[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN104457901B - A kind of method and system for determining the depth of water - Google Patents

A kind of method and system for determining the depth of water Download PDF

Info

Publication number
CN104457901B
CN104457901B CN201410713468.5A CN201410713468A CN104457901B CN 104457901 B CN104457901 B CN 104457901B CN 201410713468 A CN201410713468 A CN 201410713468A CN 104457901 B CN104457901 B CN 104457901B
Authority
CN
China
Prior art keywords
mrow
msub
delta
rho
mfrac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410713468.5A
Other languages
Chinese (zh)
Other versions
CN104457901A (en
Inventor
董昌明
李俊德
丁涛
梁楚进
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Information Science and Technology
Second Institute of Oceanography SOA
Original Assignee
Nanjing University of Information Science and Technology
Second Institute of Oceanography SOA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Information Science and Technology, Second Institute of Oceanography SOA filed Critical Nanjing University of Information Science and Technology
Priority to CN201410713468.5A priority Critical patent/CN104457901B/en
Publication of CN104457901A publication Critical patent/CN104457901A/en
Application granted granted Critical
Publication of CN104457901B publication Critical patent/CN104457901B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明提供了一种确定水深的方法及系统,所述方法包括:获取初始水深;分别获取初始时刻海表大气压与海底以上单位面积海水引起的第一压力之和、测量仪器在初始水深处的初始压力、终止时刻海表大气压与海底以上单位面积海水引起的第二压力之和及测量仪器在终止水深处的终止压力;分别确定第一压力之和与初始压力的差值,获取第一数值,第二压力之和与终止压力的差值,获取第二数值;确定第二数值与第一数值的差值,获取第三数值;确定第三数值与调取的参考海水密度和重力加速度参数相乘结果的比值,获取垂直位移;确定初始水深与垂直位移的差值,获取终止水深处的水深;该方法消除了在确定水深时的误差,直接得到测量仪器相对于平均海平面的深度。

The present invention provides a method and system for determining the water depth, the method comprising: obtaining the initial water depth; respectively obtaining the sum of the sea surface atmospheric pressure at the initial moment and the first pressure caused by seawater per unit area above the seabed, and the initial water depth of the measuring instrument The initial pressure, the sum of the sea surface atmospheric pressure at the end time and the second pressure caused by seawater per unit area above the seabed, and the end pressure of the measuring instrument at the end water depth; respectively determine the difference between the first pressure sum and the initial pressure to obtain the first value , the difference between the sum of the second pressure and the end pressure to obtain the second value; determine the difference between the second value and the first value to obtain the third value; determine the third value and the reference seawater density and gravity acceleration parameters retrieved Multiply the ratio of the results to obtain the vertical displacement; determine the difference between the initial water depth and the vertical displacement to obtain the water depth of the end water depth; this method eliminates the error in determining the water depth and directly obtains the depth of the measuring instrument relative to the average sea level.

Description

一种确定水深的方法及系统A method and system for determining water depth

技术领域technical field

本发明涉及海洋动力学技术领域,更具体地说,涉及一种确定水深的方法及系统。The present invention relates to the technical field of ocean dynamics, more specifically, to a method and system for determining water depth.

背景技术Background technique

海洋调查是用各自测量仪器直接或间接对海洋的物理学、化学、生物学、地质学、地貌学、气象学即其他海洋状况进行调查研究的手段。在海洋调查中,测量仪器在海洋中的精确水深位置是研究人员开展研究工作,获得高质量观测数据的前提。Marine survey is a means of investigating and studying the physics, chemistry, biology, geology, geomorphology, meteorology, or other ocean conditions of the ocean directly or indirectly with their own measuring instruments. In marine surveys, the precise water depth position of measuring instruments in the ocean is a prerequisite for researchers to carry out research work and obtain high-quality observation data.

在海洋界,一般通过将海洋中测量仪器测量的压力换算成水深来计算测量仪器在海洋中的精确位置。传统的海洋底部压力换算水深的方法是基于流体静态学方程和海水状态方程推导的经验公式的。利用推导的经验公式,最终将获取的压力转换为所得水深,即测量仪器到自由海表面的深度。In the marine world, the precise position of the measuring instrument in the ocean is generally calculated by converting the pressure measured by the measuring instrument in the ocean into water depth. The traditional method of converting water depth from ocean bottom pressure is based on empirical formulas derived from hydrostatic equations and seawater state equations. Using the derived empirical formula, the obtained pressure is finally converted to the obtained water depth, ie the depth from the measuring instrument to the free sea surface.

但是现有方法在推导过程中需要考虑到重力加速度随着水深和纬度的变化及海水温度、盐度对海水密度的影响。由于纬度不随时间变化,纬度对重力加速度的影响也就不随时间变化,但是海水的温度和盐度随时间的变化较大,海水密度也将随时间发生变化,即现有的压力转换水深的方法在每个时刻均会存在误差,且这个误差是随时间的变化而变化的。在实际测量过程中,波浪、潮汐和海流等海洋环境因素对海水压力的测量均会产生影响,而现有的方法中压力转换所得的水深为测量仪器到自由海表面的深度,因此这些因素所引起的误差将直接影响最后的转换结果。However, in the derivation process of existing methods, it is necessary to take into account the change of gravity acceleration with water depth and latitude and the influence of seawater temperature and salinity on seawater density. Since the latitude does not change with time, the effect of latitude on the acceleration of gravity does not change with time, but the temperature and salinity of seawater change greatly with time, and the density of seawater will also change with time, that is, the existing method of converting water depth from pressure There is an error at every moment, and this error changes with time. In the actual measurement process, marine environmental factors such as waves, tides and currents will affect the measurement of seawater pressure, and the water depth obtained by pressure conversion in the existing method is the depth from the measuring instrument to the free sea surface, so these factors affect the measurement of seawater pressure. The error caused will directly affect the final conversion result.

发明内容Contents of the invention

有鉴于此,本发明的目的是提供一种确定水深的方法及系统用以获得精确的测量仪器相对于平均海表面的深度。In view of this, the object of the present invention is to provide a method and system for determining water depth to obtain an accurate depth of a measuring instrument relative to the average sea surface.

为了实现上述目的,本发明提供如下技术方案:In order to achieve the above object, the present invention provides the following technical solutions:

一种确定水深的方法,所述方法包括:A method of determining water depth, the method comprising:

获取初始水深;Get the initial water depth;

分别获取初始时刻海表大气压与海底以上单位面积海水引起的压力的第一压力之和、测量仪器在所述初始水深处的初始压力、终止时刻海表大气压与海底以上单位面积海水引起的压力的第二压力之和及测量仪器在终止水深处的终止压力;Respectively obtain the first pressure sum of the sea surface atmospheric pressure at the initial moment and the pressure caused by seawater per unit area above the seabed, the initial pressure of the measuring instrument at the initial water depth, the sea surface atmospheric pressure at the end time and the pressure caused by seawater per unit area above the seafloor The sum of the second pressure and the end pressure of the measuring instrument at the end water depth;

分别确定所述第一压力之和与所述初始压力的差值,获取第一数值,所述第二压力之和与所述终止压力的差值,获取第二数值;respectively determining the difference between the sum of the first pressure and the initial pressure to obtain a first value, and the difference between the sum of the second pressure and the end pressure to obtain a second value;

确定所述第二数值与所述第一数值的差值,获取第三数值;determining the difference between the second value and the first value to obtain a third value;

确定所述第三数值与调取的参考海水密度和重力加速度参数相乘结果的比值,获取垂直位移;Determining the ratio of the third value to the multiplication result of the retrieved reference seawater density and the acceleration of gravity parameter to obtain the vertical displacement;

确定所述初始水深与所述垂直位移的差值,获取所述终止水深处的水深。Determine the difference between the initial water depth and the vertical displacement to obtain the water depth of the end water depth.

优选的,确定所述第二数值与所述第一数值的差值,按照下述公式获取所述第三数值:Preferably, the difference between the second value and the first value is determined, and the third value is obtained according to the following formula:

其中,-D(t)为水深,ρ(t,z)为海水密度,g(z)为重力加速度。Among them, -D(t) is water depth, ρ(t,z) is seawater density, g (z) is gravity acceleration.

优选的,根据测量仪器测量的时间长度远远小于层海水密度变化的时间尺度关系,按照下述公式获得所述第三数值的第一预估值:Preferably, according to the time scale relationship that the time length measured by the measuring instrument is much shorter than the change of layer seawater density, the first estimated value of the third value is obtained according to the following formula:

其中,Δg(z)为水深的函数,Δρ(t,z)为海水温度、盐度和密度的函数。where Δg(z) is a function of water depth, and Δρ(t,z) is a function of seawater temperature, salinity and density.

优选的,根据所述垂直位移Δh(t)范围与所述Δg(z)和Δρ(t,z)的变化关系,及所述第三数值的第一预估值,按照下述公式获取所述第二预估值:Preferably, according to the variation relationship between the vertical displacement Δh(t) range and the Δg(z) and Δρ(t,z), and the first estimated value of the third value, the following formula is used to obtain the Said second estimate:

优选的,根据所述第二预估值及下述公式获取所述垂直位移:Preferably, the vertical displacement is obtained according to the second estimated value and the following formula:

优选的,所述方法还包括:Preferably, the method also includes:

获取第三预估值,所述第三预估值用于确定所述垂直位移的预估值。Acquiring a third estimated value, where the third estimated value is used to determine the estimated value of the vertical displacement.

