CN104477976A - Preparation method of calcium titanate powder with controllable micro/nano structures - Google Patents
Preparation method of calcium titanate powder with controllable micro/nano structures Download PDFInfo
- Publication number
- CN104477976A CN104477976A CN201410725987.3A CN201410725987A CN104477976A CN 104477976 A CN104477976 A CN 104477976A CN 201410725987 A CN201410725987 A CN 201410725987A CN 104477976 A CN104477976 A CN 104477976A
- Authority
- CN
- China
- Prior art keywords
- add
- calcium
- nitrate tetrahydrate
- calcium nitrate
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- AOWKSNWVBZGMTJ-UHFFFAOYSA-N calcium titanate Chemical compound [Ca+2].[O-][Ti]([O-])=O AOWKSNWVBZGMTJ-UHFFFAOYSA-N 0.000 title claims abstract description 20
- 239000002086 nanomaterial Substances 0.000 title claims abstract description 18
- 239000000843 powder Substances 0.000 title claims abstract description 10
- 238000002360 preparation method Methods 0.000 title claims abstract description 10
- 239000000725 suspension Substances 0.000 claims abstract description 17
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910021389 graphene Inorganic materials 0.000 claims abstract description 12
- 239000002243 precursor Substances 0.000 claims abstract description 12
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 12
- 239000010936 titanium Substances 0.000 claims abstract description 12
- 239000011259 mixed solution Substances 0.000 claims abstract description 9
- 239000000243 solution Substances 0.000 claims abstract description 5
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 39
- ZHJGWYRLJUCMRT-UHFFFAOYSA-N 5-[6-[(4-methylpiperazin-1-yl)methyl]benzimidazol-1-yl]-3-[1-[2-(trifluoromethyl)phenyl]ethoxy]thiophene-2-carboxamide Chemical compound C=1C=CC=C(C(F)(F)F)C=1C(C)OC(=C(S1)C(N)=O)C=C1N(C1=C2)C=NC1=CC=C2CN1CCN(C)CC1 ZHJGWYRLJUCMRT-UHFFFAOYSA-N 0.000 claims description 21
- 239000007864 aqueous solution Substances 0.000 claims description 20
- 239000008367 deionised water Substances 0.000 claims description 20
- 229910021641 deionized water Inorganic materials 0.000 claims description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 20
- 238000003756 stirring Methods 0.000 claims description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 11
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 claims description 9
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 claims description 9
- 230000007935 neutral effect Effects 0.000 claims description 9
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 7
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 5
- -1 polytetrafluoroethylene Polymers 0.000 claims description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 2
- 239000010935 stainless steel Substances 0.000 claims description 2
- 229910001220 stainless steel Inorganic materials 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical class [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 abstract description 2
- 239000003513 alkali Substances 0.000 abstract description 2
- 239000011575 calcium Substances 0.000 abstract description 2
- 229910052791 calcium Inorganic materials 0.000 abstract description 2
- 238000001027 hydrothermal synthesis Methods 0.000 abstract description 2
- 230000002349 favourable effect Effects 0.000 abstract 1
- LUMVCLJFHCTMCV-UHFFFAOYSA-M potassium;hydroxide;hydrate Chemical compound O.[OH-].[K+] LUMVCLJFHCTMCV-UHFFFAOYSA-M 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 239000000463 material Substances 0.000 description 7
- 229910001069 Ti alloy Inorganic materials 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000004321 preservation Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- APQHKWPGGHMYKJ-UHFFFAOYSA-N Tributyltin oxide Chemical compound CCCC[Sn](CCCC)(CCCC)O[Sn](CCCC)(CCCC)CCCC APQHKWPGGHMYKJ-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 239000000316 bone substitute Substances 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000001699 photocatalysis Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/003—Titanates
- C01G23/006—Alkaline earth titanates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
- C01P2004/38—Particle morphology extending in three dimensions cube-like
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
技术领域 technical field
本发明涉及具有可控微纳结构的钛酸钙粉体的制备方法,属于无机非金属材料技术领域。 The invention relates to a preparation method of calcium titanate powder with a controllable micro-nano structure, and belongs to the technical field of inorganic non-metallic materials.
