CN104449722A - Yellow fluorescent material with oxyapatite structure, preparation method and white light diode device - Google Patents
Yellow fluorescent material with oxyapatite structure, preparation method and white light diode device Download PDFInfo
- Publication number
- CN104449722A CN104449722A CN201410658937.8A CN201410658937A CN104449722A CN 104449722 A CN104449722 A CN 104449722A CN 201410658937 A CN201410658937 A CN 201410658937A CN 104449722 A CN104449722 A CN 104449722A
- Authority
- CN
- China
- Prior art keywords
- fluorescent material
- yellow fluorescent
- metal
- white light
- sio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 48
- 238000002360 preparation method Methods 0.000 title claims abstract description 9
- 229910021645 metal ion Inorganic materials 0.000 claims abstract description 12
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 12
- 229910052751 metal Inorganic materials 0.000 claims abstract description 11
- 239000002184 metal Substances 0.000 claims abstract description 11
- 150000002910 rare earth metals Chemical class 0.000 claims abstract description 7
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims abstract description 5
- 150000001342 alkaline earth metals Chemical class 0.000 claims abstract description 5
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 5
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 5
- 239000000126 substance Substances 0.000 claims description 23
- 229910004283 SiO 4 Inorganic materials 0.000 claims description 20
- 239000002994 raw material Substances 0.000 claims description 13
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 7
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 6
- 238000001354 calcination Methods 0.000 claims description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052717 sulfur Inorganic materials 0.000 claims description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 3
- 229910044991 metal oxide Inorganic materials 0.000 claims description 3
- 150000004706 metal oxides Chemical class 0.000 claims description 3
- 239000011593 sulfur Substances 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 2
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims 1
- 239000005864 Sulphur Substances 0.000 claims 1
- 229910021529 ammonia Inorganic materials 0.000 claims 1
- 239000000843 powder Substances 0.000 claims 1
- 239000011435 rock Substances 0.000 claims 1
- 229910052909 inorganic silicate Inorganic materials 0.000 abstract 1
- 239000011575 calcium Substances 0.000 description 44
- 230000001443 photoexcitation Effects 0.000 description 24
- 238000000103 photoluminescence spectrum Methods 0.000 description 17
- 238000005424 photoluminescence Methods 0.000 description 13
- -1 europium ions Chemical class 0.000 description 10
- 238000001228 spectrum Methods 0.000 description 9
- 229910052693 Europium Inorganic materials 0.000 description 7
- 150000002500 ions Chemical class 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 5
- 238000009877 rendering Methods 0.000 description 5
- 229910019142 PO4 Inorganic materials 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000010452 phosphate Substances 0.000 description 4
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 229910001424 calcium ion Inorganic materials 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 229910019655 synthetic inorganic crystalline material Inorganic materials 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- LFVGISIMTYGQHF-UHFFFAOYSA-N ammonium dihydrogen phosphate Chemical compound [NH4+].OP(O)([O-])=O LFVGISIMTYGQHF-UHFFFAOYSA-N 0.000 description 2
- 229910000387 ammonium dihydrogen phosphate Inorganic materials 0.000 description 2
- 229910019990 cerium-doped yttrium aluminum garnet Inorganic materials 0.000 description 2
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 2
- 229910000388 diammonium phosphate Inorganic materials 0.000 description 2
- 235000019838 diammonium phosphate Nutrition 0.000 description 2
- 238000000295 emission spectrum Methods 0.000 description 2
- 239000008393 encapsulating agent Substances 0.000 description 2
- 229910052747 lanthanoid Inorganic materials 0.000 description 2
- 150000002602 lanthanoids Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 235000019837 monoammonium phosphate Nutrition 0.000 description 2
- 238000000634 powder X-ray diffraction Methods 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 238000000985 reflectance spectrum Methods 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910052586 apatite Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000012856 weighed raw material Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
Landscapes
- Luminescent Compositions (AREA)
Abstract
Description
本申请是申请人于2010年12月20日提交的、申请号为201010614571.6的、发明名称为“具有氧磷灰石结构的黄光荧光材料、制备方法与其白光二极管装置”的发明专利申请的分案申请。This application is a branch of the invention patent application filed by the applicant on December 20, 2010, with the application number 201010614571.6, and the invention title is "yellow light fluorescent material with oxyapatite structure, preparation method and white light diode device". case application.
技术领域technical field
本发明是有关于一种黄光荧光材料,且特别是有关于一种氧磷灰石型态的黄光荧光材料。The present invention relates to a yellow light fluorescent material, and in particular to a yellow light fluorescent material in the form of oxyapatite.
背景技术Background technique
自从在20世纪初期发明以InGaN为基础的光致放光芯片后,商业应用上的白光二极管(white light-emitting diodes;WLEDs)已经有了长足的进展。靠着结合InGaN芯片所发出的蓝光以及以Y3Al5O12:Ce3+(YAG:Ce3+)为主的材料所发出的黄光,所得到的白光已经超越了白热灯泡,甚至可以与传统荧光灯来相比较。与传统光源比起来,白光二极管为一种节能长寿又环保的光源。但是,白光二极管的光色质量在白光色调调整(white hue tunability)、色温及演色(color rendering)性质上仍待改进,而且这些性质皆与日常的照明有关。Commercial white light-emitting diodes (WLEDs) have come a long way since the invention of InGaN-based photoluminescent chips in the early 20th century. By combining the blue light emitted by the InGaN chip and the yellow light emitted by the Y 3 Al 5 O 12 :Ce 3+ (YAG:Ce 3+ )-based material, the white light obtained has surpassed incandescent light bulbs and even Can be compared with traditional fluorescent lamps. Compared with traditional light sources, white light diodes are energy-saving, long-lived and environmentally friendly light sources. However, the light color quality of white light diodes still needs to be improved in terms of white hue tunability, color temperature and color rendering properties, and these properties are all related to daily lighting.
目前白光二极管在使用的大部分荧光材料,皆无法达到白光的最适要求,而且在红光区域的演色性质相当不足。因此,需要为白光二极管找到新材料来满足对白光质量的要求。Most of the fluorescent materials currently used in white light diodes cannot meet the optimum requirements for white light, and the color rendering properties in the red light region are quite insufficient. Therefore, new materials need to be found for white light diodes to meet the requirements for white light quality.