优选的,所述获取所述第三预估值包括:Preferably, said obtaining said third estimated value comprises:

确定一与所述海水密度与所述重力加速度的表达式相乘结果的比值;determining a ratio to the result of multiplying the seawater density by the expression for the acceleration of gravity;

将所述倒数值进行一阶泰勒展开,按照下述公式获取所述倒数的第三预估值:The reciprocal value is subjected to first-order Taylor expansion, and the third estimated value of the reciprocal is obtained according to the following formula:

一种确定水深的系统,所述系统包括:A system for determining water depth, the system comprising:

第一获取单元,用于获取初始水深;The first acquisition unit is used to acquire the initial water depth;

第二获取单元,用于分别获取初始时刻海表大气压与海底以上单位面积海水引起的压力的第一压力之和、测量仪器在所述初始水深处的初始压力、终止时刻海表大气压与海底以上单位面积海水引起的压力的第二压力之和及测量仪器在终止水深处的终止压力;The second acquisition unit is used to respectively acquire the sum of the first pressure of the sea surface atmospheric pressure at the initial moment and the pressure caused by seawater per unit area above the seabed, the initial pressure of the measuring instrument at the initial water depth, the sea surface atmospheric pressure at the end time and the pressure above the seabed The sum of the second pressure of the pressure caused by seawater per unit area and the end pressure of the measuring instrument at the end water depth;

第一确定单元,用于分别确定所述第一压力之和与所述初始压力的差值,获取第一数值,确定所述第二压力之和与所述终止压力的差值,获取第二数值;The first determination unit is configured to respectively determine the difference between the sum of the first pressure and the initial pressure, obtain the first value, determine the difference between the sum of the second pressure and the end pressure, and obtain the second value;

第二确定单元,用于确定所述第二数值与所述第一数值的差值,获取第三数值;a second determination unit, configured to determine a difference between the second value and the first value, and obtain a third value;

第四获取单元,用于确定所述第三数值与调取的参考海水密度和重力加速度参数相乘结果的比值,获取垂直位移;The fourth acquisition unit is used to determine the ratio of the third value to the multiplication result of the retrieved reference seawater density and the acceleration of gravity parameter, and obtain the vertical displacement;

第三确定单元,用于确定所述初始水深与所述垂直位移的差值,获取所述终止水深处的水深。The third determination unit is configured to determine the difference between the initial water depth and the vertical displacement, and obtain the water depth of the end water depth.

优选的,所述系统还包括:Preferably, the system also includes:

第一预估单元,根据测量仪器测量的时间长度远远小于海水密度变化的时间尺度关系,按照下述公式获取所述第三数值的第一预估值:The first estimation unit obtains the first estimated value of the third value according to the following formula according to the time scale relationship in which the time length measured by the measuring instrument is much smaller than the seawater density change:

其中,Δg(z)为水深的函数,Δρ(t,z)位海水温度、盐度和密度的函数;Among them, Δg(z) is a function of water depth, and Δρ(t,z) is a function of seawater temperature, salinity and density;

第二预估单元,用于根据所述垂直位移Δh(t)范围与所述Δg(z)和Δρ(t,z)的变化关系,及所述第三数值的第一预估值,按照下述公式获取所述第二预估值:The second estimation unit is configured to, according to the variation relationship between the vertical displacement Δh(t) range and the Δg(z) and Δρ(t,z), and the first estimated value of the third value, according to The following formula obtains the second estimated value:

第三预估单元,用于确定所述垂直位移的预估值。The third estimation unit is configured to determine the estimated value of the vertical displacement.

优选的,所述第三预估单元包括:Preferably, the third estimation unit includes:

第一计算单元,用于确定海水密度与重力加速度的表达式相乘结果的倒数;The first calculation unit is used to determine the reciprocal of the multiplication result of the expression of seawater density and acceleration of gravity;

第二计算单元,用于将所述倒数值进行一阶泰勒展开,按照下述公式获取所述倒数的第三预估值:The second calculation unit is configured to perform a first-order Taylor expansion on the reciprocal value, and obtain a third estimated value of the reciprocal according to the following formula:

第四确定单元,根据所述第三预估值及下述公式确定所述垂直位移的预估值:A fourth determination unit, determining the estimated value of the vertical displacement according to the third estimated value and the following formula:

与现有技术相比,本发明的优点如下:Compared with prior art, advantage of the present invention is as follows:

本发明提供的确定水深的方法简单而且容易实现,通过初始水深与初始时间与终止时间内垂直位移相减,消除在确定水深过程中由于波浪、潮汐和海流等环境因素引起的误差,直接得到测量仪器相对于平均海平面的深度。由于本发明提供的确定水深方法中的误差是不随着时间的变化而变化的,因此该误差是可预见的。The method for determining the water depth provided by the present invention is simple and easy to implement. By subtracting the vertical displacement between the initial water depth and the initial time and the end time, the error caused by environmental factors such as waves, tides and currents in the process of determining the water depth is eliminated, and the measurement is directly obtained. The depth of the instrument relative to mean sea level. Since the error in the method for determining water depth provided by the present invention does not change with time, the error is predictable.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only It is an embodiment of the present invention, and those skilled in the art can also obtain other drawings according to the provided drawings without creative work.

图1为本发明实施例提供的一种确定水深的方法的一种流程图;Fig. 1 is a kind of flow chart of a kind of method for determining water depth provided by the embodiment of the present invention;

图2为本发明实施例提供的一种确定水深的方法的另一种流程图;Fig. 2 is another flow chart of a method for determining water depth provided by an embodiment of the present invention;

图3为本发明实施例提供的一种确定水深的系统的一种结构示意图;FIG. 3 is a schematic structural diagram of a system for determining water depth provided by an embodiment of the present invention;

图4为本发明实施例提供的一种确定水深的系统的另一种结构示意图;Fig. 4 is another schematic structural diagram of a system for determining water depth provided by an embodiment of the present invention;

图5为本发明实施例提供的一种确定水深的系统的一种子结构示意图。Fig. 5 is a schematic structural diagram of a substructure of a system for determining water depth provided by an embodiment of the present invention.

具体实施方式detailed description

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.

请参考图1,本发明实施例提供了一种确定水深的方法的一种流程图,可以包括以下步骤:Please refer to FIG. 1 , an embodiment of the present invention provides a flow chart of a method for determining water depth, which may include the following steps:

步骤100:获取初始水深。Step 100: Get the initial water depth.

步骤101:分别获取初始时刻海表大气压与海底以上单位面积海水引起的压力的第一压力之和、测量仪器在初始水深处的初始压力、终止时刻海表大气压与海底以上单位面积海水引起的压力的第二压力之和及测量仪器在终止水深处的终止压力。Step 101: Obtain the sum of the first pressure of the sea surface atmospheric pressure at the initial moment and the pressure caused by the seawater per unit area above the seabed, the initial pressure of the measuring instrument at the initial water depth, the sea surface atmospheric pressure at the end time and the pressure caused by the seawater per unit area above the seafloor The sum of the second pressure and the end pressure of the measuring instrument at the end water depth.

步骤102:分别确定第一压力之和与初始压力的差值,获取第一数值,确定第二压力之和与终止压力的差值,获取第二数值。Step 102: respectively determine the difference between the sum of the first pressure and the initial pressure to obtain the first value, and determine the difference between the sum of the second pressure and the end pressure to obtain the second value.

步骤103:确定第二数值与第一数值的差值,获取第三数值。Step 103: Determine the difference between the second value and the first value to obtain a third value.

步骤104:确定第三数值与调取的参考海水密度和重力加速度参数相乘结果的比值,获取垂直位移。Step 104: Determine the ratio of the third value to the multiplication result of the retrieved reference seawater density and gravity acceleration parameters to obtain the vertical displacement.

步骤105:确定初始水深与垂直位移的差值,获取终止水深处的水深。Step 105: Determine the difference between the initial water depth and the vertical displacement, and obtain the water depth of the end water depth.

本发明提供的确定水深的方法,通过初始水深与初始时间与终止时间内垂直位移相减的方法,消除在确定水深过程中的误差,直接得到测量仪器相对于平均海平面的深度。由于本发明提供的确定水深方法中的误差是不随着时间的变化而变化的,因此该误差是可预见的。The method for determining the water depth provided by the present invention eliminates errors in the process of determining the water depth by subtracting the vertical displacement between the initial water depth and the initial time and the end time, and directly obtains the depth of the measuring instrument relative to the mean sea level. Since the error in the method for determining water depth provided by the present invention does not change with time, the error is predictable.

请参考图2,其示出了本发明实施例提供的一种确定水深的方法的另一种流程图,可以包括以下步骤:Please refer to FIG. 2, which shows another flowchart of a method for determining water depth provided by an embodiment of the present invention, which may include the following steps:

步骤200:获取初始水深。Step 200: Get the initial water depth.

设定初始水深为h(t0),其中初始水深h(t0)可以通过LP方法或者根据测量仪器在初始时刻布放的在锚系上的位置来确定。Set the initial water depth as h(t 0 ), where the initial water depth h(t 0 ) can be determined by the LP method or according to the position on the mooring system deployed by the measuring instrument at the initial moment.

需要说明的是,LP方法是通过加入一个订正项来实现的。It should be noted that the LP method is realized by adding a correction item.

步骤201:分别获取初始时刻海表大气压与海底以上单位面积海水引起的压力的第一压力之和、测量仪器在初始水深处的初始压力、终止时刻海表大气压与海底以上单位面积海水引起的压力的第二压力之和及测量仪器在终止水深处的终止压力。Step 201: Obtain the sum of the first pressure of the sea surface atmospheric pressure at the initial moment and the pressure caused by seawater per unit area above the seabed, the initial pressure of the measuring instrument at the initial water depth, the sea surface atmospheric pressure at the end time and the pressure caused by seawater per unit area above the seafloor The sum of the second pressure and the end pressure of the measuring instrument at the end water depth.

其中,第一压力之和是通过坐底压力传感器测量的,具体地是将压力传感器置于海底或者接近海底的调查装备上,由于海洋底部受环境因素的影响较小,坐底压力传感器中的坐底压力计可以精确测量监测点的水位变化,故坐底压力传感器可以测量精确的终止水深。需要说明的是,第二压力之和的获取方法与第一压力之和的获取方法相同。Among them, the sum of the first pressure is measured by the bottom pressure sensor. Specifically, the pressure sensor is placed on the seabed or on the survey equipment close to the bottom. Since the bottom of the ocean is less affected by environmental factors, the bottom pressure sensor The sitting bottom pressure gauge can accurately measure the water level change at the monitoring point, so the sitting bottom pressure sensor can measure the accurate termination water depth. It should be noted that the acquisition method of the second sum of pressures is the same as the acquisition method of the first sum of pressures.

将时刻t0设为初始时刻,其中在初始时刻,坐底压力传感器所测得的压力为海表大气压Pa与海底以上单位面积海水引起的压力之和Pb(t0)。由于P-h(t)表示水深为-h(t)处利用声学多普勒流速剖面仪(ADCP.Acoustic Doppler Current Profiler)、温盐深仪(Conductivity Temperature and Pressure)或者其他测量仪器所得到的压力。即在初始水深-h(t0)处,由测量仪器在初始水深处获取的初始压力为P-h(t0)。The time t 0 is set as the initial time, wherein at the initial time, the pressure measured by the bottom pressure sensor is the sum of the sea surface atmospheric pressure P a and the pressure caused by seawater per unit area above the seabed P b (t 0 ). Since P -h (t) means that the water depth is -h (t) obtained by using the Acoustic Doppler Current Profiler (ADCP.Acoustic Doppler Current Profiler), the Conductivity Temperature and Pressure or other measuring instruments pressure. That is, at the initial water depth -h(t 0 ), the initial pressure obtained by the measuring instrument at the initial water depth is P -h (t 0 ).