背景技术 Background technique
随着科技的飞速发展,人们的生活水平快速提升,家用汽车使用量的剧增虽然给经济带来巨大利益,但同时也对人们的出行安全造成了威胁。根据安全文化网统计,中国每5分钟就有一人因为车祸受伤或者死亡,如此多的病人对我国的骨骼临床医学的发展是一个严峻的考验。目前,医院中所使用的骨替代品基本都是钛合金,为了使其生物相容性更好,对钛合金表面修饰的研究就变得很重要。仿照生物体骨骼的组成,修饰材料一般为磷酸钙类。 With the rapid development of science and technology and the rapid improvement of people's living standards, although the sharp increase in the use of family cars has brought huge benefits to the economy, it also poses a threat to people's travel safety. According to the statistics of Safety Culture Network, every 5 minutes in China, one person is injured or dies due to a car accident. Such a large number of patients is a severe test for the development of bone clinical medicine in our country. At present, the bone substitutes used in hospitals are basically titanium alloys. In order to make them more biocompatible, research on the surface modification of titanium alloys has become very important. Imitating the composition of the skeleton of a living body, the modification material is generally calcium phosphate.
钙钛矿型材料由于其结构的稳定性和元素灵活性受到研究者们的广泛关注,随着各种新元素组成或者新形貌结构的钙钛矿型材料的出现,它们的应用已经从传统的功能电子材料扩展到了诸如半导体发光材料、杂化太阳能电池、光催化材料等多个领域。钛酸钙作为一种钙钛矿材料,具有应钛合金表面修饰材料的潜力,但是目前对其制备和性能研究较少。 Perovskite-type materials have attracted extensive attention from researchers due to their structural stability and element flexibility. With the emergence of perovskite-type materials with various new element compositions or new morphology structures, their applications have changed from traditional to The functional electronic materials have expanded to many fields such as semiconductor light-emitting materials, hybrid solar cells, and photocatalytic materials. As a perovskite material, calcium titanate has the potential to be a surface modification material for titanium alloys, but there are few studies on its preparation and properties.
发明内容 Contents of the invention
本发明的目的在于提供一种成本低、产物纯度高、过程易于操作的具有可控微纳结构的钛酸钙粉体的制备方法。 The object of the present invention is to provide a method for preparing calcium titanate powder with controllable micro-nano structure, low cost, high product purity and easy operation.
本发明的具有可控微纳结构的钛酸钙粉体的制备方法,包括以下步骤: The preparation method of calcium titanate powder with controllable micro-nano structure of the present invention comprises the following steps:
1)将钛酸四丁酯溶解于乙二醇甲醚中,配制浓度为1~2.5mmol/mL的钛酸四丁酯乙二醇甲醚溶液,在搅拌状态下滴加氨水,使形成凝胶,用去离子水将所得的凝胶清洗至中性,得到钛前驱体凝胶; 1) Dissolve tetrabutyl titanate in ethylene glycol methyl ether, prepare tetrabutyl titanate ethylene glycol methyl ether solution with a concentration of 1~2.5mmol/mL, and add ammonia water dropwise under stirring to form a condensate Gel, the resulting gel is washed to neutral with deionized water to obtain a titanium precursor gel;
2)将与步骤1)中等摩尔量的四水合硝酸钙溶解于去离子水,配制浓度为0.5~1mmol/mL的四水合硝酸钙水溶液; 2) Dissolve an equimolar amount of calcium nitrate tetrahydrate in step 1) in deionized water to prepare an aqueous solution of calcium nitrate tetrahydrate with a concentration of 0.5-1 mmol/mL;