发明内容Contents of the invention
因此,本发明的一方面是在提供一种具有氧磷灰石结构的黄色荧光材料,其具有(A1-xEux)8-yB2+y(PO4)6-y(SiO4)y(O1-zSz)2的化学通式,其中A与Eu为二价金属离子,B为三价金属离子,且0<x≦0.6,0≦y≦6与0≦z≦1。前述的A可为碱土金属、Mn或Zn,B可为IIIA族金属、稀土金属或Bi。Therefore, one aspect of the present invention is to provide a yellow fluorescent material with an oxyapatite structure, which has (A 1-x Eu x ) 8-y B 2+y (PO 4 ) 6-y (SiO 4 ) y (O 1-z S z ) 2 chemical formula, where A and Eu are divalent metal ions, B is trivalent metal ion, and 0<x≦0.6, 0≦y≦6 and 0≦z≦ 1. The aforementioned A can be alkaline earth metal, Mn or Zn, and B can be Group IIIA metal, rare earth metal or Bi.
依据本发明一实施例,当y=z=0时,该黄色荧光材料具有(A1-xEux)8B2(PO4)6O2的化学通式。According to an embodiment of the present invention, when y=z=0, the yellow fluorescent material has a general chemical formula of (A 1-x Eu x ) 8 B 2 (PO 4 ) 6 O 2 .
依据本发明另一实施例,当y=6且z=0时,该黄色荧光材料具有(A1-xEux)2B8(SiO4)6O2的化学通式。According to another embodiment of the present invention, when y=6 and z=0, the yellow fluorescent material has a general chemical formula of (A 1-x Eu x ) 2 B 8 (SiO 4 ) 6 O 2 .
依据本发明又一实施例,当y=0且z=1时,该黄色荧光材料具有(A1-xEux)8B2(PO4)6S2的化学通式。According to yet another embodiment of the present invention, when y=0 and z=1, the yellow fluorescent material has a general chemical formula of (A 1-x Eu x ) 8 B 2 (PO 4 ) 6 S 2 .
依据本发明再一实施例,当y=6且z=1时,该黄色荧光材料具有(A1-xEux)2B8(SiO4)6S2的化学通式。According to yet another embodiment of the present invention, when y=6 and z=1, the yellow fluorescent material has a general chemical formula of (A 1-x Eu x ) 2 B 8 (SiO 4 ) 6 S 2 .
本发明的另一方面为提供一种白光二极管,其包含一种蓝光荧光材料,以及前述的任一种黄光荧光材料。Another aspect of the present invention is to provide a white light diode, which comprises a blue fluorescent material and any one of the aforementioned yellow fluorescent materials.
本发明的又一方面为提供前述黄光荧光材料的制备方法,其包含下面各步骤。先称取合乎计量化学比例的所需元素的原料,其中该黄光荧光材料的金属原料为金属氧化物或金属碳酸盐,磷酸根原料为磷酸氢二铵或磷酸二氢铵,硅酸根原料包含氧化硅,及硫原料包含硫粉。然后均匀地混合称取的这些原料,再锻烧混合好的这些原料,直至得到具有纯氧磷灰石晶相的产物,锻烧环境含有氧,锻烧温度为1200–1400℃。在氨气及900–1200℃的温度下,将Eu3+还原成Eu2+,以得到前述的黄光荧光材料。Another aspect of the present invention is to provide a method for preparing the aforementioned yellow fluorescent material, which includes the following steps. First, weigh the raw materials of the required elements that meet the stoichiometric ratio, wherein the metal raw materials of the yellow fluorescent material are metal oxides or metal carbonates, the phosphate raw materials are diammonium hydrogen phosphate or ammonium dihydrogen phosphate, and the silicate raw materials Silica is included, and the sulfur feedstock includes sulfur powder. Then mix the weighed raw materials evenly, and then calcinate the mixed raw materials until the product with pure oxyapatite crystal phase is obtained. The calcining environment contains oxygen, and the calcining temperature is 1200-1400°C. Reducing Eu 3+ to Eu 2+ in ammonia gas at a temperature of 900-1200° C. to obtain the aforementioned yellow fluorescent material.
依据本发明一实施例,在还原步骤前,还可以均质化锻烧后的产物。According to an embodiment of the present invention, before the reduction step, the calcined product can also be homogenized.
前述的黄光荧光材料的主要放光区域的波长较长,较为偏向红光区域。因此,使用上述的黄色荧光材料来制造白光二极管时,可改善白光二极管所放出白光在红光区域的演色性质,而得到较佳质量的白光。The wavelength of the main light-emitting region of the aforementioned yellow-light fluorescent material is relatively long, which is more inclined to the red-light region. Therefore, when the above-mentioned yellow fluorescent material is used to manufacture the white light diode, the color rendering property of the white light emitted by the white light diode in the red light region can be improved, so as to obtain better quality white light.
上述发明内容旨在提供本揭示内容的简化摘要,以使阅读者对本揭示内容具备基本的理解。此发明内容并非本揭示内容的完整概述,且其用意并非在指出本发明实施例的重要/关键组件或界定本发明的范围。在参阅下文实施方式后,本发明所属技术领域中具有通常知识者当可轻易了解本发明的基本精神及其它发明目的,以及本发明所采用的技术手段与实施方式。The above summary is intended to provide a simplified summary of the disclosure to provide readers with a basic understanding of the disclosure. This summary is not an extensive overview of the disclosure and it is not intended to identify key/critical elements of the embodiments of the invention or to delineate the scope of the invention. After referring to the following embodiments, those with ordinary knowledge in the technical field of the present invention can easily understand the basic spirit and other invention objectives of the present invention, as well as the technical means and implementation methods adopted by the present invention.
附图说明Description of drawings
为让本发明的上述和其它目的、特征、优点与实施例能更明显易懂,所附图式的说明如下:In order to make the above and other objects, features, advantages and embodiments of the present invention more clearly understood, the accompanying drawings are described as follows:
图1是显示具有氧磷灰石结构的黄色荧光材料的制备流程图;其中110、120、130、140、150表示步骤。Fig. 1 is a flowchart showing the preparation of a yellow fluorescent material with an oxyapatite structure; wherein 110, 120, 130, 140, 150 represent steps.
