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811375373.1A CN110076630B (zh) 2012-04-18 2013-04-16 在机床上测量的方法以及相应的机床设备

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP12250096.0 2012-04-18
EP12250096 2012-04-18
PCT/GB2013/050968 WO2013156769A1 (en) 2012-04-18 2013-04-16 A method of measurement on a machine tool and corresponding machine tool apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201811375373.1A Division CN110076630B (zh) 2012-04-18 2013-04-16 在机床上测量的方法以及相应的机床设备

Publications (2)

Publication Number Publication Date
CN104487801A CN104487801A (zh) 2015-04-01
CN104487801B true CN104487801B (zh) 2018-12-07

Family

ID=49382988

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201380024772.2A Active CN104487801B (zh) 2012-04-18 2013-04-16 在机床上测量的方法以及相应的机床设备
CN201811375373.1A Active CN110076630B (zh) 2012-04-18 2013-04-16 在机床上测量的方法以及相应的机床设备

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201811375373.1A Active CN110076630B (zh) 2012-04-18 2013-04-16 在机床上测量的方法以及相应的机床设备

Country Status (6)

Country Link
US (2) US10037017B2 (zh)
EP (2) EP3239653B1 (zh)
JP (2) JP6345171B2 (zh)
CN (2) CN104487801B (zh)
TW (2) TWI675182B (zh)
WO (1) WO2013156769A1 (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3836539B1 (en) 2007-10-10 2024-03-13 Gerard Dirk Smits Image projector with reflected light tracking
US9946076B2 (en) 2010-10-04 2018-04-17 Gerard Dirk Smits System and method for 3-D projection and enhancements for interactivity
US12025807B2 (en) 2010-10-04 2024-07-02 Gerard Dirk Smits System and method for 3-D projection and enhancements for interactivity
US8971568B1 (en) * 2012-10-08 2015-03-03 Gerard Dirk Smits Method, apparatus, and manufacture for document writing and annotation with virtual ink
US9810913B2 (en) 2014-03-28 2017-11-07 Gerard Dirk Smits Smart head-mounted projection system
JP6385149B2 (ja) * 2014-06-13 2018-09-05 キヤノン株式会社 形状測定方法、形状測定装置、プログラム及び記録媒体
US9377533B2 (en) 2014-08-11 2016-06-28 Gerard Dirk Smits Three-dimensional triangulation and time-of-flight based tracking systems and methods
GB201505999D0 (en) * 2015-04-09 2015-05-27 Renishaw Plc Measurement method and apparatus
WO2016168378A1 (en) 2015-04-13 2016-10-20 Gerard Dirk Smits Machine vision for ego-motion, segmenting, and classifying objects
WO2017106875A1 (en) 2015-12-18 2017-06-22 Gerard Dirk Smits Real time position sensing of objects
US9813673B2 (en) 2016-01-20 2017-11-07 Gerard Dirk Smits Holographic video capture and telepresence system
GB201615307D0 (en) * 2016-09-09 2016-10-26 Renishaw Plc Measurement method and apparatus
GB201616415D0 (en) * 2016-09-28 2016-11-09 Renishaw Plc A method and apparatus for measuring an object
WO2018106360A2 (en) 2016-10-31 2018-06-14 Gerard Dirk Smits Fast scanning lidar with dynamic voxel probing
JP7329444B2 (ja) 2016-12-27 2023-08-18 ジェラルド ディルク スミッツ 機械知覚のためのシステム及び方法
EP3622333A4 (en) 2017-05-10 2021-06-23 Gerard Dirk Smits SCAN MIRROR METHODS AND SYSTEMS
WO2019079750A1 (en) 2017-10-19 2019-04-25 Gerard Dirk Smits METHODS AND SYSTEMS FOR NAVIGATING A VEHICLE EQUIPPED WITH A NEW MILITARY MARKER SYSTEM
WO2019148214A1 (en) 2018-01-29 2019-08-01 Gerard Dirk Smits Hyper-resolved, high bandwidth scanned lidar systems
GB201809631D0 (en) * 2018-06-12 2018-07-25 Renishaw Plc Measurement method and apparatus
EP3623883B1 (de) 2018-09-17 2024-07-24 Adelbert Haas GmbH Verfahren und werkzeugmaschine zur bearbeitung von werkstücken unbekannter werkstückgeometrie
CN109717875B (zh) * 2019-02-25 2021-06-01 无锡市第二人民医院 一种体检数据自动采集装置
WO2021090693A1 (ja) * 2019-11-05 2021-05-14 パナソニックIpマネジメント株式会社 ロボットの制御方法
WO2021174227A1 (en) 2020-02-27 2021-09-02 Gerard Dirk Smits High resolution scanning of remote objects with fast sweeping laser beams and signal recovery by twitchy pixel array