3)搅拌状态下,在步骤2)所得四水合硝酸钙水溶液中加入氧化石墨烯水溶液,氧化石墨烯与四水合硝酸钙摩尔比为1:120,得到混合溶液; 3) Under stirring, add graphene oxide aqueous solution to the aqueous solution of calcium nitrate tetrahydrate obtained in step 2), and the molar ratio of graphene oxide to calcium nitrate tetrahydrate is 1:120 to obtain a mixed solution;
4)搅拌状态下,将步骤1)所得的钛前驱体凝胶加入到步骤3)所得混合溶液中,得到悬浊液; 4) Under stirring, add the titanium precursor gel obtained in step 1) to the mixed solution obtained in step 3) to obtain a suspension;
5)在步骤4)所得悬浊液中加入氢氧化钾水溶液,使氢氧化钾与四水合硝酸钙的摩尔比为7:1~22:1; 5) Add potassium hydroxide aqueous solution to the suspension obtained in step 4), so that the molar ratio of potassium hydroxide to calcium nitrate tetrahydrate is 7:1~22:1;
6)将步骤5)的悬浊液加入反应釜内胆中,用去离子水调节反应釜内胆中液体体积达到内胆容积的4/5~7/8,将反应釜内胆置于反应釜中,在120℃下保温10h后,自然冷却至室温,将得到的产物用去离子水洗涤至中性,再用无水乙醇洗涤,在60~80℃干燥。 6) Add the suspension in step 5) into the inner tank of the reactor, adjust the liquid volume in the inner tank of the reactor with deionized water to 4/5~7/8 of the volume of the inner tank, and place the inner tank of the reactor in the reaction In the kettle, keep warm at 120°C for 10h, then cool to room temperature naturally, wash the obtained product with deionized water until neutral, then wash with absolute ethanol, and dry at 60-80°C.
本发明中所述的钛酸四丁酯(TBOT)、氨水、乙二醇甲醚、四水合硝酸钙、氧化石墨烯溶液和氢氧化钾的纯度均不低于化学纯。所述的反应釜是聚四氟乙烯内胆,不锈钢套件密闭的反应釜。 The purity of tetrabutyl titanate (TBOT), ammonia water, ethylene glycol methyl ether, calcium nitrate tetrahydrate, graphene oxide solution and potassium hydroxide described in the present invention is not lower than chemical purity. The reaction kettle is a polytetrafluoroethylene liner and a closed reaction kettle made of stainless steel.
本发明通过水热法得到了具有不同微纳结构的钛酸钙粉体。本发明中反应体系碱浓度的调控对产物的结构形貌具有决定性作用,氧化石墨烯对产物的尺寸有影响,促进了组成微纳结构的钛酸钙微米片的生长。这种制备方法操作简单,产物纯度和结晶度较高,分散性较好。 The present invention obtains calcium titanate powders with different micro-nano structures through a hydrothermal method. In the present invention, the adjustment of the alkali concentration in the reaction system has a decisive effect on the structure and morphology of the product, and the graphene oxide has an influence on the size of the product, and promotes the growth of the calcium titanate micro-sheets forming the micro-nano structure. The preparation method has simple operation, high product purity and crystallinity, and good dispersibility.
附图说明 Description of drawings
图1是加入4g氢氧化钾时所得钛酸钙微纳结构的X射线衍射图谱; Fig. 1 is the X-ray diffraction pattern of gained calcium titanate micro-nano structure when adding 4g potassium hydroxide;
图2是加入4g氢氧化钾时所得钛酸钙微纳结构的扫描电子显微镜照片; Fig. 2 is the scanning electron micrograph of gained calcium titanate micro-nano structure when adding 4g potassium hydroxide;
图3是加入6g氢氧化钾时所得钛酸钙微纳结构的X射线衍射图谱; Fig. 3 is the X-ray diffraction pattern of gained calcium titanate micro-nano structure when adding 6g potassium hydroxide;
图4是加入6g氢氧化钾时所得钛酸钙微纳结构的扫描电子显微镜照片。 Figure 4 is a scanning electron micrograph of the calcium titanate micro-nano structure obtained when 6g of potassium hydroxide is added.