步骤202:分别确定第一压力之和与初始压力的差值,获取第一数值,确定第二压力之和与终止压力的差值,获取第二数值。Step 202: respectively determine the difference between the sum of the first pressure and the initial pressure to obtain the first value, and determine the difference between the sum of the second pressure and the end pressure to obtain the second value.

步骤203:确定第二数值与第一数值的差值,获取第三数值。Step 203: Determine the difference between the second value and the first value to obtain a third value.

步骤204:获取第三数值的第一预估值。Step 204: Obtain a first estimated value of the third value.

步骤205:获取第二预估值。Step 205: Obtain a second estimated value.

步骤206:根据第二预估值获取垂直位移。Step 206: Obtain the vertical displacement according to the second estimated value.

步骤207:获取第三预估值,第三预估值用于确定垂直位移的预估值。Step 207: Obtain a third estimated value, which is used to determine an estimated value of the vertical displacement.

需要说明的是,第三预估值的获取可以通过如下方式实现:It should be noted that the acquisition of the third estimated value may be achieved in the following manner:

一是确定海水密度与重力加速度的表达式相乘结果的倒数。One is to determine the reciprocal of the multiplication result of the expression of seawater density and gravitational acceleration.

二是将倒数值进行一阶泰勒展开,并对进行泰勒展开的公式作一阶近似,便可获得预估的第三预估值。The second is to carry out the first-order Taylor expansion of the reciprocal value, and make a first-order approximation to the formula for Taylor expansion, so as to obtain the estimated third estimated value.

步骤208:确定初始水深与垂直位移的差值,获取终止水深处的水深。Step 208: Determine the difference between the initial water depth and the vertical displacement, and obtain the water depth of the end water depth.

其中,本发明得到的是测量仪器相对于平均海表面的深度,相对于现有技术中获取到的自由海表面的深度,本发明获取到的终止水深处的水深值更精确。Among them, what the present invention obtains is the depth of the measuring instrument relative to the average sea surface. Compared with the depth of the free sea surface obtained in the prior art, the water depth value of the end water depth obtained by the present invention is more accurate.

需要说明的是,在不考虑压力传感器精度的情况下,坐底压力传感器所测的压力Pb为海表大气压Pa与海底以上单位面积海水引起的压力之和,其表达式为:It should be noted that, without considering the accuracy of the pressure sensor, the pressure P b measured by the pressure sensor sitting on the bottom is the sum of the sea surface atmospheric pressure P a and the pressure caused by seawater per unit area above the seabed, and its expression is:

其中,η(t)表示海表高度起伏,ρ(t,z)表示海水密度,g(z)表示重力加速度。Among them, η(t) represents the fluctuation of sea surface height, ρ(t, z) represents the density of seawater, and g(z) represents the acceleration of gravity.

在水深为-h(t)时,利用测量仪器测得的压力P-h(t)的表达式为:When the water depth is -h(t), the expression of the pressure P -h (t) measured by the measuring instrument is:

其中,h(t)为测量仪器相对于平均海平面的水深。where h(t) is the water depth of the measuring instrument relative to mean sea level.

其中,上述的测量仪器可以采用ADCP或者CTD,同时也可以采用其他测量仪器进行压力测量。Wherein, the above-mentioned measuring instruments may use ADCP or CTD, and other measuring instruments may also be used for pressure measurement.

利用式(1)减去式(2),得到公式:Subtract formula (2) from formula (1) to get the formula:

其中,水深h(t)的表达式为:Among them, the expression of water depth h(t) is:

h(t)=h(t0)-Δh(t) (4)h(t)=h(t 0 )-Δh(t) (4)

其中,h(t0)为t=t0时刻测量仪器所在的水深,Δh(t)为测量仪器相对于t=t0时刻的垂直位移。Wherein, h(t 0 ) is the water depth where the measuring instrument is located at the moment t=t 0 , and Δh(t) is the vertical displacement of the measuring instrument relative to the moment t=t 0 .

当测量仪器固定在海洋锚系上时,由于受到水平海流的影响,测量仪器将在水平方向产生运动。又由于锚系锚定在海底,故测量仪器在水平方向产生运动的同时又将产生垂直方向的位移,即垂直位移。When the measuring instrument is fixed on the ocean mooring system, due to the influence of the horizontal ocean current, the measuring instrument will move in the horizontal direction. And because the mooring system is anchored on the seabed, the measuring instrument will move in the vertical direction while moving in the horizontal direction, that is, the vertical displacement.

将式(4)代入式(3),得到:Substituting formula (4) into formula (3), we get:

将t=t0,代入式(5),得到:Substituting t=t 0 into formula (5), we get:

利用式(5)减去式(6),得到:Subtract formula (6) from formula (5) to get:

由于海洋底部海流较弱,海水流动非常缓慢,故可以认为坐底压力计保持在一个固定的水深(通常只有几米的变化),即D(t)为常数。Due to the weak current at the bottom of the ocean, the seawater flows very slowly, so it can be considered that the bottom pressure gauge is maintained at a fixed water depth (usually only a few meters of change), that is, D(t) is a constant.

假设t-t0<<T,测量仪器测量的时间长度远远小于海水密度变化的时间尺度,故式(7)中右边的第一项可以忽略,即可获得第一预估值。Assuming that tt 0 <<T, the time length measured by the measuring instrument is much shorter than the time scale of seawater density change, so the first item on the right side of formula (7) can be ignored, and the first estimated value can be obtained.

由于海水的密度ρ(t,z)和重力加速的g(z)的表达式可以分别写为:Since the expressions of seawater density ρ(t,z) and gravitational acceleration g(z) can be written as:

ρ(t,z)=ρ(t0,h(t0))+Δρ(t,z) (8)ρ(t,z)=ρ(t 0 ,h(t 0 ))+Δρ(t,z) (8)

g(z)=g(h(t0))+Δg(z) (9)g(z)=g(h(t 0 ))+Δg(z) (9)

其中,ρ(t0,h(t0))表示初始时刻水深h(t0)处的海水密度;g(h(t0))表示初始时刻水深h(t0)处的重力加速度。Among them, ρ(t 0 , h(t 0 )) represents the seawater density at the initial moment of water depth h(t 0 ); g(h(t 0 )) represents the gravitational acceleration at the initial moment of water depth h(t 0 ).

将式(8)和式(9)代入式(7),得到式(7)中第二项的表达式为:Substituting formula (8) and formula (9) into formula (7), the expression of the second item in formula (7) is obtained as:

其中,在一个固定的位置,Δg(z)仅仅是水深的函数,每米的变化约为1.092*10- 6m*s-2。根据海水状态方程,Δρ(t,z)为海水温度、盐度和密度的函数。当测量仪器的垂直位移变化小于10米量级时,Δρ(t,z)和Δg(z)的变化范围分别为:10kg*m-3和10-4m*s-2Among them, at a fixed position, Δg(z) is only a function of water depth, and the change per meter is about 1.092*10 - 6 m*s -2 . According to the seawater equation of state, Δρ(t,z) is a function of seawater temperature, salinity and density. When the vertical displacement of the measuring instrument varies less than 10 meters, the variation ranges of Δρ(t,z) and Δg(z) are: 10kg*m -3 and 10 -4 m*s -2 , respectively.

与式(10)中第一项相比,其最后三项可以估计为:Compared with the first term in formula (10), the last three terms can be estimated as:

由于最后三项所引起的误差最大为1%,忽略误差项,即可得到第二预估值,如下式所示:Since the error caused by the last three items is at most 1%, ignoring the error item, the second estimated value can be obtained, as shown in the following formula:

将式(14)代入式(7)可以得到:Substituting formula (14) into formula (7) can get:

因此,therefore,

在式(16)中,ρ(t0,h(t0))和g(h(t0))可以分别写为:In formula (16), ρ(t 0 ,h(t 0 )) and g(h(t 0 )) can be written as:

ρ(t0,h(t0))=ρ0+Δρ(t0,h(t0)) (17)ρ(t 0 ,h(t 0 ))=ρ 0 +Δρ(t 0 ,h(t 0 )) (17)

g(h(t0))=g0+Δg(h(t0)) (18)g(h(t 0 ))=g 0 +Δg(h(t 0 )) (18)

其中ρ0=1020kg*m-3和g0=9.8m*s-2分别为参考海水密度和重力加速度。Wherein ρ 0 =1020kg*m -3 and g 0 =9.8m*s -2 are reference seawater density and gravity acceleration respectively.

将式(17)和式(18)代入式(16)中右边的第二项,同时利用一阶泰勒公式展开可以得到:Substituting Equation (17) and Equation (18) into the second term on the right side of Equation (16), and using the first-order Taylor formula to expand, we can get:

在海洋中,ρ(t0,h(t0))和g(h(t0))的变化范围分别为20kg*m-3和0.1m*s-2。在式(19)中,一阶项的估计表达式分别为:In the ocean, the variation ranges of ρ(t 0 ,h(t 0 )) and g(h(t 0 )) are 20kg*m -3 and 0.1m*s -2 respectively. In formula (19), the estimated expressions of the first-order items are:

其中,式(20)、(21)、(22)中一阶项的最大误差为3%,忽略海水密度和重力加速度所引起的误差,得到第三预估值,如下式所示:Among them, the maximum error of the first-order item in formulas (20), (21), and (22) is 3%, and the error caused by seawater density and gravity acceleration is ignored, and the third estimated value is obtained, as shown in the following formula:

综合式(15)及式(23)即获得了垂直位移的预估值,如下式所示:Combining formula (15) and formula (23), the estimated value of vertical displacement is obtained, as shown in the following formula:

综上得到终止水深处的水深的表达式为:In summary, the water depth expression of the end water depth is:

其中,初始水深h(t0)可以由LP方法或者根据测量仪器在初始时刻布放在锚系上的位置来确定。Wherein, the initial water depth h(t 0 ) can be determined by the LP method or according to the position of the measuring instrument deployed on the mooring system at the initial moment.

因此,根据式(25),如果给定t时刻坐底压力传感器和测量仪器的压力,便可以得到测量仪器所在水深h(t)。Therefore, according to formula (25), if the pressure of the bottom pressure sensor and the measuring instrument is given at time t, the water depth h(t) where the measuring instrument is located can be obtained.