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4084323A (en) * 1975-05-13 1978-04-18 Rolls-Royce Limited Measuring apparatus
CN85105480A (zh) * 1985-07-17 1987-01-14 通用电气公司 针尖接触式探测系统
CN1009221B (zh) * 1985-03-19 1990-08-15 株式会社三丰制作所 使用坐标测量仪进行测量的方法
CN1392950A (zh) * 2000-08-18 2003-01-22 学校法人中央大学 移动装置的位置误差评价方法和根据其评价结果改善移动精度的方法
CN1474159A (zh) * 2003-07-02 2004-02-11 西安交通大学 线阵光电传感器层析扫描三维测量方法及其装置
CN1727871A (zh) * 2004-01-14 2006-02-01 Fei公司 探针显微镜的操作方法
CN101166951A (zh) * 2005-04-26 2008-04-23 瑞尼斯豪公司 扫描工件表面的方法
CN102197274A (zh) * 2008-10-29 2011-09-21 瑞尼斯豪公司 用于坐标测量系统的方法

Family Cites Families (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4153998A (en) 1972-09-21 1979-05-15 Rolls-Royce (1971) Limited Probes
US4166323A (en) 1973-09-14 1979-09-04 Maag Gear-Wheel & Machine Co. Ltd. Gear tester for profile and lead testing
GB8713715D0 (en) * 1987-06-11 1987-07-15 Renishaw Plc Workpiece inspection method
JPH02145908A (ja) * 1988-11-28 1990-06-05 Okuma Mach Works Ltd デジタイジング装置におけるスタイラスのたわみ補正自動設定方法
US5189806A (en) * 1988-12-19 1993-03-02 Renishaw Plc Method of and apparatus for scanning the surface of a workpiece
GB8908854D0 (en) 1989-04-19 1989-06-07 Renishaw Plc Method of and apparatus for scanning the surface of a workpiece
GB9110818D0 (en) 1991-05-21 1991-07-10 Renishaw Metrology Ltd A method of measuring workpieces using a surface contacting measuring probe
DE4245012B4 (de) * 1992-04-14 2004-09-23 Carl Zeiss Verfahren zur Messung von Formelementen auf einem Koordinatenmeßgerät
EP0588512B1 (en) 1992-09-12 1997-04-09 RENISHAW plc Method of and apparatus for scanning the surface of a workpiece
US5440398A (en) * 1993-02-25 1995-08-08 Ohio Electronic Engravers, Inc. Error detection apparatus and method for use with engravers
US5948972A (en) 1994-12-22 1999-09-07 Kla-Tencor Corporation Dual stage instrument for scanning a specimen
GB2302589B (en) 1995-06-21 1998-11-11 Zeiss Stiftung Probe head for coordinate measuring machines with a clamping device for clamping the deflectable part of the probe head
DE19730471C5 (de) 1997-07-16 2009-02-19 Hexagon Metrology Gmbh Verfahren zum Scannen mit einem Koordinatenmeßgerät
US6580964B2 (en) * 1998-10-24 2003-06-17 Renishaw Plc Calibrations of an analogue probe and error mapping
JP3905771B2 (ja) 2001-03-02 2007-04-18 株式会社ミツトヨ 測定機の校正方法及び装置
GB0118492D0 (en) 2001-07-30 2001-09-19 Renishaw Plc A machine tool control process and apparatus therfor
GB0126232D0 (en) 2001-11-01 2002-01-02 Renishaw Plc Calibration of an analogue probe
GB0210990D0 (en) 2002-05-14 2002-06-19 Rolls Royce Plc Method of generating an inspection program and method of generating a visual display
GB0215152D0 (en) 2002-07-01 2002-08-07 Renishaw Plc Probe or stylus orientation
GB0215478D0 (en) * 2002-07-04 2002-08-14 Renishaw Plc Method of scanning a calibrating system
GB0220158D0 (en) 2002-08-30 2002-10-09 Renishaw Plc Method of scanning
GB0322115D0 (en) 2003-09-22 2003-10-22 Renishaw Plc Method of error compensation
GB0322362D0 (en) 2003-09-24 2003-10-22 Renishaw Plc Measuring methods for use on machine tools
US7543393B2 (en) 2003-12-16 2009-06-09 Renishaw Plc Method of calibrating a scanning system
GB0329098D0 (en) 2003-12-16 2004-01-21 Renishaw Plc Method of calibrating a scanning system
GB0400144D0 (en) 2004-01-06 2004-02-11 Renishaw Plc Inspection system