具体实施方法Specific implementation method
以下结合实施例进一步说明本发明方法 Below in conjunction with embodiment further illustrate the inventive method
实施例1 Example 1
1)将5mmol钛酸四丁酯溶解于2mL乙二醇甲醚中,在搅拌状态下滴加氨水,使形成凝胶,用去离子水将所得的凝胶清洗至中性,得到钛前驱体凝胶; 1) Dissolve 5mmol tetrabutyl titanate in 2mL ethylene glycol methyl ether, add ammonia water dropwise under stirring to form a gel, wash the resulting gel with deionized water until neutral, and obtain a titanium precursor gel;
2)将5mmol四水合硝酸钙溶解于10mL去离子水中得到四水合硝酸钙水溶液; 2) Dissolve 5 mmol of calcium nitrate tetrahydrate in 10 mL of deionized water to obtain an aqueous solution of calcium nitrate tetrahydrate;
3)搅拌状态下,在步骤2)所得四水合硝酸钙水溶液中加入10mL浓度为0.05mg/mL的氧化石墨烯水溶液; 3) Under stirring, add 10 mL of graphene oxide aqueous solution with a concentration of 0.05 mg/mL to the aqueous solution of calcium nitrate tetrahydrate obtained in step 2);
4)搅拌状态下,将步骤1)所得的钛前驱体凝胶加入到步骤3)所得混合溶液中,得到悬浊液; 4) Under stirring, add the titanium precursor gel obtained in step 1) to the mixed solution obtained in step 3) to obtain a suspension;
5)在步骤4)所得悬浊液中加入5mL含有2g氢氧化钾的水溶液; 5) Add 5 mL of an aqueous solution containing 2 g of potassium hydroxide to the suspension obtained in step 4);
6)将步骤5)的悬浊液加入反应釜内胆中,用去离子水调节反应釜内胆中液体体积到内胆容积的4/5,将反应釜内胆置于反应釜中,在120℃下保温10h后,自然冷却至室温,将得到的产物用去离子水洗涤至中性,再用无水乙醇洗涤2次,在70℃干燥,得到具有一些台阶的立方状钛酸钙,这种微纳结构的平均尺寸约为5μm。 6) Add the suspension in step 5) into the inner tank of the reactor, adjust the liquid volume in the inner tank of the reactor to 4/5 of the volume of the inner tank with deionized water, place the inner tank of the reactor in the reactor, and After heat preservation at 120°C for 10 hours, cool naturally to room temperature, wash the obtained product with deionized water until neutral, then wash twice with absolute ethanol, and dry at 70°C to obtain cubic calcium titanate with some steps. The average size of this micro-nano structure is about 5 μm.
实施例2 Example 2
1)将5mmol钛酸四丁酯溶解于3mL乙二醇甲醚中,在搅拌状态下滴加氨水,使形成凝胶,用去离子水将所得的凝胶清洗至中性,得到钛前驱体凝胶; 1) Dissolve 5mmol tetrabutyl titanate in 3mL ethylene glycol methyl ether, add ammonia water dropwise under stirring to form a gel, wash the resulting gel with deionized water until neutral, and obtain a titanium precursor gel;
2)将5mmol四水合硝酸钙溶解于8mL去离子水中得到四水合硝酸钙水溶液; 2) Dissolve 5 mmol of calcium nitrate tetrahydrate in 8 mL of deionized water to obtain an aqueous solution of calcium nitrate tetrahydrate;
3)搅拌状态下,在步骤2)所得四水合硝酸钙水溶液中加入10mL浓度为0.05mg/mL的氧化石墨烯水溶液; 3) Under stirring, add 10 mL of graphene oxide aqueous solution with a concentration of 0.05 mg/mL to the aqueous solution of calcium nitrate tetrahydrate obtained in step 2);
4)搅拌状态下,将步骤1)所得的钛前驱体凝胶加入到步骤3)所得混合溶液中,得到悬浊液; 4) Under stirring, add the titanium precursor gel obtained in step 1) to the mixed solution obtained in step 3) to obtain a suspension;
5)在步骤4)所得悬浊液中加入8mL含有4g氢氧化钾的水溶液; 5) Add 8 mL of an aqueous solution containing 4 g of potassium hydroxide to the suspension obtained in step 4);
6)将步骤5)的悬浊液加入反应釜内胆中,用去离子水调节反应釜内胆中液体体积到内胆容积的4/5,将反应釜内胆置于反应釜中,在120℃下保温10h后,自然冷却至室温,将得到的产物用去离子水洗涤至中性,再用无水乙醇洗涤2次,在70℃干燥,得到如附图2所示多台阶的立方状钛酸钙,这种微纳结构的平均尺寸约为3μm,由长宽为1~2μm的片层构成。其XRD图如附图1所示,每个峰都有相对应的晶向,表明所制备的钛酸钙纯度和结晶度较好。另外,分析发现峰位向小角度偏移,说明石墨烯的加入引起钛酸钙晶格常数增大。 