本发明实施例提供的确定水深的方法,在利用该方法进行海洋底部压力换算海洋水深的过程中,利用小扰动法进行理论推导,预估误差,直接得到相对于平均海平面的水深,降低环境因素对计算的影响。其中初始水深引起的误差为一次偏移误差,不会在计算过程中随着时间的变化而变化。当初始水深给定时,以上方法的误差主要来源于测量仪器在垂直方向的位移而引起的海水密度和重力加速的变化,根据上述的理论分析可知垂直位移引起的相对误差不会超过4%,且该误差不随时间的变化而变化。The method for determining the water depth provided by the embodiment of the present invention, in the process of converting the ocean bottom pressure to the ocean water depth by using the method, uses the small disturbance method to conduct theoretical derivation, estimate the error, and directly obtain the water depth relative to the average sea level, reducing the environmental impact. The effect of factors on calculations. The error caused by the initial water depth is a primary offset error, which will not change with time during the calculation process. When the initial water depth is given, the error of the above method mainly comes from the change of seawater density and gravity acceleration caused by the displacement of the measuring instrument in the vertical direction. According to the above theoretical analysis, it can be known that the relative error caused by the vertical displacement will not exceed 4%, and This error does not change with time.

与上述方法实施例相对应,本发明实施例还提供了一种确定水深的系统,应用于海洋调查中,确定水深的系统的结构示意图请参考图3所示,包括:第一获取单元11、第二获取单元12、第一确定单元13、第二确定单元14、第三获取单元15和第三确定单元16。其中:Corresponding to the above-mentioned method embodiment, the embodiment of the present invention also provides a system for determining water depth, which is applied in marine surveys. Please refer to FIG. 3 for a schematic structural diagram of the system for determining water depth, including: a first acquisition unit 11, The second acquisition unit 12 , the first determination unit 13 , the second determination unit 14 , the third acquisition unit 15 and the third determination unit 16 . in:

第一获取单元11,用于获取初始水深。The first acquisition unit 11 is configured to acquire an initial water depth.

设定初始水深为h(t0),其中初始水深h(t0)可以通过LP方法或者根据测量仪器在初始时刻布放在锚系上的位置来确定。Set the initial water depth as h(t 0 ), where the initial water depth h(t 0 ) can be determined by the LP method or according to the position of the measuring instrument placed on the mooring system at the initial moment.

需要说明的是,LP方法是通过加入一个订正项来实现的。It should be noted that the LP method is realized by adding a correction term.

第二获取单元12,用于分别获取初始时刻海表大气压与海底以上单位面积海水引起的压力的第一压力之和、测量仪器在所述初始水深处的初始压力、终止时刻海表大气压与海底以上单位面积海水引起的压力的第二压力之和及测量仪器在终止水深处的终止压力。The second acquiring unit 12 is used to respectively acquire the sum of the first pressure of the sea surface atmospheric pressure at the initial moment and the pressure caused by the seawater per unit area above the seabed, the initial pressure of the measuring instrument at the initial water depth, the sea surface atmospheric pressure and the seabed at the end moment The sum of the second pressure of the pressure caused by seawater per unit area above and the end pressure of the measuring instrument at the end water depth.

其中,第一压力之和是通过坐底压力传感器测量的,具体地是将压力传感器置于海底或者接近海底的调查装备上,由于海洋底部受环境因素的影响较小,坐底压力传感器中的坐底压力计可以精确测量监测点的水位变化,故坐底压力传感器可以测量精确的终止水深。同理,第二压力之和的获取方式与第一压力之和的获取方式相同。Among them, the sum of the first pressure is measured by the bottom pressure sensor. Specifically, the pressure sensor is placed on the seabed or on the survey equipment close to the bottom. Since the bottom of the ocean is less affected by environmental factors, the bottom pressure sensor The sitting bottom pressure gauge can accurately measure the water level change at the monitoring point, so the sitting bottom pressure sensor can measure the accurate termination water depth. Similarly, the acquisition method of the second sum of pressure is the same as that of the first sum of pressure.

第一确定单元13,用于分别确定第一压力之和与初始压力的差值,获取第一数值,确定第二压力之和与终止压力的差值,获取第二数值。The first determining unit 13 is configured to respectively determine the difference between the sum of the first pressure and the initial pressure to obtain the first value, and determine the difference between the sum of the second pressure and the end pressure to obtain the second value.

第二确定单元14,用于确定第二数值与第一数值的差值,获取第三数值。The second determination unit 14 is configured to determine a difference between the second value and the first value, and obtain a third value.

第三获取单元15,用于确定第三数值与调取的参考海水密度和重力加速度参数相乘结果的比值,获取垂直位移。The third acquisition unit 15 is configured to determine the ratio of the third value to the multiplication result of the retrieved reference seawater density and the acceleration of gravity parameter, and acquire the vertical displacement.

第三确定单元16,用于确定初始水深与垂直位移的差值,获取终止水深处的水深。The third determining unit 16 is configured to determine the difference between the initial water depth and the vertical displacement, and acquire the water depth of the end water depth.

本发明提供的确定水深的方法简单而且容易实现,通过初始水深与初始时间与终止时间内垂直位移相减,消除在确定水深过程中由于波浪、潮汐和海流等环境因素引起的误差,直接得到测量仪器相对于平均海平面的深度。由于本发明提供的确定水深方法中的误差是不随着时间的变化而变化的,因此该误差是可预见的。The method for determining the water depth provided by the present invention is simple and easy to implement. By subtracting the vertical displacement between the initial water depth and the initial time and the end time, the error caused by environmental factors such as waves, tides and currents in the process of determining the water depth is eliminated, and the measurement is directly obtained. The depth of the instrument relative to mean sea level. Since the error in the method for determining water depth provided by the present invention does not change with time, the error is predictable.

请参考图4,其示出了本发明实施例提供的一种确定水深的系统的另一种结构示意图,在图3的基础上,还可以包括:第一预估单元17、第二预估单元18和第三预估单元19。其中:Please refer to FIG. 4, which shows another schematic structural diagram of a system for determining water depth provided by an embodiment of the present invention. On the basis of FIG. 3, it may also include: a first estimation unit 17, a second estimation unit unit 18 and a third estimation unit 19. in:

第一预估单元17,用于根据测量仪器测量的时间长度远远小于海水密度变化的时间尺度关系,按照下述公式获取所述第三数值的第一预估值:The first estimating unit 17 is configured to obtain the first estimated value of the third value according to the following formula according to the time scale relationship in which the time length measured by the measuring instrument is much smaller than the seawater density change:

其中,Δg(z)为水深的函数,Δρ(t,z)为海水温度、盐度和密度的函数。where Δg(z) is a function of water depth, and Δρ(t,z) is a function of seawater temperature, salinity and density.

由于海洋底部海流较弱,海水流动的非常缓慢,故可以认为坐底压力传感器保持在一个固定的水深。当测量仪器测量的时间长度远远小于海水密度变化的时间尺度时,可以在第一预估单元内对第三数值进行预估,以获得第三数值的第一预估值。Due to the weak current at the bottom of the ocean, the seawater flows very slowly, so it can be considered that the bottom pressure sensor is kept at a fixed water depth. When the time length measured by the measuring instrument is much shorter than the time scale of seawater density change, the third value may be estimated in the first estimation unit to obtain a first estimated value of the third value.

第二预估单元18,用于根据所述垂直位移Δh(t)范围与所述Δg(z)和Δρ(t,z)的变化关系,及所述第三数值的第一预估值,按照下述公式获取所述第二预估值:The second estimation unit 18 is configured to, according to the variation relationship between the vertical displacement Δh(t) range and the Δg(z) and Δρ(t,z), and the first estimated value of the third value, The second estimated value is obtained according to the following formula:

第三预估单元19,用于确定所述垂直位移的预估值。The third estimation unit 19 is configured to determine an estimated value of the vertical displacement.

此外第三预估单元还可以采用如图5所示的结构示意图,可以包括:第五计算单元231、第六计算单元232和第四确定单元233。其中:In addition, the third estimating unit may also adopt a schematic structural diagram as shown in FIG. 5 , and may include: a fifth calculating unit 231 , a sixth calculating unit 232 and a fourth determining unit 233 . in:

第一计算单元231,用于确定海水密度与重力加速度的表达式相乘结果的倒数。The first calculation unit 231 is configured to determine the reciprocal of the multiplication result of the expression of seawater density and acceleration of gravity.

第二计算单元232,用于将倒数数值进行一阶泰勒展开。The second calculation unit 232 is configured to perform first-order Taylor expansion on the reciprocal value.

将在第一计算单元231中计算得到的公式利用泰勒展开公式进行展开,并对其进行一阶近似,根据一阶近似获取第三预估值。The formula calculated in the first calculation unit 231 is expanded by using the Taylor expansion formula, and a first-order approximation is performed on it, and a third estimated value is obtained according to the first-order approximation.

第四确定单元233,根据所述第三预估值及下述公式确定所述垂直位移的预估值:The fourth determination unit 233 determines the estimated value of the vertical displacement according to the third estimated value and the following formula:

本发明实施例提供的确定水深的系统,利用小扰动法进行理论推导,预估误差,直接得到相对于平均海平面的水深,降低环境因素对计算的影响。其中初始水深引起的误差为一次偏移误差,不会在计算过程中随着时间的变化而变化。当初始水深给定时,以上方法的误差主要来源于测量仪器在垂直方向的位移而引起的海水密度和重力加速的变化,根据上述的理论分析可知垂直位移的误差不会超过4%,且该误差不随时间的变化而变化。The system for determining the water depth provided by the embodiments of the present invention uses the small disturbance method for theoretical derivation, estimates errors, directly obtains the water depth relative to the mean sea level, and reduces the influence of environmental factors on the calculation. The error caused by the initial water depth is a primary offset error, which will not change with time during the calculation process. When the initial water depth is given, the error of the above method mainly comes from the change of seawater density and gravity acceleration caused by the displacement of the measuring instrument in the vertical direction. According to the above theoretical analysis, it can be known that the error of the vertical displacement will not exceed 4%, and the error Does not change over time.

最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。Finally, it should also be noted that in this text, relational terms such as first and second etc. are only used to distinguish one entity or operation from another, and do not necessarily require or imply that these entities or operations, any such actual relationship or order exists. Furthermore, the term "comprises", "comprises" or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article, or apparatus comprising a set of elements includes not only those elements, but also includes elements not expressly listed. other elements of or also include elements inherent in such a process, method, article, or apparatus. Without further limitations, an element defined by the phrase "comprising a ..." does not exclude the presence of additional identical elements in the process, method, article or apparatus comprising said element.