图2、3、4与5分别为Ca8La2(PO4)6O2:xEu2+的粉末X光衍射光谱图、光致激发光谱图、光致放光光谱图与UV-Vis的固态反射光谱图。Figures 2, 3, 4 and 5 are respectively Ca 8 La 2 (PO 4 ) 6 O 2 : xEu 2+ powder X-ray diffraction spectrum, photoexcitation spectrum, photoluminescence spectrum and UV-Vis Solid state reflectance spectra.
图6为Ca8La2(PO4)6O2:0.03Eu2+与黄光商品YAG:Ce3+的光致激发与光致放光光谱的比较。Fig. 6 is a comparison of the photoexcitation and photoluminescence spectra of Ca 8 La 2 (PO 4 ) 6 O 2 : 0.03Eu 2+ and yellow light commercial product YAG: Ce 3+ .
图7A–7E分别显示实验例1–5的光致激发与光致放光光谱。7A-7E show the photoexcitation and photoluminescence spectra of Experimental Examples 1-5, respectively.
图8A–8H分别显示实验例6–13的光致激发与光致放光光谱。8A-8H show the photoexcitation and photoluminescence spectra of experimental examples 6-13, respectively.
图9显示实验例14的光致激发与光致放光光谱。FIG. 9 shows the photoexcitation and photoluminescence spectra of Experimental Example 14.
图10显示实验例15的光致激发与光致放光光谱。FIG. 10 shows the photoexcitation and photoluminescence spectra of Experimental Example 15.
图11显示实验例16-24的白光二极管的放光光谱图。FIG. 11 shows the light emission spectra of the white light diodes of Experimental Examples 16-24.
具体实施方式Detailed ways
铕(Europium;Eu)为镧系元素,通常会形成三价的化合物,因为其具有4f7的相对稳定的电子组态,但其激发与放光都为线性,因此在荧光材料上的应用有限。而二价铕的激发与放光都为宽带,因此已经被广泛应用于发光二极管上。在放光应用上,二价铕离子会因为所处晶格结构的不同,而有不同颜色的放光,通常是偏向蓝光。Europium (Europium; Eu) is a lanthanide element and usually forms a trivalent compound because it has a relatively stable electronic configuration of 4f 7 , but its excitation and emission are linear, so its application in fluorescent materials is limited . The excitation and emission of divalent europium are broadband, so it has been widely used in light-emitting diodes. In light-emitting applications, divalent europium ions will emit light in different colors due to the different lattice structures, usually biased toward blue light.
在放光应用上,磷灰石(apatite)为一种高效的主体(host)材料,而且目前已经合成出含有各种稀土金属的氧磷灰石(oxyapatite)材料,其具有Ca8M2(PO4)6O2的化学通式,其中M为三价的稀土金属离子。这一系列Ca8M2(PO4)6O2的化合物中,可利用不同的三价稀土金属离子来作为各种不同波长的光源,例如可为可见光或近红外光的光源。In light-emitting applications, apatite is an efficient host material, and oxyapatite materials containing various rare earth metals have been synthesized, which have Ca 8 M 2 ( The general chemical formula of PO 4 ) 6 O 2 , wherein M is a trivalent rare earth metal ion. In this series of Ca 8 M 2 (PO 4 ) 6 O 2 compounds, different trivalent rare earth metal ions can be used as light sources of various wavelengths, for example, light sources of visible light or near-infrared light.
此外,前述氧磷灰石结构中的磷酸根的部分,也可以被硅酸根部分取代至全取代。被硅酸根全取代的氧磷灰石结构称为硅酸氧磷灰石(silicate oxyapatite)结构,具有Ca2M8(SiO4)6O2的化学通式,其中M为三价的稀土金属离子,通常也是由三价稀土金属离子来负责放光。在Ca2M8(SiO4)6O2的结构中,有6个Ca2+被6个M3+取代,以平衡6个硅酸根所增加的6个负电荷。In addition, the phosphate group in the aforementioned oxyapatite structure may be partially substituted or fully substituted by silicate groups. The structure of oxyapatite fully substituted by silicate is called silicate oxyapatite structure, which has a general chemical formula of Ca 2 M 8 (SiO 4 ) 6 O 2 , where M is a trivalent rare earth metal Ions, usually trivalent rare earth metal ions are also responsible for the light emission. In the structure of Ca 2 M 8 (SiO 4 ) 6 O 2 , 6 Ca 2+ are replaced by 6 M 3+ to balance the 6 negative charges added by 6 silicates.
具有氧磷灰石结构的黄色荧光材料Yellow fluorescent material with oxyapatite structure
在此提供一种具有氧磷灰石结构的黄色荧光材料,其具有(A1-xEux)8-yB2+y(PO4)6-y(SiO4)y(O1-zSz)2的化学通式。其中Eu为二价离子,A也为二价金属离子,两者取代前面氧磷灰石结构中的钙离子。因此,A可为碱土金属、Zn或Mn。B为三价金属离子,取代前面氧磷灰石结构中的稀土金属离子。因此,B可为IIIA族金属、稀土金属或Bi,其中IIIA族金属例如可为Al、Ga、In,稀土金属例如可为Sc、Y及镧系元素,如La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb或Lu。在上面的化学式中,x、y与z的数值范围分别为0<x≦0.6,0≦y≦6与0≦z≦1。而磷酸根与硅酸跟占据晶格中的相同位置,O与S也占据晶格中的相同位置。Provided here is a yellow fluorescent material with an oxyapatite structure, which has (A 1-x Eu x ) 8-y B 2+y (PO 4 ) 6-y (SiO 4 ) y (O 1-z The general chemical formula of S z ) 2 . Among them, Eu is a divalent ion, and A is also a divalent metal ion, both of which replace the calcium ion in the previous oxyapatite structure. Therefore, A may be an alkaline earth metal, Zn or Mn. B is a trivalent metal ion, replacing the rare earth metal ion in the previous oxyapatite structure. Therefore, B can be group IIIA metal, rare earth metal or Bi, wherein group IIIA metal can be Al, Ga, In, for example, rare earth metal can be Sc, Y and lanthanides, such as La, Ce, Pr, Nd, Pm , Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb or Lu. In the above chemical formula, the numerical ranges of x, y and z are 0<x≦0.6, 0≦y≦6 and 0≦z≦1, respectively. Phosphate and silicic acid occupy the same position in the crystal lattice, and O and S also occupy the same position in the crystal lattice.