6) Add the suspension in step 5) into the inner tank of the reactor, adjust the liquid volume in the inner tank of the reactor to 4/5 of the volume of the inner tank with deionized water, place the inner tank of the reactor in the reactor, and After being kept at 120°C for 10 hours, it was naturally cooled to room temperature, and the obtained product was washed with deionized water to neutrality, then washed twice with absolute ethanol, and dried at 70°C to obtain a multi-step cube as shown in Figure 2. The average size of this micro-nano structure is about 3 μm, and it is composed of sheets with a length and width of 1-2 μm. Its XRD pattern is shown in Figure 1, and each peak has a corresponding crystal orientation, indicating that the prepared calcium titanate has good purity and crystallinity. In addition, the analysis found that the peak shifted to a small angle, indicating that the addition of graphene caused the lattice constant of calcium titanate to increase.
实施例3 Example 3
1)将5mmol钛酸四丁酯溶解于5mL乙二醇甲醚中,在搅拌状态下滴加氨水,使形成凝胶,用去离子水将所得的凝胶清洗至中性,得到钛前驱体凝胶; 1) Dissolve 5mmol tetrabutyl titanate in 5mL ethylene glycol methyl ether, add ammonia water dropwise under stirring to form a gel, wash the resulting gel with deionized water until neutral, and obtain a titanium precursor gel;
2)将5mmol四水合硝酸钙溶解于5mL去离子水中得到四水合硝酸钙水溶液; 2) Dissolve 5 mmol of calcium nitrate tetrahydrate in 5 mL of deionized water to obtain an aqueous solution of calcium nitrate tetrahydrate;
3)搅拌状态下,在步骤2)所得四水合硝酸钙水溶液中加入10mL浓度为0.05mg/mL的氧化石墨烯水溶液; 3) Under stirring, add 10 mL of graphene oxide aqueous solution with a concentration of 0.05 mg/mL to the aqueous solution of calcium nitrate tetrahydrate obtained in step 2);
4)搅拌状态下,将步骤1)所得的钛前驱体凝胶加入到步骤3)所得混合溶液中,得到悬浊液; 4) Under stirring, add the titanium precursor gel obtained in step 1) to the mixed solution obtained in step 3) to obtain a suspension;
5)在步骤4)所得悬浊液中加入10mL含有6g氢氧化钾的水溶液; 5) Add 10 mL of an aqueous solution containing 6 g of potassium hydroxide to the suspension obtained in step 4);
6)将步骤5)的悬浊液加入反应釜内胆中,用去离子水调节反应釜内胆中液体体积到内胆容积的7/8,将反应釜内胆置于反应釜中,在120℃下保温10h后,自然冷却至室温,将得到的产物用去离子水洗涤至中性,再用无水乙醇洗涤2次,在70℃干燥,得到如附图4所示飞机形状的钛酸钙,这种微纳结构的尺寸为3~5μm,由尺寸约为1μm的片层构成。其XRD图如附图3所示,表明所制备的钛酸钙纯度和结晶度较好。 6) Add the suspension in step 5) into the inner tank of the reactor, adjust the liquid volume in the inner tank of the reactor to 7/8 of the volume of the inner tank with deionized water, place the inner tank of the reactor in the reactor, and After heat preservation at 120°C for 10 hours, cool naturally to room temperature, wash the obtained product with deionized water until neutral, then wash twice with absolute ethanol, and dry at 70°C to obtain the titanium alloy in the shape of an airplane as shown in Figure 4. Calcium acid, the size of this micro-nano structure is 3-5 μm, and it is composed of sheets with a size of about 1 μm. Its XRD pattern is shown in Figure 3, indicating that the prepared calcium titanate has good purity and crystallinity.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410725987.3A CN104477976A (en) | 2014-12-04 | 2014-12-04 | Preparation method of calcium titanate powder with controllable micro/nano structures |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410725987.3A CN104477976A (en) | 2014-12-04 | 2014-12-04 | Preparation method of calcium titanate powder with controllable micro/nano structures |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104477976A true CN104477976A (en) | 2015-04-01 |
Family
ID=52752620
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410725987.3A Pending CN104477976A (en) | 2014-12-04 | 2014-12-04 | Preparation method of calcium titanate powder with controllable micro/nano structures |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104477976A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106517319A (en) * | 2016-10-27 | 2017-03-22 | 浙江大学 | Preparation method for calcium titanate micron particles |