EP1555676A3 (en) 2004-01-14 2006-09-13 FEI Company Method of operating a probe microscope
EP1730465B1 (en) * 2004-03-18 2015-05-20 Renishaw plc Scanning an object
DE102004022454B4 (de) * 2004-05-06 2014-06-05 Carl Mahr Holding Gmbh Messeinrichtung mit optischer Tastspitze
JP4782990B2 (ja) 2004-05-31 2011-09-28 株式会社ミツトヨ 表面倣い測定装置、表面倣い測定方法、表面倣い測定プログラムおよび記録媒体
JP4510520B2 (ja) 2004-06-01 2010-07-28 キヤノン株式会社 形状測定方法および形状測定装置
GB0414649D0 (en) 2004-06-30 2004-08-04 Renishaw Plc Generation of a CNC machine tool control program
GB0417536D0 (en) 2004-08-06 2004-09-08 Renishaw Plc The use of surface measurement probes
GB2425840A (en) * 2005-04-13 2006-11-08 Renishaw Plc Error correction of workpiece measurements
GB0508273D0 (en) 2005-04-25 2005-06-01 Renishaw Plc Method for scanning the surface of a workpiece
US20070050089A1 (en) 2005-09-01 2007-03-01 Yunquan Sun Method for detecting the position and orientation of holes using robotic vision system
GB0608235D0 (en) 2006-04-26 2006-06-07 Renishaw Plc Differential calibration
GB0611109D0 (en) * 2006-06-06 2006-07-19 Renishaw Plc A method for measuring workpieces
DE102006055005A1 (de) * 2006-11-17 2008-05-29 Carl Zeiss Industrielle Messtechnik Gmbh Verfahren und Vorrichtung zum Bestimmen von Raumkoordinaten an einer Vielzahl von Messpunkten
GB0625260D0 (en) 2006-12-19 2007-01-24 Renishaw Plc A method for measuring a workpiece using a machine tool
GB0703423D0 (en) * 2007-02-22 2007-04-04 Renishaw Plc Calibration method and apparatus
EP1978328B1 (en) 2007-04-03 2015-02-18 Hexagon Metrology AB Oscillating scanning probe with constant contact force
GB0707921D0 (en) 2007-04-24 2007-05-30 Renishaw Plc Apparatus and method for surface measurement
US8919005B2 (en) * 2007-04-30 2014-12-30 Renishaw Plc Analogue probe and method of operation
EP1988357B1 (en) * 2007-05-04 2018-10-17 Hexagon Technology Center GmbH Coordinate measuring method and device
GB0713639D0 (en) 2007-07-13 2007-08-22 Renishaw Plc Error correction
GB0716218D0 (en) 2007-08-20 2007-09-26 Renishaw Plc Measurement path generation
JP5091702B2 (ja) * 2008-02-04 2012-12-05 株式会社ミツトヨ プローブの真直度測定方法
US7752000B2 (en) 2008-05-02 2010-07-06 Qcept Technologies, Inc. Calibration of non-vibrating contact potential difference measurements to detect surface variations that are perpendicular to the direction of sensor motion
JP4611403B2 (ja) 2008-06-03 2011-01-12 パナソニック株式会社 形状測定装置及び形状測定方法
GB0900878D0 (en) 2009-01-20 2009-03-04 Renishaw Plc Method for optimising a measurement cycle
JP5281992B2 (ja) * 2009-08-28 2013-09-04 株式会社日立製作所 走査型プローブ顕微鏡及びそれを用いた計測方法
EP2290486A1 (en) * 2009-08-28 2011-03-02 Renishaw plc Machine tool calibration method
JP5439157B2 (ja) * 2009-12-22 2014-03-12 三菱重工業株式会社 歯車測定方法
JP5690941B2 (ja) 2010-09-13 2015-03-25 ヘキサゴン・テクノロジー・センター・ゲーエムベーハーHexagon Technology Center Gmbh 表面走査座標測定装置の制御方法及び制御装置
WO2012098353A1 (en) * 2011-01-19 2012-07-26 Renishaw Plc Analogue measurement probe for a machine tool apparatus and method of operation
EP2764324B1 (en) * 2011-10-06 2019-03-27 Renishaw PLC Method and apparatus for locating a feature of an object
CN103988049B (zh) * 2011-12-06 2016-11-09 赫克斯冈技术中心 具有摄像头的坐标测量机
EP2839240B1 (en) 2012-04-18 2017-09-06 Renishaw PLC A method of analogue measurement scanning on a machine tool and corresponding machine tool apparatus
IN2014DN08719A (zh) 2012-04-18 2015-05-22 Renishaw Plc