在某些特殊情况下,可以简化(A1-xEux)8-yB2+y(PO4)6-y(SiO4)y(O1-zSz)2的化学式,请见下面表一。In some special cases, the chemical formula of (A 1-x Eu x ) 8-y B 2 + y (PO 4 ) 6-y (SiO 4 ) y (O 1-z S z ) 2 can be simplified, see Table 1 below.
表一:具有氧磷灰石结构的黄色荧光材料的种类Table 1: Types of yellow fluorescent materials with oxyapatite structure
由于有些文献会将上述氧磷灰石结构的化学通式Ca8M2(PO4)6O2中的每种元素的个数除以2,而简化成Ca4M(PO4)3O的化学通式,所以上述的具有氧磷灰石结构的黄色荧光材料的化学通式也可以相同方法来简化它。简化后的通式可以(A1-xEux)4-dB1+d(PO4)3-d(SiO4)d(O1-zSz)来表示它,x与z的数值范围与上面相同,亦为0<x≦0.6与0≦z≦1,而d的数值范围为0≦d≦3。Because some literature will divide the number of each element in the general chemical formula Ca 8 M 2 (PO 4 ) 6 O 2 of the above-mentioned oxyapatite structure by 2, and simplify it to Ca 4 M(PO 4 ) 3 O Therefore, the general chemical formula of the above-mentioned yellow fluorescent material with an oxyapatite structure can also be simplified in the same way. The simplified general formula can be represented by (A 1-x Eu x ) 4-d B 1+d (PO 4 ) 3-d (SiO 4 ) d (O 1-z S z ), the values of x and z The range is the same as above, also 0<x≦0.6 and 0≦z≦1, and the value range of d is 0≦d≦3.
具有氧磷灰石结构的黄色荧光材料的制备方法Preparation method of yellow fluorescent material with oxyapatite structure
在此也提供上述(A1-xEux)8-yB2+y(PO4)6-y(SiO4)y(O1-zSz)2黄色荧光材料的制备方法,请参考图1,它是显示具有氧磷灰石结构的黄色荧光材料的制备流程图。The preparation method of the above (A 1-x Eu x ) 8-y B 2+y (PO 4 ) 6-y (SiO 4 ) y (O 1-z S z ) 2 yellow fluorescent material is also provided here, please refer to Fig. 1 is a flowchart showing the preparation of a yellow fluorescent material with an oxyapatite structure.
在图1的步骤110中,依据想要合成的上述黄色荧光材料的化学式,分别称取合乎计量化学比例的原料。Eu、A与B的金属离子方面,可以选择对应的金属氧化物作为其来源。若Eu、A与B之金属离子有碳酸盐,也可选择对应的金属碳酸盐为其来源。举例来说,钙离子就可以选择氧化钙或碳酸钙为其来源,铕离子可以选择Eu2O3为其来源。磷酸根方面,可以选择磷酸氢二铵或磷酸二氢铵为其来源。硅酸根方面,可以选择氧化硅为其来源。硫则可以直接选择硫粉为其来源。In step 110 of FIG. 1 , according to the chemical formula of the above-mentioned yellow fluorescent material to be synthesized, the raw materials that meet the stoichiometric ratio are respectively weighed. For the metal ions of Eu, A and B, corresponding metal oxides can be selected as their sources. If the metal ions of Eu, A and B have carbonate, the corresponding metal carbonate can also be selected as its source. For example, calcium oxide or calcium carbonate can be selected as the source of calcium ions, and Eu 2 O 3 can be selected as the source of europium ions. In terms of phosphate, diammonium hydrogen phosphate or ammonium dihydrogen phosphate can be selected as its source. In terms of silicate, silicon oxide can be chosen as its source. Sulfur can directly choose sulfur powder as its source.
然后在步骤120中,将所需原料混合均匀,混合方法例如可为研磨。在步骤130中,在含氧环境下(例如空气),将混合好的原料置于1200–1400℃温度下进行锻烧(calcine),直至得到具有纯氧磷灰石晶相的产物为止。由于步骤130的锻烧是在含氧环境下进行的,所以产物中所有的铕离子皆为Eu3+,因此需要将占据在氧磷灰石结构中的钙离子位置的Eu3+还原成Eu2+。Then in step 120, the required raw materials are uniformly mixed, and the mixing method can be grinding, for example. In step 130 , the mixed raw material is calcine at a temperature of 1200-1400° C. in an oxygen-containing environment (for example, air) until a product having a pure oxyapatite crystal phase is obtained. Since the calcination in step 130 is carried out in an oxygen-containing environment, all europium ions in the product are Eu 3+ , so it is necessary to reduce the Eu 3+ occupying the calcium ion position in the oxyapatite structure to Eu 2+ .
在步骤140中,为了让后续还原反应能较完全及较快速,因此需将步骤130所得的产物再均质化一次,例如为可再研磨一次。然后在步骤150中,让均质化后的产物在氨气及900–1200℃的温度下进行还原,约需10小时左右。In step 140, in order to make the subsequent reduction reaction more complete and faster, the product obtained in step 130 needs to be homogenized again, for example, it can be ground again. Then in step 150, the homogenized product is reduced under ammonia gas at a temperature of 900-1200° C., which takes about 10 hours.
实施例一:在Ca8La2(PO4)6O2掺入不同比例的Eu2+ Example 1: Doping different proportions of Eu 2+ in Ca 8 La 2 (PO 4 ) 6 O 2
首先,在Ca8La2(PO4)6O2掺入不同比例的Eu2+来取代Ca2+,形成一系列的(Ca1-xEux)8La2(PO4)6O2荧光材料(在此实施例中,记做Ca8La2(PO4)6O2:xEu2+),观测其光致放光性质如何。在此实验例中,(A1-xEux)8-yB2+y(PO4)6-y(SiO4)y(O1-zSz)2中之A2+为Ca2+,B3+为La3+,且y=z=0,而x分别为0、0.001、0.003、0.005、0.007、0.010、0.020、0.030、0.050、0.070及0.100。First, Ca 8 La 2 (PO 4 ) 6 O 2 is doped with different proportions of Eu 2+ to replace Ca 2+ to form a series of (Ca 1-x Eu x ) 8 La 2 (PO 4 ) 6 O 2 Fluorescent material (in this embodiment, denoted as Ca 8 La 2 (PO 4 ) 6 O 2 : xEu 2+ ), observe its photoluminescent properties. In this experimental example, A 2+ in (A 1-x Eu x ) 8-y B 2+y (PO 4 ) 6-y (SiO 4 ) y (O 1-z S z ) 2 is Ca 2 + , B 3+ is La 3+ , and y=z=0, and x is 0, 0.001, 0.003, 0.005, 0.007, 0.010, 0.020, 0.030, 0.050, 0.070 and 0.100, respectively.