CN107715859A (en) * | 2017-10-31 | 2018-02-23 | 吉林大学 | A kind of compound photocatalysis hydrogen production catalyst of graphene perovskite and preparation method thereof |
WO2022059460A1 (en) * | 2020-09-18 | 2022-03-24 | チタン工業株式会社 | Pigment composed of particles containing calcium-titanium composite oxide as main component, and use thereof |
WO2023053726A1 (en) * | 2021-10-01 | 2023-04-06 | チタン工業株式会社 | Powder composed of calcium-titanium composite oxide particles and method for producing same |
CN118441503A (en) * | 2024-07-08 | 2024-08-06 | 潍坊大有生物化工有限公司 | Thermosensitive coating composition and application thereof in thermosensitive paper |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010027336A1 (en) * | 2008-09-08 | 2010-03-11 | Nanyang Technological University | Nanoparticle decorated nanostructured material as electrode material and method for obtaining the same |
CN102139914A (en) * | 2011-04-20 | 2011-08-03 | 浙江大学 | Method for preparing calcium titanate nanoparticles |
CN102847529A (en) * | 2012-02-09 | 2013-01-02 | 江苏大学 | Graphene/titanate nanometer composite visible-light activated photocatalyst and preparation method thereof |
US20140328005A1 (en) * | 2013-05-03 | 2014-11-06 | Samhwa Capacitor Co., Ltd. | Lithium titanium oxide (lto)/carbon composite, preparation method for lto/carbon composite, negative electrode material using lto/carbon composite, and hybrid super capacitor using negative electrode material |
-
2014
- 2014-12-04 CN CN201410725987.3A patent/CN104477976A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010027336A1 (en) * | 2008-09-08 | 2010-03-11 | Nanyang Technological University | Nanoparticle decorated nanostructured material as electrode material and method for obtaining the same |
CN102139914A (en) * | 2011-04-20 | 2011-08-03 | 浙江大学 | Method for preparing calcium titanate nanoparticles |
CN102847529A (en) * | 2012-02-09 | 2013-01-02 | 江苏大学 | Graphene/titanate nanometer composite visible-light activated photocatalyst and preparation method thereof |
US20140328005A1 (en) * | 2013-05-03 | 2014-11-06 | Samhwa Capacitor Co., Ltd. | Lithium titanium oxide (lto)/carbon composite, preparation method for lto/carbon composite, negative electrode material using lto/carbon composite, and hybrid super capacitor using negative electrode material |
Non-Patent Citations (1)
Title |
---|
BO HOU ET AL.: ""Preparation and characterization of single-crystalline barium strontium titanate nanocubes via solvothermal method"", 《POWDER TECHNOLOGY》 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106517319A (en) * | 2016-10-27 | 2017-03-22 | 浙江大学 | Preparation method for calcium titanate micron particles |
CN107715859A (en) * | 2017-10-31 | 2018-02-23 | 吉林大学 | A kind of compound photocatalysis hydrogen production catalyst of graphene perovskite and preparation method thereof |
CN107715859B (en) * | 2017-10-31 | 2019-12-06 | 吉林大学 | A kind of graphene perovskite composite photocatalytic hydrogen production catalyst and preparation method thereof |
WO2022059460A1 (en) * | 2020-09-18 | 2022-03-24 | チタン工業株式会社 | Pigment composed of particles containing calcium-titanium composite oxide as main component, and use thereof |
US12065571B2 (en) | 2020-09-18 | 2024-08-20 | Titan Kogyo Kabushiki Kaisha | Pigment composed of particles containing calcium-titanium composite oxide as main component, and use thereof |
JP7672673B2 (en) | 2020-09-18 | 2025-05-08 | チタン工業株式会社 | Pigment made of particles mainly composed of calcium titanium composite oxide and use thereof |