对所公开的实施例的上述说明,使本领域技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。The above description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be implemented in other embodiments without departing from the spirit or scope of the invention. Therefore, the present invention will not be limited to the embodiments shown herein, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

Claims (10)

1.一种确定水深的方法,其特征在于,所述方法包括:1. A method for determining depth of water, characterized in that the method comprises: 获取初始水深;Get the initial water depth; 分别获取初始时刻海表大气压与海底以上单位面积海水引起的压力的第一压力之和、测量仪器在所述初始水深处的初始压力、终止时刻海表大气压与海底以上单位面积海水引起的压力的第二压力之和及测量仪器在终止水深处的终止压力;Respectively obtain the first pressure sum of the sea surface atmospheric pressure at the initial moment and the pressure caused by seawater per unit area above the seabed, the initial pressure of the measuring instrument at the initial water depth, the sea surface atmospheric pressure at the end time and the pressure caused by seawater per unit area above the seafloor The sum of the second pressure and the end pressure of the measuring instrument at the end water depth; 分别确定所述第一压力之和与所述初始压力的差值,获取第一数值,所述第二压力之和与所述终止压力的差值,获取第二数值;respectively determining the difference between the sum of the first pressure and the initial pressure to obtain a first value, and the difference between the sum of the second pressure and the end pressure to obtain a second value; 确定所述第二数值与所述第一数值的差值,获取第三数值;determining the difference between the second value and the first value to obtain a third value; 确定所述第三数值与调取的参考海水密度和重力加速度参数相乘结果的比值,获取垂直位移;Determining the ratio of the third value to the multiplication result of the retrieved reference seawater density and the acceleration of gravity parameter to obtain the vertical displacement; 确定所述初始水深与所述垂直位移的差值,获取所述终止水深处的水深。Determine the difference between the initial water depth and the vertical displacement to obtain the water depth of the end water depth. 2.根据权利要求1所述的方法,其特征在于,确定所述第二数值与所述第一数值的差值,按照下述公式获取所述第三数值:2. The method according to claim 1, wherein the difference between the second value and the first value is determined, and the third value is obtained according to the following formula: <mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>&amp;Delta;</mi> <mi>P</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>&amp;Delta;</mi> <mi>P</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <mi>D</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> </msubsup> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mi>g</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>z</mi> <mo>-</mo> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <mi>D</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> </msubsup> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mi>g</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>z</mi> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </msubsup> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mi>g</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>z</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "" close = ""><mtable><mtr><mtd><mrow><mi>&amp;Delta;</mi><mi>P</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>-</mo><mi>&amp;Delta;</mi><mi>P</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mrow><msubsup><mo>&amp;Integral;</mo><mrow><mo>-</mo><mi>D</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow><mrow><mo>-</mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow></msubsup><mi>&amp;rho;</mi><mrow><mo>(</mo><mrow><mi>t</mi><mo>,</mo><mi>z</mi></mrow><mo>)</mo></mrow><mi>g</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mi>d</mi><mi>z</mi><mo>-</mo><msubsup><mo>&amp;Integral;</mo><mrow><mo>-</mo><mi>D</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mrow><mo>-</mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow></msubsup><mi>&amp;rho;</mi><mrow><mo>(</mo><mrow><msub><mi>t</mi><mn>0</mn></msub><mo>,</mo><mi>z</mi></mrow><mo>)</mo></mrow><mi>g</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mi>d</mi><mi>z</mi></mrow><mo>)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><mo>+</mo><msubsup><mo>&amp;Integral;</mo><mrow><mo>-</mo>mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo>mo></mrow></mrow><mrow><mo>-</mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow><mo>+</mo><mi>&amp;Delta;</mi><mi>h</mi>mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></msubsup><mi>&amp;rho;</mi><mrow><mo>(</mo><mrow><mi>t</mi><mo>,</mo><mi>z</mi></mrow><mo>)</mo>mo></mrow><mi>g</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mi>d</mi><mi>z</mi></mrow></mtd></mtr></mtable></mfenced> 其中,-D(t)为水深,ρ(t,z)为海水密度,g(z)为重力加速度,D(t0)为初始时刻水深,h(t0)为初始时刻测量仪器所在水深。Among them, -D(t) is the water depth, ρ(t,z) is the seawater density, g(z) is the acceleration of gravity, D(t 0 ) is the water depth at the initial time, h(t 0 ) is the water depth where the measuring instrument is located at the initial time . 3.根据权利要求2所述的方法,其特征在于,根据测量仪器测量的时间长度远远小于层海水密度变化的时间尺度关系,按照下述公式获得所述第三数值的第一预估值:3. The method according to claim 2, characterized in that, according to the time scale relationship that the time length measured by the surveying instrument is far less than the change of layer seawater density, the first estimated value of the third value is obtained according to the following formula : <mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>&amp;Delta;</mi> <mi>P</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>&amp;Delta;</mi> <mi>P</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>&amp;ap;</mo> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </msubsup> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mi>g</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>z</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;ap;</mo> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>&amp;Delta;</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </msubsup> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>&amp;Delta;</mi> <mi>g</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>z</mi> <mo>+</mo> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </msubsup> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>d</mi> <mi>z</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </msubsup> <mi>&amp;Delta;</mi> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mi>&amp;Delta;</mi> <mi>g</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>z</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "" close = ""><mtable><mtr><mtd><mrow><mi>&amp;Delta;</mi><mi>P</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>-</mo><mi>&amp;Delta;</mi><mi>P</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow><mo>&amp;ap;</mo><msubsup><mo>&amp;Integral;</mo><mrow><mo>-</mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mrow><mo>-</mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow><mo>+</mo><mi>&amp;Delta;</mi><mi>h</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></msubsup><mi>&amp;rho;</mi><mrow><mo>(</mo><mrow><mi>t</mi><mo>,</mo><mi>z</mi></mrow><mo>)</mo></mrow><mi>g</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mi>d</mi><mi>z</mi></mrow></mtd></mtr><mtr><mtd><mrow><mo>&amp;ap;</mo><mi>&amp;rho;</mi><mrow><mo>(</mo><mrow><msub><mi>t</mi><mn>0</mn></msub><mo>,</mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mi>g</mi><mrow><mo>(</mo><mrow><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mo>mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mi>&amp;Delta;</mi><mi>h</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><mo>+</mo><msubsup><mo>&amp;Integral;</mo><mrow><mo>-</mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mrow><mo>-</mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow><mo>+</mo><mi>&amp;Delta;</mi><mi>h</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></msubsup><mi>&amp;rho;</mi><mrow><mo>(</mo><mrow><msub><mi>t</mi><mn>0</mn></msub><mo>,</mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mi>&amp;Delta;</mi><mi>g</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mi>d</mi><mi>z</mi><mo>+</mo><msubsup><mo>&amp;Integral;</mo><mrow><mo>-</mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mrow><mo>-</mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow><mo>+</mo><mi>&amp;Delta;</mi><mi>h</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></msubsup><mi>&amp;rho;</mi><mrow><mo>(</mo><mrow><mi>t</mi><mo>,</mo><mi>z</mi></mrow><mo>)</mo></mrow><mi>g</mi><mrow><mo>(</mo><mrow><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mi>d</mi><mi>z</mi></mrow></mtd></mtr><mtr><mtd><mrow><mo>+</mo><msubsup><mo>&amp;Integral;</mo><mrow><mo>-</mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mrow><mo>-</mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow><mo>+</mo><mi>&amp;Delta;</mi><mi>h</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></msubsup><mi>&amp;Delta;</mi><mi>&amp;rho;</mi><mrow><mo>(</mo><mrow><mi>t</mi><mo>,</mo><mi>z</mi></mrow><mo>)</mo></mrow><mi>&amp;Delta;</mi><mi>g</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mi>d</mi><mi>z</mi></mrow></mtd></mtr></mtable></mfenced> 其中,Δg(z)为水深的函数,Δρ(t,z)为海水温度、盐度和密度的函数,Δh(t)为t时刻测量仪器相对于初始时刻的垂直位移。Among them, Δg(z) is a function of water depth, Δρ(t,z) is a function of seawater temperature, salinity and density, and Δh(t) is the vertical displacement of the measuring instrument at time t relative to the initial time. 4.根据权利要求3所述的方法,其特征在于,根据所述垂直位移Δh(t)范围与所述Δg(z)和Δρ(t,z)的变化关系,及所述第三数值的第一预估值,按照下述公式获取第二预估值:4. The method according to claim 3, characterized in that, according to the variation relationship between the vertical displacement Δh(t) range and the Δg(z) and Δρ(t,z), and the third numerical value The first estimated value, according to the following formula to obtain the second estimated value: <mrow> <mi>&amp;Delta;</mi> <mi>P</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>&amp;Delta;</mi> <mi>P</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>&amp;ap;</mo> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </msubsup> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mi>g</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>z</mi> <mo>&amp;ap;</mo> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>&amp;Delta;</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>.</mo> </mrow> <mrow><mi>&amp;Delta;</mi><mi>P</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>-</mo><mi>&amp;Delta;</mi><mi>P</mi><mrow><mo>(</mo><msub><mi>t</mi>mi><mn>0</mn></msub><mo>)</mo></mrow><mo>&amp;ap;</mo><msubsup><mo>&amp;Integral;</mo><mrow><mo>-</mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mrow><mo>-</mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow><mo>+</mo><mi>&amp;Delta;</mi><mi>h</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></msubsup><mi>&amp;rho;</mi><mrow><mo>(</mo><mrow><mi>t</mi><mo>,</mo><mi>z</mi></mrow><mo>)</mo></mrow><mi>g</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mi>d</mi><mi>z</mi><mo>&amp;ap;</mo><mi>&amp;rho;</mi><mrow><mo>(</mo><mrow><msub><mi>t</mi><mn>0</mn></msub><mo>,</mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mi>g</mi><mrow><mo>(</mo><mrow><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mi>&amp;Delta;</mi><mi>h</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>.</mo></mrow> 5.根据权利要求4所述的方法,其特征在于,根据所述第二预估值及下述公式获取所述垂直位移:5. The method according to claim 4, wherein the vertical displacement is obtained according to the second estimated value and the following formula: <mrow> <mi>&amp;Delta;</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;ap;</mo> <mfrac> <mrow> <mi>&amp;Delta;</mi> <mi>P</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>&amp;Delta;</mi> <mi>P</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>.</mo> </mrow> <mrow><mi>&amp;Delta;</mi><mi>h</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>&amp;ap;</mo><mfrac><mrow><mi>&amp;Delta;</mi><mi>P</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>-</mo><mi>&amp;Delta;</mi><mi>P</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mrow><mi>&amp;rho;</mi><mrow><mo>(</mo><mrow><msub><mi>t</mi><mn>0</mn></msub><mo>,</mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mi>g</mi><mrow><mo>(</mo><mrow><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow></mfrac><mo>.</mo></mrow> 6.根据权利要求5所述的方法,其特征在于,获取所述垂直位移后包括:6. The method according to claim 5, wherein obtaining the vertical displacement comprises: 获取第三预估值,所述第三预估值用于确定所述垂直位移的预估值。Acquiring a third estimated value, where the third estimated value is used to determine the estimated value of the vertical displacement. 7.根据权利要求6所述的方法,其特征在于,所述获取所述第三预估值包括:7. The method according to claim 6, wherein said obtaining said third estimated value comprises: 确定所述海水密度与所述重力加速度的表达式相乘结果的倒数;Determine the reciprocal of the multiplication result of the seawater density and the expression of the acceleration of gravity; 将所述倒数进行一阶泰勒展开,按照下述公式获取所述倒数的第三预估值:The reciprocal is subjected to first-order Taylor expansion, and the third estimated value of the reciprocal is obtained according to the following formula: <mrow> <mtable> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mrow> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>&amp;rho;</mi> <mn>0</mn> </msub> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>g</mi> <mn>0</mn> </msub> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;ap;</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <msub> <mi>&amp;rho;</mi> <mn>0</mn> </msub> </mfrac> <mo>-</mo> <mfrac> <mrow> <mi>&amp;Delta;</mi> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <msup> <msub> <mi>&amp;rho;</mi> <mn>0</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <mi>O</mi> <mrow> <mo>(</mo> <mrow> <msup> <mi>&amp;Delta;&amp;rho;</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>&amp;times;</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <msub> <mi>g</mi> <mn>0</mn> </msub> </mfrac> <mo>-</mo> <mfrac> <mrow> <mi>&amp;Delta;</mi> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <msup> <msub> <mi>g</mi> <mn>0</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <mi>O</mi> <mrow> <mo>(</mo> <mrow> <msup> <mi>&amp;Delta;g</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;ap;</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mrow> <msub> <mi>&amp;rho;</mi> <mn>0</mn> </msub> <msub> <mi>g</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>-</mo> <mfrac> <mrow> <mi>&amp;Delta;</mi> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <msup> <msub> <mi>&amp;rho;</mi> <mn>0</mn> </msub> <mn>2</mn> </msup> <msub> <mi>g</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>-</mo> <mfrac> <mrow> <mi>&amp;Delta;</mi> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>&amp;rho;</mi> <mn>0</mn> </msub> <msup> <msub> <mi>g</mi> <mn>0</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mi>&amp;Delta;</mi> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>&amp;Delta;</mi> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <msup> <msub> <mi>&amp;rho;</mi> <mn>0</mn> </msub> <mn>2</mn> </msup> <msup> <msub> <mi>g</mi> <mn>0</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mi>O</mi> <mrow> <mo>(</mo> <mrow> <msup> <mi>&amp;Delta;&amp;rho;</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <msup> <mi>&amp;Delta;g</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;ap;</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>&amp;rho;</mi> <mn>0</mn> </msub> <msub> <mi>g</mi> <mn>0</mn> </msub> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>.</mo> </mrow> <mrow><mtable><mtr><mtd><mrow><mfrac><mn>1</mn><mrow><mi>&amp;rho;</mi><mrow><mo>(</mo><mrow><msub><mi>t</mi><mn>0</mn></msub><mo>,</mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mi>g</mi><mrow><mo>(</mo><mrow><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow></mfrac><mo>=</mo><mfrac><mn>1</mn><mrow><mrow><mo>(</mo><mrow><msub><mi>&amp;rho;</mi><mn>0</mn></msub><mo>+</mo><mi>&amp;Delta;</mi><mi>&amp;rho;</mi><mrow><mo>(</mo><mrow><msub><mi>t</mi><mn>0</mn></msub><mo>,</mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mrow><mo>(</mo><mrow><msub><mi>g</mi><mn>0</mn></msub><mo>+</mo><mi>&amp;Delta;</mi><mi>g</mi><mrow><mo>(</mo><mrow><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd><mrow><mo>&amp;ap;</mo><mrow><mo>(</mo><mrow><mfrac><mn>1</mn><msub><mi>&amp;rho;</mi><mn>0</mn></msub></mfrac><mo>-</mo><mfrac><mrow><mi>&amp;Delta;</mi><mi>&amp;rho;</mi><mrow><mo>(</mo><mrow><msub><mi>t</mi><mn>0</mn></msub><mo>,</mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow><mrow><msup><msub><mi>&amp;rho;</mi><mn>0</mn></msub><mn>2</mn></msup></mrow></mfrac><mo>+</mo><mi>O</mi><mrow><mo>(</mo><mrow><msup><mi>&amp;Delta;&amp;rho;</mi><mn>2</mn></msup><mrow><mo>(</mo><mrow><msub><mi>t</mi><mn>0</mn></msub><mo>,</mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mo>&amp;times;</mo><mrow><mo>(</mo><mrow><mfrac><mn>1</mo>mn><msub><mi>g</mi><mn>0</mn></msub></mfrac><mo>-</mo><mfrac><mrow><mi>&amp;Delta;</mi><mi>g</mi><mrow><mo>(</mo><mrow><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow><mrow><msup><msub><mi>g</mi><mn>0</mn></msub><mn>2</mn></msup></mrow></mfrac><mo>+</mo><mi>O</mi><mrow><mo>(</mo><mrow><msup><mi>&amp;Delta;g</mi><mn>2</mn></msup><mrow><mo>(</mo><mrow><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><mo>&amp;ap;</mo><mrow><mo>(</mo><mrow><mfrac><mn>1</mn><mrow><msub><mi>&amp;rho;</mi><mn>0</mn></msub><msub><mi>g</mi><mn>0</mn></msub></mrow></mfrac><mo>-</mo><mfrac><mrow><mi>&amp;Delta;</mi><mi>&amp;rho;</mi><mrow><mo>(</mo><mrow><msub><mi>t</mi><mn>0</mn></msub><mo>,</mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow><mrow><msup><msub><mi>&amp;rho;</mi><mn>0</mn></msub><mn>2</mn></msup><msub><mi>g</mi><mn>0</mn></msub></mrow></mfrac><mo>-</mo><mfrac><mrow><mi>&amp;Delta;</mi><mi>g</mi><mrow><mo>(</mo><mrow><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow><mrow><msub><mi>&amp;rho;</mi><mn>0</mn></msub><msup><msub><mi>g</mi><mn>0</mn></msub><mn>2</mn></msup></mrow></mfrac><mo>+</mo><mfrac><mrow><mi>&amp;Delta;</mi><mi>&amp;rho;</mi><mrow><mo>(</mo><mrow><msub><mi>t</mi><mn>0</mn></msub><mo>,</mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mi>&amp;Delta;</mi><mi>g</mi><mrow><mo>(</mo><mrow><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow><mrow><msup><msub><mi>&amp;rho;</mi><mn>0</mn></msub><mn>2</mn></msup><msup><msub><mi>g</mi><mn>0</mn></msub><mn>2</mn></msup></mrow></mfrac></mrow><mo>)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><mo>+</mo><mi>O</mi><mrow><mo>(</mo><mrow><msup><mi>&amp;Delta;&amp;rho;</mi><mn>2</mn></msup><mrow><mo>(</mo><mrow><msub><mi>t</mi><mn>0</mn></msub><mo>,</mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mo>,</mo><msup><mi>&amp;Delta;g</mi><mn>2</mn></msup><mrow><mo>(</mo><mrow><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><mo>&amp;ap;</mo><mfrac><mn>1</mn><mrow><msub><mi>&amp;rho;</mi><mn>0</mn></msub><msub><mi>g</mi><mn>0</mn></msub></mrow></mfrac></mrow></mtd></mtr></mtable><mo>.</mo></mrow> 8.一种确定水深的系统,其特征在于,所述系统包括:8. A system for determining water depth, characterized in that the system comprises: 第一获取单元,用于获取初始水深;The first acquisition unit is used to acquire the initial water depth; 第二获取单元,用于分别获取初始时刻海表大气压与海底以上单位面积海水引起的压力的第一压力之和、测量仪器在所述初始水深处的初始压力、终止时刻海表大气压与海底以上单位面积海水引起的压力的第二压力之和及测量仪器在终止水深处的终止压力;The second acquisition unit is used to respectively acquire the sum of the first pressure of the sea surface atmospheric pressure at the initial moment and the pressure caused by seawater per unit area above the seabed, the initial pressure of the measuring instrument at the initial water depth, the sea surface atmospheric pressure at the end time and the pressure above the seabed The sum of the second pressure of the pressure caused by seawater per unit area and the end pressure of the measuring instrument at the end water depth; 第一确定单元,用于分别确定所述第一压力之和与所述初始压力的差值,获取第一数值,确定所述第二压力之和与所述终止压力的差值,获取第二数值;The first determination unit is configured to respectively determine the difference between the sum of the first pressure and the initial pressure, obtain the first value, determine the difference between the sum of the second pressure and the end pressure, and obtain the second value; 第二确定单元,用于确定所述第二数值与所述第一数值的差值,获取第三数值;a second determination unit, configured to determine a difference between the second value and the first value, and obtain a third value; 第四获取单元,用于确定所述第三数值与调取的参考海水密度和重力加速度参数相乘结果的比值,获取垂直位移;The fourth acquisition unit is used to determine the ratio of the third value to the multiplication result of the retrieved reference seawater density and the acceleration of gravity parameter, and obtain the vertical displacement; 第三确定单元,用于确定所述初始水深与所述垂直位移的差值,获取所述终止水深处的水深。The third determination unit is configured to determine the difference between the initial water depth and the vertical displacement, and obtain the water depth of the end water depth. 9.根据权利要求8所述的系统,其特征在于,所述系统还包括:9. The system according to claim 8, further comprising: 第一预估单元,根据测量仪器测量的时间长度远远小于海水密度变化的时间尺度关系,按照下述公式获取所述第三数值的第一预估值:The first estimation unit obtains the first estimated value of the third value according to the following formula according to the time scale relationship in which the time length measured by the measuring instrument is much smaller than the seawater density change: <mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>&amp;Delta;</mi> <mi>P</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>&amp;Delta;</mi> <mi>P</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>&amp;ap;</mo> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </msubsup> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mi>g</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>z</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;ap;</mo> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </msubsup> <mrow> <mo>(</mo> <mrow> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>g</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>d</mi> <mi>z</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;ap;</mo> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </msubsup> <mrow> <mo>(</mo> <mrow> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>&amp;Delta;</mi> <mi>g</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mi>&amp;Delta;</mi> <mi>g</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>d</mi> <mi>z</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;ap;</mo> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>&amp;Delta;</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </msubsup> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>&amp;Delta;</mi> <mi>g</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>z</mi> <mo>+</mo> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </msubsup> <mi>&amp;Delta;</mi> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>d</mi> <mi>z</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </msubsup> <mi>&amp;Delta;</mi> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mi>&amp;Delta;</mi> <mi>g</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>z</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "" close = ""><mtable><mtr><mtd><mrow><mi>&amp;Delta;</mi><mi>P</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>-</mo><mi>&amp;Delta;</mi><mi>P</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow><mo>&amp;ap;</mo><msubsup><mo>&amp;Integral;</mo><mrow><mo>-</mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mrow><mo>-</mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow><mo>+</mo><mi>&amp;Delta;</mi><mi>h</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></msubsup><mi>&amp;rho;</mi><mrow><mo>(</mo><mrow><mi>t</mi><mo>,</mo><mi>z</mi></mrow><mo>)</mo></mrow><mi>g</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mi>d</mi><mi>z</mi></mrow></mtd></mtr><mtr><mtd><mrow><mo>&amp;ap;</mo><msubsup><mo>&amp;Integral;</mo><mrow><mo>-</mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mrow><mo>-</mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mo>mi><mn>0</mn></msub><mo>)</mo></mrow><mo>+</mo><mi>&amp;Delta;</mi><mi>h</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></msubsup><mrow><mo>(</mo><mrow><mi>&amp;rho;</mi><mrow><mo>(</mo><mrow><msub><mi>t</mi><mn>0</mn></msub><mo>,</mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mo>+</mo><mi>&amp;Delta;</mi><mi>&amp;rho;</mi><mrow><mo>(</mo><mrow><mi>t</mi><mo>,</mo><mi>z</mi></mrow><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mrow><mo>(</mo><mrow><mi>g</mi><mrow><mo>(</mo><mrow><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mo>+</mo><mi>&amp;Delta;</mi><mi>g</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mi>d</mi><mi>z</mi></mrow></mtd></mtr><mtr><mtd><mrow><mo>&amp;ap;</mo><msubsup><mo>&amp;Integral;</mo><mrow><mo>-</mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mrow><mo>-</mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow><mo>+</mo><mi>&amp;Delta;</mi><mi>h</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></msubsup><mrow><mo>(</mo><mrow><mi>&amp;rho;</mi><mrow><mo>(</mo><mrow><msub><mi>t</mi><mn>0</mn></msub><mo>,</mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mi>g</mi><mrow><mo>(</mo><mrow><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mo>+</mo><mi>&amp;rho;</mi><mrow><mo>(</mo><mrow><msub><mi>t</mi><mn>0</mn></msub><mo>,</mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mi>&amp;Delta;</mi><mi>g</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>+</mo><mi>&amp;Delta;</mi><mi>&amp;rho;</mi><mrow><mo>(</mo><mrow><mi>t</mi><mo>,</mo><mi>z</mi></mrow><mo>)</mo></mrow><mi>g</mi><mrow><mo>(</mo><mrow><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mo>+</mo><mi>&amp;Delta;</mi><mi>&amp;rho;</mi><mrow><mo>(</mo><mrow><mi>t</mi><mo>,</mo><mi>z</mi></mrow><mo>)</mo></mrow><mi>&amp;Delta;</mi><mi>g</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mi>d</mi><mi>z</mi></mrow></mtd></mtr><mtr><mtd><mrow><mo>&amp;ap;</mo><mi>&amp;rho;</mi><mrow><mo>(</mo><mrow><msub><mi>t</mi><mn>0</mn></msub><mo>,</mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mi>g</mi><mrow><mo>(</mo><mrow><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mi>&amp;Delta;</mi><mi>h</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><mo>+</mo><msubsup><mo>&amp;Integral;</mo><mrow><mo>-</mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mrow><mo>-</mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow><mo>+</mo><mi>&amp;Delta;</mi><mi>h</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></msubsup><mi>&amp;rho;</mi><mrow><mo>(</mo><mrow><msub><mi>t</mi><mn>0</mn></msub><mo>,</mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mi>&amp;Delta;</mi><mi>g</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mi>d</mi><mi>z</mi><mo>+</mo><msubsup><mo>&amp;Integral;</mo><mrow><mo>-</mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mrow><mo>-</mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow><mo>+</mo><mi>&amp;Delta;</mi><mi>h</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></msubsup><mi>&amp;Delta;</mi><mi>&amp;rho;</mi><mrow><mo>(</mo><mrow><mi>t</mi><mo>,</mo><mi>z</mi></mrow><mo>)</mo></mrow><mi>g</mi><mrow><mo>(</mo><mrow><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mi>d</mi><mi>z</mi></mrow></mtd></mtr><mtr><mtd><mrow><mo>+</mo><msubsup><mo>&amp;Integral;</mo><mrow><mo>-</mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mrow><mo>-</mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow><mo>+</mo><mi>&amp;Delta;</mi><mi>h</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></msubsup><mi>&amp;Delta;</mi><mi>&amp;rho;</mi><mrow><mo>(</mo><mrow><mi>t</mi><mo>,</mo><mi>z</mi></mrow><mo>)</mo></mrow><mi>&amp;Delta;</mi><mi>g</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mi>d</mi><mi>z</mi></mrow></mtd></mtr></mtable></mfenced> 其中,Δg(z)为水深的函数,Δρ(t,z)位海水温度、盐度和密度的函数,h(t0)为初始时刻测量仪器所在水深,Δh(t)为t时刻测量仪器相对于初始时刻的垂直位移;Among them, Δg(z) is a function of water depth, Δρ(t,z) is a function of seawater temperature, salinity and density, h(t 0 ) is the water depth of the measuring instrument at the initial moment, Δh(t) is the measuring instrument at time t Vertical displacement relative to the initial moment; 第二预估单元,用于根据所述垂直位移Δh(t)范围与所述Δg(z)和Δρ(t,z)的变化关系,及所述第三数值的第一预估值,按照下述公式获取所述第二预估值:The second estimation unit is configured to, according to the variation relationship between the vertical displacement Δh(t) range and the Δg(z) and Δρ(t,z), and the first estimated value of the third value, according to The following formula obtains the second estimated value: <mrow> <mi>&amp;Delta;</mi> <mi>P</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>&amp;Delta;</mi> <mi>P</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>&amp;ap;</mo> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </msubsup> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mi>g</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>z</mi> <mo>&amp;ap;</mo> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>&amp;Delta;</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>;</mo> </mrow> <mrow><mi>&amp;Delta;</mi><mi>P</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>-</mo><mi>&amp;Delta;</mi><mi>P</mi><mrow><mo>(</mo><msub><mi>t</mi>mi><mn>0</mn></msub><mo>)</mo></mrow><mo>&amp;ap;</mo><msubsup><mo>&amp;Integral;</mo><mrow><mo>-</mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mrow><mo>-</mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow><mo>+</mo><mi>&amp;Delta;</mi><mi>h</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></msubsup><mi>&amp;rho;</mi><mrow><mo>(</mo><mrow><mi>t</mi><mo>,</mo><mi>z</mi></mrow><mo>)</mo></mrow><mi>g</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mi>d</mi><mi>z</mi><mo>&amp;ap;</mo><mi>&amp;rho;</mi><mrow><mo>(</mo><mrow><msub><mi>t</mi><mn>0</mn></msub><mo>,</mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mi>g</mi><mrow><mo>(</mo><mrow><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mi>&amp;Delta;</mi><mi>h</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>;</mo></mrow> 第三预估单元,用于确定所述垂直位移的预估值。The third estimation unit is configured to determine the estimated value of the vertical displacement. 10.根据权利要求9所述的系统,其特征在于,所述第三预估单元包括:10. The system according to claim 9, wherein the third estimation unit comprises: 第一计算单元,用于确定海水密度与重力加速度的表达式相乘结果的倒数;The first calculation unit is used to determine the reciprocal of the multiplication result of the expression of seawater density and acceleration of gravity; 第二计算单元,用于将所述倒数进行一阶泰勒展开,按照下述公式获取所述倒数的第三预估值:The second calculation unit is configured to perform first-order Taylor expansion on the reciprocal, and obtain a third estimated value of the reciprocal according to the following formula: <mrow> <mtable> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mrow> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>&amp;rho;</mi> <mn>0</mn> </msub> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>g</mi> <mn>0</mn> </msub> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;ap;</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <msub> <mi>&amp;rho;</mi> <mn>0</mn> </msub> </mfrac> <mo>-</mo> <mfrac> <mrow> <mi>&amp;Delta;</mi> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <msup> <msub> <mi>&amp;rho;</mi> <mn>0</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <mi>O</mi> <mrow> <mo>(</mo> <mrow> <msup> <mi>&amp;Delta;&amp;rho;</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>&amp;times;</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <msub> <mi>g</mi> <mn>0</mn> </msub> </mfrac> <mo>-</mo> <mfrac> <mrow> <mi>&amp;Delta;</mi> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <msup> <msub> <mi>g</mi> <mn>0</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <mi>O</mi> <mrow> <mo>(</mo> <mrow> <msup> <mi>&amp;Delta;g</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;ap;</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mrow> <msub> <mi>&amp;rho;</mi> <mn>0</mn> </msub> <msub> <mi>g</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>-</mo> <mfrac> <mrow> <mi>&amp;Delta;</mi> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <msup> <msub> <mi>&amp;rho;</mi> <mn>0</mn> </msub> <mn>2</mn> </msup> <msub> <mi>g</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>-</mo> <mfrac> <mrow> <mi>&amp;Delta;</mi> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>&amp;rho;</mi> <mn>0</mn> </msub> <msup> <msub> <mi>g</mi> <mn>0</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mi>&amp;Delta;</mi> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>&amp;Delta;</mi> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <msup> <msub> <mi>&amp;rho;</mi> <mn>0</mn> </msub> <mn>2</mn> </msup> <msup> <msub> <mi>g</mi> <mn>0</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mi>O</mi> <mrow> <mo>(</mo> <mrow> <msup> <mi>&amp;Delta;&amp;rho;</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <msup> <mi>&amp;Delta;g</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;ap;</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>&amp;rho;</mi> <mn>0</mn> </msub> <msub> <mi>g</mi> <mn>0</mn> </msub> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>;</mo> </mrow> <mrow><mtable><mtr><mtd><mrow><mfrac><mn>1</mn><mrow><mi>&amp;rho;</mi><mrow><mo>(</mo><mrow><msub><mi>t</mi><mn>0</mn></msub><mo>,</mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mi>g</mi><mrow><mo>(</mo><mrow><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow></mfrac><mo>=</mo><mfrac><mn>1</mn><mrow><mrow><mo>(</mo><mrow><msub><mi>&amp;rho;</mi><mn>0</mn></msub><mo>+</mo><mi>&amp;Delta;</mi><mi>&amp;rho;</mi><mrow><mo>(</mo><mrow><msub><mi>t</mi><mn>0</mn></msub><mo>,</mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mrow><mo>(</mo><mrow><msub><mi>g</mi><mn>0</mn></msub><mo>+</mo><mi>&amp;Delta;</mi><mi>g</mi><mrow><mo>(</mo><mrow><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd><mrow><mo>&amp;ap;</mo><mrow><mo>(</mo><mrow><mfrac><mn>1</mn><msub><mi>&amp;rho;</mi><mn>0</mn></msub></mfrac><mo>-</mo><mfrac><mrow><mi>&amp;Delta;</mi><mi>&amp;rho;</mi><mrow><mo>(</mo><mrow><msub><mi>t</mi><mn>0</mn></msub><mo>,</mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow><mrow><msup><msub><mi>&amp;rho;</mi><mn>0</mn></msub><mn>2</mn></msup></mrow></mfrac><mo>+</mo><mi>O</mi><mrow><mo>(</mo><mrow><msup><mi>&amp;Delta;&amp;rho;</mi><mn>2</mn></msup><mrow><mo>(</mo><mrow><msub><mi>t</mi><mn>0</mn></msub><mo>,</mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mo>&amp;times;</mo><mrow><mo>(</mo><mrow><mfrac><mn>1</mo>mn><msub><mi>g</mi><mn>0</mn></msub></mfrac><mo>-</mo><mfrac><mrow><mi>&amp;Delta;</mi><mi>g</mi><mrow><mo>(</mo><mrow><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow><mrow><msup><msub><mi>g</mi><mn>0</mn></msub><mn>2</mn></msup></mrow></mfrac><mo>+</mo><mi>O</mi><mrow><mo>(</mo><mrow><msup><mi>&amp;Delta;g</mi><mn>2</mn></msup><mrow><mo>(</mo><mrow><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><mo>&amp;ap;</mo><mrow><mo>(</mo><mrow><mfrac><mn>1</mn><mrow><msub><mi>&amp;rho;</mi><mn>0</mn></msub><msub><mi>g</mi><mn>0</mn></msub></mrow></mfrac><mo>-</mo><mfrac><mrow><mi>&amp;Delta;</mi><mi>&amp;rho;</mi><mrow><mo>(</mo><mrow><msub><mi>t</mi><mn>0</mn></msub><mo>,</mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow><mrow><msup><msub><mi>&amp;rho;</mi><mn>0</mn></msub><mn>2</mn></msup><msub><mi>g</mi><mn>0</mn></msub></mrow></mfrac><mo>-</mo><mfrac><mrow><mi>&amp;Delta;</mi><mi>g</mi><mrow><mo>(</mo><mrow><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow><mrow><msub><mi>&amp;rho;</mi><mn>0</mn></msub><msup><msub><mi>g</mi><mn>0</mn></msub><mn>2</mn></msup></mrow></mfrac><mo>+</mo><mfrac><mrow><mi>&amp;Delta;</mi><mi>&amp;rho;</mi><mrow><mo>(</mo><mrow><msub><mi>t</mi><mn>0</mn></msub><mo>,</mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mi>&amp;Delta;</mi><mi>g</mi><mrow><mo>(</mo><mrow><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow><mrow><msup><msub><mi>&amp;rho;</mi><mn>0</mn></msub><mn>2</mn></msup><msup><msub><mi>g</mi><mn>0</mn></msub><mn>2</mn></msup></mrow></mfrac></mrow><mo>)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><mo>+</mo><mi>O</mi><mrow><mo>(</mo><mrow><msup><mi>&amp;Delta;&amp;rho;</mi><mn>2</mn></msup><mrow><mo>(</mo><mrow><msub><mi>t</mi><mn>0</mn></msub><mo>,</mo><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mo>,</mo><msup><mi>&amp;Delta;g</mi><mn>2</mn></msup><mrow><mo>(</mo><mrow><mi>h</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><mo>&amp;ap;</mo><mfrac><mn>1</mn><mrow><msub><mi>&amp;rho;</mi><mn>0</mn></msub><msub><mi>g</mi><mn>0</mn></msub></mrow></mfrac></mrow></mtd></mtr></mtable><mo>;</mo></mrow> 第四确定单元,根据所述第三预估值及下述公式确定所述垂直位移的预估值为: The fourth determination unit determines the estimated value of the vertical displacement according to the third estimated value and the following formula:
CN201410713468.5A 2014-11-28 2014-11-28 A kind of method and system for determining the depth of water Expired - Fee Related CN104457901B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410713468.5A CN104457901B (en) 2014-11-28 2014-11-28 A kind of method and system for determining the depth of water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410713468.5A CN104457901B (en) 2014-11-28 2014-11-28 A kind of method and system for determining the depth of water

Publications (2)

Publication Number Publication Date
CN104457901A CN104457901A (en) 2015-03-25
CN104457901B true CN104457901B (en) 2018-01-05

Family

ID=52904326

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410713468.5A Expired - Fee Related CN104457901B (en) 2014-11-28 2014-11-28 A kind of method and system for determining the depth of water

Country Status (1)

Country Link
CN (1) CN104457901B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105043361B (en) * 2015-06-23 2018-01-05 中国环境科学研究院 Water depth measuring instrument for the environment flow evaluation method of zoobenthos protection target
CN105651263B (en) * 2015-12-23 2018-02-23 国家海洋局第一海洋研究所 Shallow water depth multi-source remote sensing merges inversion method
CN105627997A (en) * 2015-12-23 2016-06-01 国家海洋局第一海洋研究所 Multi-angle remote sensing water depth decision fusion inversion method
CN106403908B (en) * 2016-08-29 2019-10-08 上海交通大学 Prediction of water depth method and system based on time series
CN106959143A (en) * 2017-03-22 2017-07-18 中国科学院上海微系统与信息技术研究所 A kind of self adaptation high-precision pressure formula water level monitoring warning device and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102435255A (en) * 2011-11-22 2012-05-02 三一电气有限责任公司 Real-time detection device of water level of ocean water and method thereof
CN102486392A (en) * 2010-12-01 2012-06-06 乌兰察布新奥气化采煤技术有限公司 Water level monitoring device and water level monitoring method
CN103196516A (en) * 2013-03-28 2013-07-10 惠州Tcl移动通信有限公司 Method and device for detecting water depth of mobile terminal

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2911838B2 (en) * 1996-11-08 1999-06-23 株式会社カイジョー Pressure wave gauge
BRPI0600797B1 (en) * 2006-03-03 2018-03-20 Petroleo Brasileiro S.A. - Petrobras WAVES AND TIDES MONITORING AND RECORD SYSTEM
JP2008096303A (en) * 2006-10-12 2008-04-24 Yokogawa Electric Corp Immersion type water gauge

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102486392A (en) * 2010-12-01 2012-06-06 乌兰察布新奥气化采煤技术有限公司 Water level monitoring device and water level monitoring method
CN102435255A (en) * 2011-11-22 2012-05-02 三一电气有限责任公司 Real-time detection device of water level of ocean water and method thereof
CN103196516A (en) * 2013-03-28 2013-07-10 惠州Tcl移动通信有限公司 Method and device for detecting water depth of mobile terminal

Also Published As

Publication number Publication date
CN104457901A (en) 2015-03-25

Similar Documents

Publication Publication Date Title
CN104457901B (en) A kind of method and system for determining the depth of water
Jaboyedoff et al. A review of methods used to estimate initial landslide failure surface depths and volumes
Bricker et al. Spectral wave–turbulence decomposition
Goodman et al. On measuring the terms of the turbulent kinetic energy budget from an AUV
Ruessink et al. Observations of velocities, sand concentrations, and fluxes under velocity‐asymmetric oscillatory flows
Lorrai et al. Application of oxygen eddy correlation in aquatic systems
Syariz et al. Retrieval of sea surface temperature over Poteran Island water of Indonesia with Landsat 8 TIRS image: A preliminary algorithm
Lentz et al. The characteristics and dynamics of wave‐driven flow across a platform coral reef in the R ed S ea
Bishop et al. Divergent eddy heat fluxes in the Kuroshio Extension at 144–148 E. Part I: Mean structure
CN110297104A (en) A kind of river represents vertical velocity profile real-time online measuring method
Yuan et al. High-resolution sea level change around China seas revealed through multi-satellite altimeter data
CN105910587B (en) A kind of tide prediction method based on tidal parameter inverting
CN112484960B (en) Method for measuring, calculating and determining bed load sand transport rate
Meinen et al. Transport variability of the deep western boundary current and the Antilles Current off Abaco Island, Bahamas
CN109073672A (en) The measurement value correcting method of speed through water instrument and speed through water instrument
Hatchell et al. Precise depth and subsidence measurements during deepwater OBN surveys
Trowbridge et al. The cospectrum of stress-carrying turbulence in the presence of surface gravity waves
Cornuelle et al. Observations and modeling of a California undercurrent eddy
Luo et al. Analysis of Glider Motion Effects on Pumped CTD
Meinen et al. Structure, transport and potential vorticity of the Gulf Stream at 68 W: Revisiting older data sets with new techniques
Udengaard et al. Tidal height and water velocity from PIES: Processing of shallow and deep water examples
CN109297530A (en) A deep-sea full-water column multi-environmental element information fusion method and processing terminal
JP4408551B2 (en) Underwater distance measuring device
van Haren Bottom-pressure observations of deep-sea internal hydrostatic and non-hydrostatic motions
Shishkin et al. Method for Dynamic Measurements of Autonomous Underwater Probe Immersion Depth

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20170821

Address after: 210044 Nanjing Ning Road, Jiangsu, No. six, No. 219

Applicant after: Nanjing University of Information Science and Technology

Applicant after: Second Institute of Oceanography, State Oceanic Administration

Address before: 210044 Nanjing Ning Road, Jiangsu, No. six, No. 219

Applicant before: Nanjing University of Information Science and Technology

GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180105

Termination date: 20191128