图2、3、4与5分别为此系列化合物的粉末X光衍射光谱图、光致激发光谱图、光致放光光谱图与UV-Vis的固态反射光谱图。由图2可知,Eu2+掺杂量直至10mol%,皆不会改变Ca8La2(PO4)6O2的晶格结构。Figures 2, 3, 4 and 5 are respectively the powder X-ray diffraction spectrum, photoexcitation spectrum, photoluminescence spectrum and UV-Vis solid-state reflectance spectrum of this series of compounds. It can be seen from FIG. 2 that the lattice structure of Ca 8 La 2 (PO 4 ) 6 O 2 will not be changed when the Eu 2+ doping amount is up to 10 mol%.
图3的光致激发光谱图系在630nm监控而得。由图3可知,在450nm的蓝光处,当x值为0.030(亦即Eu2+掺杂比例为3mol%时)时有吸收最大值。图4的光致放光光谱图是在450nm处激发而得。由图4可知,当x为0.030时,在625nm附近有最大的放光强度。而由图5可知,在小于500nm以下的区域,掺杂Eu2+的Ca8La2(PO4)6O2皆有相当强的吸收强度。反之,未掺杂Eu2+的Ca8La2(PO4)6O2,在小于500nm以下的区域则几乎没有任何吸收光的现象。The photoexcitation spectrum in Fig. 3 is obtained by monitoring at 630nm. It can be seen from FIG. 3 that at the blue light of 450 nm, there is an absorption maximum when the x value is 0.030 (that is, when the Eu 2+ doping ratio is 3 mol%). The photoluminescence spectrum in Fig. 4 is obtained by excitation at 450 nm. It can be seen from Figure 4 that when x is 0.030, there is a maximum light intensity near 625nm. As can be seen from FIG. 5 , the Ca 8 La 2 (PO 4 ) 6 O 2 doped with Eu 2+ has a rather strong absorption intensity in the region smaller than 500 nm. On the contrary, Ca 8 La 2 (PO 4 ) 6 O 2 without Eu 2+ hardly absorbs light in the region below 500nm.
图6为Ca8La2(PO4)6O2:0.03Eu2+与黄光商品Y3Al5O12:Ce3+(在此记做YAG:Ce3+)的光致激发与光致放光光谱的比较,其中实线为Ca8La2(PO4)6O2:0.03Eu2+的光谱,虚线为YAG:Ce3+的光谱。由图6可知,Ca8La2(PO4)6O2:0.03Eu2+具有较宽的光致激发光谱与光致放光光谱,而且放光波长较偏向红光区域,因此可解决本领域公知的YAG:Ce3+在红光区域的演色不足的问题。Fig. 6 shows the photoexcitation and photoluminescence of Ca 8 La 2 (PO 4 ) 6 O 2 : 0.03Eu 2+ and yellow light commodity Y 3 Al 5 O 12 : Ce 3+ (recorded here as YAG: Ce 3+ ). Comparison of luminescence spectra, where the solid line is the spectrum of Ca 8 La 2 (PO 4 ) 6 O 2 : 0.03Eu 2+ , and the dotted line is the spectrum of YAG:Ce 3+ . It can be seen from Figure 6 that Ca 8 La 2 (PO 4 ) 6 O 2 : 0.03Eu 2+ has a wider photoexcitation spectrum and photoluminescence spectrum, and the emission wavelength is more inclined to the red region, so it can solve this problem. The problem of insufficient color rendering of YAG: Ce 3+ in the red light region is well known in the field.
实施例二:使用不同的A2+来合成(A1-xEux)8B2(PO4)6O2 Example 2: Using different A 2+ to synthesize (A 1-x Eu x ) 8 B 2 (PO 4 ) 6 O 2
当y=z=0时,可得(A1-xEux)8B2(PO4)6O2的化学通式。在此合成出来的实验例有A2+有0.89mol%的Ca2+,及10mol%的Mg2+、Sr2+、Ba2+、Mn2+、Zn2+,而Eu2+的掺杂比例为1mol%。B3+则皆为La2+。When y=z=0, the general chemical formula of (A 1-x Eu x ) 8 B 2 (PO 4 ) 6 O 2 can be obtained. The experimental examples synthesized here include A 2+ with 0.89mol% Ca 2+ , and 10mol% Mg 2+ , Sr 2+ , Ba 2+ , Mn 2+ , Zn 2+ , and the doped Eu 2+ The impurity ratio was 1 mol%. B 3+ are all La 2+ .
在表二中,列出上述的Mg2+、Sr2+、Ba2+、Mn2+、Zn2+的八配位离子半径以及上述实验例的相关光致放光数据。从表二的数据中可知,虽然替换的A2+的离子半径从89pm到142pm不等,但是其放光范围以及放光处的波长皆大致相同。此结果显示替换不同的A2+离子,对(Ca0.89A0.1Eu0.01)8La2(PO4)6O2的光致激发与光致放光性质影响不大。In Table 2, the eight-coordinate ion radii of the above-mentioned Mg 2+ , Sr 2+ , Ba 2+ , Mn 2+ , and Zn 2+ and the related photoluminescence data of the above-mentioned experimental examples are listed. It can be seen from the data in Table 2 that although the ionic radii of the replaced A 2+ range from 89pm to 142pm, the range of light emission and the wavelength of light emission are roughly the same. The results show that substituting different A 2+ ions has little effect on the photoexcitation and photoluminescence properties of (Ca 0.89 A 0.1 Eu 0.01 ) 8 La 2 (PO 4 ) 6 O 2 .
在图7A–7E中,分别显示实验例1–5的光致激发与光致放光光谱。从图7A–7E可知,除了实验例3的(Ca0.89Mn0.1Eu0.01)8La2(PO4)6O2的光致激发与光致放光光谱较特别之外,实验例1、2、4、5的光致激发与光致放光光谱形状皆差不多。此结果再次显示替换不同的A2+离子,对(Ca0.89A0.1Eu0.01)8La2(PO4)6O2的光致激发与光致放光性质影响不大。In FIGS. 7A-7E , the photoexcitation and photoluminescence spectra of Experimental Examples 1-5 are shown, respectively. It can be seen from Figures 7A–7E that, except for the (Ca 0.89 Mn 0.1 Eu 0.01 ) 8 La 2 (PO 4 ) 6 O 2 photoexcitation and photoluminescence spectra of Experimental Example 3, which are special, Experimental Examples 1 and 2 , 4, 5 have similar shapes of photoexcitation and photoluminescence spectra. The results again show that substituting different A 2+ ions has little effect on the photoexcitation and photoluminescence properties of (Ca 0.89 A 0.1 Eu 0.01 ) 8 La 2 (PO 4 ) 6 O 2 .
表二:(Ca0.89A0.1Eu0.01)8La2(PO4)6O2的相关光致放光数据Table 2: Photoluminescence data related to (Ca 0.89 A 0.1 Eu 0.01 ) 8 La 2 (PO 4 ) 6 O 2
实施例三:使用不同的B3+来合成(A1-xEux)8B2(PO4)6O2 Example 3: Using different B 3+ to synthesize (A 1-x Eu x ) 8 B 2 (PO 4 ) 6 O 2
当y=z=0时,可得(A1-xEux)8B2(PO4)6O2的化学通式。在此合成出来的实验例中,A2+皆为Ca2+,Eu2+的掺杂比例为1mol%。B3+部分,有90mol%为La3+,有10mol%分别为Al3+、Ga3+、Sc3+、In3+、Lu3+、Y3+或Gd3+。When y=z=0, the general chemical formula of (A 1-x Eu x ) 8 B 2 (PO 4 ) 6 O 2 can be obtained. In the experimental example synthesized here, A 2+ is all Ca 2+ , and the doping ratio of Eu 2+ is 1 mol%. 90 mol% of B 3+ is La 3+ , and 10 mol% is Al 3+ , Ga 3+ , Sc 3+ , In 3+ , Lu 3+ , Y 3+ or Gd 3+ .
在表三中,列出上述的Al3+、Ga3+、Sc3+、In3+、Lu3+、Y3+及Gd3+的六配位离子半径以及上述实验例的相关光致放光数据。从表二的数据中可知,虽然替换的B3+的离子半径从53.5pm到103pm不等,但是其放光范围以及放光处的波长皆大致相同。此结果显示替换不同的B3+离子,对(Ca0.99Eu0.01)8(La0.9B0.1)2(PO4)6O2的光致激发与光致放光性质影响不大。In Table 3, the six-coordinated ion radii of the above-mentioned Al 3+ , Ga 3+ , Sc 3+ , In 3+ , Lu 3+ , Y 3+ and Gd 3+ and the related photoinduced Light up the data. It can be seen from the data in Table 2 that although the ionic radius of the replaced B 3+ varies from 53.5pm to 103pm, the range of light emission and the wavelength of light emission are roughly the same. The results show that substituting different B 3+ ions has little effect on the photoexcitation and photoluminescence properties of (Ca 0.99 Eu 0.01 ) 8 (La 0.9 B 0.1 ) 2 (PO 4 ) 6 O 2 .
表三:(Ca0.99Eu0.01)8(La0.9B0.1)2(PO4)6O2的相关光致放光数据Table 3: Photoluminescent data related to (Ca 0.99 Eu 0.01 ) 8 (La 0.9 B 0.1 ) 2 (PO 4 ) 6 O 2
在图8A–8H中,分别显示实验例6–13的光致激发与光致放光光谱。从图8A–8H可知,除了实验例13的(Ca0.99Eu0.01)8(La0.9Bi0.1)2(PO4)6O2光致激发与光致放光光谱较特别之外,实验例6-12的光致激发与光致放光光谱形状皆差不多,也与前面实验例2-5差不多。此结果再次显示替换不同的B3+离子,对(Ca0.99Eu0.01)8(La0.9B0.1)2(PO4)6O2的光致激发与光致放光性质影响不大。In FIGS. 8A-8H , the photoexcitation and photoluminescence spectra of Experimental Examples 6-13 are shown, respectively. It can be seen from Figures 8A–8H that, except for the special (Ca 0.99 Eu 0.01 ) 8 (La 0.9 Bi 0.1 ) 2 (PO 4 ) 6 O 2 photoexcitation and photoluminescence spectra of Experimental Example 13, Experimental Example 6 The shape of the photoexcitation and photoluminescence spectra of -12 is almost the same as that of the previous experimental examples 2-5. The results again show that substituting different B 3+ ions has little effect on the photoexcitation and photoluminescence properties of (Ca 0.99 Eu 0.01 ) 8 (La 0.9 B 0.1 ) 2 (PO 4 ) 6 O 2 .
实施例四:硅酸根取代的(A1-xEux)8-yB2+y(PO4)6-y(SiO4)yO2 Example 4: Silicate-substituted (A 1-x Eu x ) 8-y B 2+y (PO 4 ) 6-y (SiO 4 ) y O 2
当z=0时,可得(A1-xEux)8-yB2+y(PO4)6-y(SiO4)yO2的化学通式。在此合成出来的实验例中,A2+为Ca2+,Eu2+的掺杂比例为1mol%,B3+为La3+,且y=1。因此,所得的化学式为(Ca0.99Eu0.01)7La3(PO4)5(SiO4)O2,其相关光致放光数据列在表四中。图9显示实验例14的光致激发与光致放光光谱。When z=0, the general chemical formula of (A 1-x Eu x ) 8-y B 2+y (PO 4 ) 6-y (SiO 4 ) y O 2 can be obtained. In this synthesized experimental example, A 2+ is Ca 2+ , the doping ratio of Eu 2+ is 1 mol%, B 3+ is La 3+ , and y=1. Therefore, the obtained chemical formula is (Ca 0.99 Eu 0.01 ) 7 La 3 (PO 4 ) 5 (SiO 4 )O 2 , and its related photoluminescent data are listed in Table 4. FIG. 9 shows the photoexcitation and photoluminescence spectra of Experimental Example 14.
由表四及图9可知,(Ca0.99Eu0.01)7La3(PO4)5(SiO4)O2与前面实验例1-13的光致放光数据差异不大,显示由硅酸根取代磷酸根之后,对此系列化合物的光致激发与光致放光性质影响不大。It can be seen from Table 4 and Figure 9 that the photoluminescence data of (Ca 0.99 Eu 0.01 ) 7 La 3 (PO 4 ) 5 (SiO 4 )O 2 is not much different from the previous experimental examples 1-13, indicating that it is replaced by silicate After the phosphate radical, the photoexcitation and photoluminescence properties of this series of compounds have little effect.
表四:(Ca0.99Eu0.01)7La3(PO4)5(SiO4)O2的相关光致放光数据。Table 4: (Ca 0.99 Eu 0.01 ) 7 La 3 (PO 4 ) 5 (SiO 4 )O 2 related photoluminescence data.
实施例五:S2-取代的(A1-xEux)8B2(PO4)6(O1-zSz)2 Example 5: S 2- substituted (A 1-x Eu x ) 8 B 2 (PO 4 ) 6 (O 1-z S z ) 2
当y=0时,可得(A1-xEux)8B2(PO4)6(O1-zSz)2的化学通式。在此合成出来的实验例中,A2+为Ca2+,Eu2+的掺杂比例为1mol%,B3+为La3+,且z=0.1。因此,所得的化学式为(Ca0.99Eu0.01)8La3(PO4)6(O0.9S0.1)2,其相关光致放光数据列在表五中。图10显示实验例15的光致激发与光致放光光谱。When y=0, the general chemical formula of (A 1-x Eu x ) 8 B 2 (PO 4 ) 6 (O 1-z S z ) 2 can be obtained. In this synthesized experimental example, A 2+ is Ca 2+ , the doping ratio of Eu 2+ is 1 mol%, B 3+ is La 3+ , and z=0.1. Therefore, the obtained chemical formula is (Ca 0.99 Eu 0.01 ) 8 La 3 (PO 4 ) 6 (O 0.9 S 0.1 ) 2 , and its related photoluminescent data are listed in Table 5. FIG. 10 shows the photoexcitation and photoluminescence spectra of Experimental Example 15.
表五:(Ca0.99Eu0.01)7La3(PO4)5(SiO4)O2的相关光致放光数据。Table 5: The relative photoluminescence data of (Ca 0.99 Eu 0.01 ) 7 La 3 (PO 4 ) 5 (SiO 4 )O 2 .
由表五及图10可知,(Ca0.99Eu0.01)8La3(PO4)6(O0.9S0.1)2与前面实验例1-13的光致放光数据差异不大,显示由S2-取代O2-之后,对此系列化合物的光致激发与光致放光性质影响不大。It can be seen from Table 5 and Figure 10 that (Ca 0.99 Eu 0.01 ) 8 La 3 (PO 4 ) 6 (O 0.9 S 0.1 ) 2 is not much different from the photoluminescence data of the previous experimental examples 1-13, showing that the S 2 After - replacing O 2- , the photoexcitation and photoluminescence properties of this series of compounds have little effect.
实施例六:不同浓度的(Ca0.97Eu0.03)8La2(PO4)6O2 Example 6: Different concentrations of (Ca 0.97 Eu 0.03 ) 8 La 2 (PO 4 ) 6 O 2
在白光二极管的应用Applications in White Light Diodes
在此实施例中,使用可发出460nm蓝光的InGaN蓝光芯片,在其封胶中掺入不同浓度的(Ca0.97Eu0.03)8La2(PO4)6O2,形成白光二极管。白光二极管的(Ca0.97Eu0.03)8La2(PO4)6O2掺杂浓度列于表六中。In this embodiment, an InGaN blue chip capable of emitting 460nm blue light is used, and different concentrations of (Ca 0.97 Eu 0.03 ) 8 La 2 (PO 4 ) 6 O 2 are doped into its encapsulant to form a white light diode. The (Ca 0.97 Eu 0.03 ) 8 La 2 (PO 4 ) 6 O 2 doping concentration of the white light diode is listed in Table 6.
表六:成白光二极管的(Ca0.97Eu0.03)8La2(PO4)6O2掺杂浓度及其所发出白光之色坐标值。Table 6: (Ca 0.97 Eu 0.03 ) 8 La 2 (PO 4 ) 6 O 2 doping concentration of white light diodes and the color coordinates of the white light emitted.
在图11中,显示实验例16-24的白光二极管的放光光谱图,在表六中列出实验例16-24白光二极管所放出白光的色度坐标值。从图11以及表六的数据中可知,当封胶中的(Ca0.97Eu0.03)8La2(PO4)6O2荧光粉掺杂浓度递减时,在460nm附近的蓝光芯片的相对放光强度会递增,而在625nm附近的黄光荧光粉的相对放光强度会递减。因此,使得白光二极管所放出白光的色度坐标值可从(0.586,0.405)橘黄光随着荧光粉掺杂重量减少而调至(0.277,0.192)冷白光。In FIG. 11 , the emission spectra of the white light diodes of Experimental Examples 16-24 are shown, and the chromaticity coordinate values of the white light emitted by the white light diodes of Experimental Examples 16-24 are listed in Table 6. From the data in Figure 11 and Table 6, it can be known that when the doping concentration of (Ca 0.97 Eu 0.03 ) 8 La 2 (PO 4 ) 6 O 2 phosphor in the encapsulant decreases, the relative emission of the blue chip near 460nm The intensity will increase, while the relative emission intensity of the yellow phosphor near 625nm will decrease. Therefore, the chromaticity coordinate value of the white light emitted by the white light diode can be adjusted from (0.586, 0.405) orange light to (0.277, 0.192) cool white light as the phosphor doping weight decreases.
整体来说,由于上述各实验例的具有氧磷灰石结构的黄色荧光材料的主要放光区域的波长较长,较为偏向红光区域。因此,使用上述的黄色荧光材料来制造白光二极管时,可改善白光二极管所放出白光在红光区域的演色性质,而得到较佳质量的白光。Generally speaking, since the wavelength of the main light-emitting region of the yellow fluorescent materials with oxyapatite structure in the above experimental examples is longer, it is more inclined to the red light region. Therefore, when the above-mentioned yellow fluorescent material is used to manufacture the white light diode, the color rendering property of the white light emitted by the white light diode in the red light region can be improved, so as to obtain better quality white light.
虽然本发明已以实施方式揭示如上,然其并非用以限定本发明,任何本领域技术人员,在不脱离本发明的精神和范围内,当可作各种的更动与润饰,因此本发明的保护范围当视所附的权利要求所界定者为准。Although the present invention has been disclosed above in terms of implementation, it is not intended to limit the present invention. Any person skilled in the art may make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the present invention The scope of protection shall prevail as defined by the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410658937.8A CN104449722A (en) | 2010-12-20 | 2010-12-20 | Yellow fluorescent material with oxyapatite structure, preparation method and white light diode device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410658937.8A CN104449722A (en) | 2010-12-20 | 2010-12-20 | Yellow fluorescent material with oxyapatite structure, preparation method and white light diode device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010614571.6A Division CN102559185B (en) | 2010-12-20 | 2010-12-20 | Yellow fluorescent material with oxyapatite structure, preparation method and white light diode device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104449722A true CN104449722A (en) | 2015-03-25 |
Family
ID=52896488
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410658937.8A Pending CN104449722A (en) | 2010-12-20 | 2010-12-20 | Yellow fluorescent material with oxyapatite structure, preparation method and white light diode device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104449722A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104910916A (en) * | 2015-05-06 | 2015-09-16 | 周口师范学院 | Novel apatite structural luminescent material with adjustable luminescent colors and application thereof |
CN112779009A (en) * | 2021-02-05 | 2021-05-11 | 淮阴师范学院 | High-sensitivity optical temperature sensing luminescent material and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4748391A (en) * | 1986-12-18 | 1988-05-31 | Gte Laboratories Incorporated | Yellow green barium lanthanum silicate oxyapatite phosphor, a fluorescent lamp containing the same, and a method thereof |
CN101029231A (en) * | 2007-01-11 | 2007-09-05 | 复旦大学 | Bivalent-europium-excited base-metal silicate phosphate fluorescent powder and its production |
-
2010
- 2010-12-20 CN CN201410658937.8A patent/CN104449722A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4748391A (en) * | 1986-12-18 | 1988-05-31 | Gte Laboratories Incorporated | Yellow green barium lanthanum silicate oxyapatite phosphor, a fluorescent lamp containing the same, and a method thereof |
CN101029231A (en) * | 2007-01-11 | 2007-09-05 | 复旦大学 | Bivalent-europium-excited base-metal silicate phosphate fluorescent powder and its production |
Non-Patent Citations (3)
Title |
---|
L. BOYER ET AL.: "Study of sites occupation and chemical environment of Eu3+ in phosphate-silicates oxyapatites by luminescence", 《JOURNAL OF ALLOYS AND COMPOUNDS》 * |
于敏等: "Ca2Y8(SiO4)6O2∶RE(RE =Eu,Tb)发光薄膜的制备及发光性能的研究", 《中国稀土学报》 * |
林君等: "Eu3+、Bi3+在Me2Y8(SiO4)6O2中的发光特性与取代格位", 《中国稀土学报》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104910916A (en) * | 2015-05-06 | 2015-09-16 | 周口师范学院 | Novel apatite structural luminescent material with adjustable luminescent colors and application thereof |
CN112779009A (en) * | 2021-02-05 | 2021-05-11 | 淮阴师范学院 | High-sensitivity optical temperature sensing luminescent material and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100632144B1 (en) | Novel silicate-based yellow-green phosphors | |
CN101238195B (en) | Silicate-based orange phosphors | |
CN102559185B (en) | Yellow fluorescent material with oxyapatite structure, preparation method and white light diode device | |
JP5355613B2 (en) | Yellow phosphor having oxyapatite structure, production method and white light emitting diode device thereof | |
US20060027785A1 (en) | Novel silicate-based yellow-green phosphors | |
JP5118837B2 (en) | Silicate orange phosphor | |
TWI530550B (en) | Nitrogen oxide orange-red fluorescent substance, including its light-emitting film or light-emitting sheet and light-emitting device | |
KR20020027538A (en) | Highly efficient fluorescent material | |
JP2007533149A (en) | White light emitting diode | |
JP2023522185A (en) | Green-emitting phosphor and its device | |
CN107629794B (en) | Europium ion Eu3+Activated bismuth-based luminescent material, preparation method and application | |
CN112940723A (en) | Bi3+、Eu3+Ion co-activated lutecium salt fluorescent powder and preparation method thereof | |
CN114702956A (en) | Mn (manganese)4+Activated deep red fluorescent powder and preparation method and application thereof | |
KR102041889B1 (en) | Garnet structure oxide phosphor, preparing method of the same, and its luminescent property | |
CN103881718B (en) | A kind of oxynitride orange-yellow fluorescent powder and containing the luminescent film of this fluorescent material or light tiles, luminescent device | |
CN102373062A (en) | Fluosilicate red fluorescent powder suitable for white-light LED (Light-Emitting Diode) and preparation method thereof | |
CN104449722A (en) | Yellow fluorescent material with oxyapatite structure, preparation method and white light diode device | |
CN108893108A (en) | A kind of double-perovskite type silicate blue fluorescent powder and preparation method thereof | |
CN110079316B (en) | A Eu3+ doped fluoroniobium tantalate phosphor and its synthesis and application | |
CN106635015A (en) | Nitrogen oxide fluorescent powder with garnet structure and preparation method and application thereof | |
CN108841383B (en) | Blue sodium rubidium magnesium phosphate fluorescent material with high luminous efficiency and preparation method and application thereof | |
CN107118772B (en) | Eu (Eu)2+Activated phosphor of phosphor aluminate blue luminescence and preparation method | |
KR101476000B1 (en) | The manufacturing method of led lamp for plant growth-promoting | |
CN110066656B (en) | A Mn2+ doped fluoroniobium tantalate phosphor and its synthesis and application | |
KR102086821B1 (en) | Zirconate phosphor for led, preparing method of the same, and luminescent property of the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20150325 |