EP4190752A4 (en) * | 2020-09-18 | 2025-05-21 | Titan Kogyo Kk | Pigment made from calcium-titanium composite oxide-containing particles as the main component and its use |
WO2023053726A1 (en) * | 2021-10-01 | 2023-04-06 | チタン工業株式会社 | Powder composed of calcium-titanium composite oxide particles and method for producing same |
CN118441503A (en) * | 2024-07-08 | 2024-08-06 | 潍坊大有生物化工有限公司 | Thermosensitive coating composition and application thereof in thermosensitive paper |
CN118441503B (en) * | 2024-07-08 | 2024-09-06 | 潍坊大有生物化工有限公司 | Thermosensitive coating composition and application thereof in thermosensitive paper |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jiang et al. | Solvothermal synthesis of submillimeter ultralong hydroxyapatite nanowires using a calcium oleate precursor in a series of monohydroxy alcohols | |
Zhang et al. | Ultralong hydroxyapatite nanowires synthesized by solvothermal treatment using a series of phosphate sodium salts | |
CN104477976A (en) | Preparation method of calcium titanate powder with controllable micro/nano structures | |
Ibrahim et al. | Conversion of waste eggshells to mesoporous hydroxyapatite nanoparticles with high surface area | |
CN104497032B (en) | A kind of nanoscale aluminium based metal-organic framework material and preparation method thereof | |
Mary et al. | Novel multiform morphologies of hydroxyapatite: synthesis and growth mechanism | |
CN101857263A (en) | A method for preparing nano-indium oxide with controllable morphology by hydrothermal method | |
CN104030371B (en) | A method for synthesizing NiO microspheres with mesoporous sheet structure by soft template method | |
Tamuly et al. | Bio-derived CuO nanoparticles for the photocatalytic treatment of dyes | |
CN104477975B (en) | A kind of preparation method of hollow cubic strontium titanates | |
Fu et al. | Compare study CaCO3 crystals on the cellulose substrate by microwave-assisted method and ultrasound agitation method | |
CN102557106B (en) | Preparation method of cuprous oxide hollow nanometer cubes | |
CN103112837A (en) | Preparation method of nano-hydroxyapatite | |
CN103011215B (en) | Boehmite micro-nano structure sphere and preparation method thereof | |
Zhang et al. | Ultralong hydroxyapatite microtubes: solvothermal synthesis and application in drug loading and sustained drug release | |
CN102488920A (en) | Alpha-calcium sulfate hemihydrate/hydroxyapatite composite granule with nuclear shell structure and preparation thereof | |
Wang et al. | Hydrothermal synthesis and structure characterization of flower-like self assembly of silicon-doped hydroxyapatite | |
CN113511657A (en) | A kind of high specific surface area magnesium silicate nano powder, preparation method and application | |
CN102070178A (en) | Method for preparing yttrium oxide micro-nano-materials based on hydrothermal technology regulation and control | |
CN104843779A (en) | Hollow spherical rutile titanium dioxide mesocrystal and preparation method thereof | |
CN103864031A (en) | Method for preparing nano-material with high specific surface area and pore volume | |
CN101698515B (en) | Method for preparing alpha-phase ferricoxide nanospheres | |
CN100467388C (en) | Method for Synthesizing Mesoporous Iron Oxide Using Mesoporous Carbon as Hard Template | |
CN101880057B (en) | Method for preparing high-purity brookite titanium dioxide with controlled appearance | |
CN103466688B (en) | A kind of method for preparing ZnS nanosheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20150401 |