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4084323A (en) * 1975-05-13 1978-04-18 Rolls-Royce Limited Measuring apparatus
CN1009221B (zh) * 1985-03-19 1990-08-15 株式会社三丰制作所 使用坐标测量仪进行测量的方法
CN85105480A (zh) * 1985-07-17 1987-01-14 通用电气公司 针尖接触式探测系统
CN1392950A (zh) * 2000-08-18 2003-01-22 学校法人中央大学 移动装置的位置误差评价方法和根据其评价结果改善移动精度的方法
CN1474159A (zh) * 2003-07-02 2004-02-11 西安交通大学 线阵光电传感器层析扫描三维测量方法及其装置
CN1727871A (zh) * 2004-01-14 2006-02-01 Fei公司 探针显微镜的操作方法
CN101166951A (zh) * 2005-04-26 2008-04-23 瑞尼斯豪公司 扫描工件表面的方法
CN102197274A (zh) * 2008-10-29 2011-09-21 瑞尼斯豪公司 用于坐标测量系统的方法

Also Published As

Publication number Publication date
JP2015531854A (ja) 2015-11-05
WO2013156769A1 (en) 2013-10-24
CN110076630B (zh) 2021-10-08
US10037017B2 (en) 2018-07-31
TWI649537B (zh) 2019-02-01
TWI675182B (zh) 2019-10-21
JP6665227B2 (ja) 2020-03-13
EP3239653A1 (en) 2017-11-01
CN104487801A (zh) 2015-04-01
EP2839242B1 (en) 2017-08-02
TW201350789A (zh) 2013-12-16
EP2839242A1 (en) 2015-02-25
US20180364676A1 (en) 2018-12-20
US20150066196A1 (en) 2015-03-05
JP2018124295A (ja) 2018-08-09
EP3239653B1 (en) 2018-11-21
CN110076630A (zh) 2019-08-02
JP6345171B2 (ja) 2018-06-20
TW201623916A (zh) 2016-07-01
US10678208B2 (en) 2020-06-09

Similar Documents

Publication Publication Date Title
CN104487801B (zh) 在机床上测量的方法以及相应的机床设备
JP6346167B2 (ja) 工作機械におけるアナログ測定走査方法および対応する工作機械装置
CN104995481B (zh) 应用机床查明特征的方法
CN108700413A (zh) 用于校准扫描探针的方法和装置
GB2536167A (en) Surface shape measuring device and machine tool provided with same, and surface shape measuring method
EP3101380B1 (en) Method for controlling shape measuring apparatus
Mewes et al. The correction of the nozzle-bed-distance in robotic fused deposition modeling
Necessary Telescoping Ballbars and Other Diagnostic Instrumentation
Smith et al. Telescoping Ballbars and Other Diagnostic Instrumentation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant