[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN104375897A - Cloud computing resource scheduling method based on minimum relative load imbalance degree - Google Patents

Cloud computing resource scheduling method based on minimum relative load imbalance degree Download PDF

Info

Publication number
CN104375897A
CN104375897A CN201410583300.7A CN201410583300A CN104375897A CN 104375897 A CN104375897 A CN 104375897A CN 201410583300 A CN201410583300 A CN 201410583300A CN 104375897 A CN104375897 A CN 104375897A
Authority
CN
China
Prior art keywords
physical machine
load
msub
mrow
physical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410583300.7A
Other languages
Chinese (zh)
Other versions
CN104375897B (en
Inventor
薛涛
马腾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Xinghe Power Technology Co ltd
Original Assignee
Xian Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Polytechnic University filed Critical Xian Polytechnic University
Priority to CN201410583300.7A priority Critical patent/CN104375897B/en
Publication of CN104375897A publication Critical patent/CN104375897A/en
Application granted granted Critical
Publication of CN104375897B publication Critical patent/CN104375897B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Debugging And Monitoring (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开一种基于最小相对负载不均衡度的云计算资源调度方法,用负载平衡器对集群内各个物理机的负载水平进行评估,判断物理机上是否出现过载现象,如果过载,计算出所有正常运行物理机相对该负载过载物理机的相对负载不均衡度,选择其中相对负载不均衡度值最小的物理机作为备选物理主机,并判断备选主机计算资源容量是否满足需要迁移的虚拟机资源需求,如果资源容量满足,则将该物理机作为备选物理机,进行虚拟机的迁移;资源容量不满足,排除该物理机重新选择出备选物理主机。本发明可有效提高系统资源的利用率,同时保证系统负载均衡,提高系统的稳定性。

The invention discloses a cloud computing resource scheduling method based on the minimum relative load unbalanced degree. A load balancer is used to evaluate the load level of each physical machine in the cluster to judge whether there is an overload phenomenon on the physical machine. If overloaded, calculate all normal Run the relative load imbalance of the physical machine relative to the overloaded physical machine, select the physical machine with the smallest relative load imbalance value as the candidate physical host, and judge whether the computing resource capacity of the candidate host meets the virtual machine resources to be migrated If the resource capacity is satisfied, the physical machine will be used as an alternative physical machine to migrate the virtual machine; if the resource capacity is not met, the physical machine will be excluded and an alternative physical host will be selected. The invention can effectively improve the utilization rate of system resources, ensure system load balance and improve system stability.

Description

基于最小相对负载不均衡度的云计算资源调度方法A cloud computing resource scheduling method based on the minimum relative load imbalance

技术领域technical field

本发明属于虚拟化和云计算领域,具体涉及一种基于最小相对负载不均衡度的云计算资源调度的方法。The invention belongs to the field of virtualization and cloud computing, and in particular relates to a method for scheduling cloud computing resources based on the minimum relative load imbalance.

背景技术Background technique

云计算是应对企业和个人消费者对数据中心处理能力的要求不断提高的社会趋势而出现的,当前己成为IT研究最热点的问题之一。云计算平台采用虚拟化技术构建的虚拟集群,能够动态地组织异构的计算资源,并能隔离具体的硬件体系结构和多样化的软件系统平台,它能灵活构建满足不同应用需求的计算环境,提高计算资源的使用效率。在云计算环境下,应用系统将不再局限于自身的系统性能,可以从云资源中获得强大的计算能力、海量的数据资源、和多种多样的应用,能够利用更多的途径满足各种用户多样化、高层次的服务需求。用户也将获得更加完善的服务体验,并能及时的、高效的、无障碍的享受应用系统的各种服务。Cloud computing emerged in response to the social trend that enterprises and individual consumers have increasingly demanding data center processing capabilities, and has become one of the hottest issues in IT research. The virtual cluster built by the cloud computing platform using virtualization technology can dynamically organize heterogeneous computing resources, and can isolate specific hardware architecture and diversified software system platforms. It can flexibly build computing environments that meet different application requirements. Improve the efficient use of computing resources. In the cloud computing environment, the application system will no longer be limited to its own system performance, but can obtain powerful computing power, massive data resources, and various applications from cloud resources, and can use more ways to meet various requirements. Diversified and high-level service needs of users. Users will also get a more complete service experience and be able to enjoy various services of the application system in a timely, efficient and barrier-free manner.

作为云计算IaaS层中最关键、最核心的技术原动力,虚拟化技术可以将物理资源等底层架构进行抽象,使得设备的差异和兼容性对上层应用透明,从而允许云对底层千差万别的资源进行统一管理。正是由于虚拟化技术的成熟和广泛应用,云计算中的计算、存储、应用和服务都变成了资源,这些资源可以被动态扩展和配置,云计算最终才能在逻辑上以单一整体的形式呈现。在云环境中,虚拟机作为一个计算资源,用户通常要求其运行具有稳定性,不希望在出现虚拟机频繁迁移的现象。As the most critical and core technical driving force in the cloud computing IaaS layer, virtualization technology can abstract the underlying architecture such as physical resources, making the differences and compatibility of devices transparent to upper-layer applications, thus allowing the cloud to unify the vastly different underlying resources manage. It is precisely because of the maturity and wide application of virtualization technology that computing, storage, applications and services in cloud computing have all become resources, which can be dynamically expanded and configured, and cloud computing can finally be logically integrated in the form of a single whole presented. In a cloud environment, a virtual machine is used as a computing resource, and users usually require its operation to be stable, and they do not want frequent migration of virtual machines.

在云计算应用平台中,其资源分布广泛且种类繁多,要使用户可以真正像用水用电一样使用云环境中的资源,处理好资源的分配是关键问题。同时,用户需求的实时动态很难被准确预测,也要考虑系统性能和成本等问题,因此,高效的云计算数据中心分配调度策略算法成为研究热点。在云计算系统中,当用户请求创建一个新的虚拟机,或者虚拟机需要进行迁移时,都需要进行云计算资源调度,以保持整个系统高效、可靠地运行。现有的云计算资源调度方法,如论文“ADynamic And Integrated Load-Balancing Scheduling Algorithm ForCloud Data Centers”(IEEE International Conference on CloudComputing and Intelligence System,311-315,Wenhong Tian,YongZhao,Yuanliang Zhong,Minxian Xu,Chen Jing,2011-09-15)中国发明专利申请“一种面向云数据中心的大规模虚拟机快速迁移决策方法”(申请号:201310186581.8公开日:2013-08-14),这些方法主要考虑了系统性能和负载平衡,而没有考虑宿主机容量是否达到要求以及对资源利用率的影响等问题。In the cloud computing application platform, its resources are widely distributed and various in variety. To enable users to use the resources in the cloud environment like water and electricity, the key issue is to properly handle the resource allocation. At the same time, the real-time dynamics of user needs are difficult to be accurately predicted, and issues such as system performance and cost must also be considered. Therefore, efficient cloud computing data center allocation and scheduling strategy algorithms have become a research hotspot. In a cloud computing system, when a user requests to create a new virtual machine, or a virtual machine needs to be migrated, cloud computing resource scheduling is required to keep the entire system running efficiently and reliably. Existing cloud computing resource scheduling methods, such as the paper "ADynamic And Integrated Load-Balancing Scheduling Algorithm For Cloud Data Centers" (IEEE International Conference on CloudComputing and Intelligence System, 311-315, Wenhong Tian, YongZhao, Yuanliang Zhong, Minxian Xu, Chen Jing, 2011-09-15) Chinese invention patent application "a large-scale virtual machine rapid migration decision-making method for cloud data centers" (application number: 201310186581.8 publication date: 2013-08-14), these methods mainly consider the system Performance and load balancing, without considering whether the host capacity meets the requirements and the impact on resource utilization.

发明内容Contents of the invention

本发明的目的是提供一种基于最小相对负载不均衡度的云计算资源调度方法,解决现有技术在保证较高系统性能的前提下,无法获取较高的资源利用率以及不能维持较低水平的负载不均衡度的问题。The purpose of the present invention is to provide a cloud computing resource scheduling method based on the minimum relative load imbalance, to solve the problem that the existing technology cannot obtain high resource utilization and maintain a low level under the premise of ensuring high system performance The problem of load imbalance.

本发明所采用的技术方案是基于最小相对负载不均衡度的云计算资源调度方法,用负载平衡器对集群内各个物理机的负载水平进行评估,判断物理机上是否出现过载现象,如果过载,计算出所有正常运行物理机相对该负载过载物理机的相对负载不均衡度,选择其中相对负载不均衡度值最小的物理机作为备选物理主机,并判断备选主机计算资源容量是否满足需要迁移的虚拟机资源需求,如果资源容量满足,则将该物理机作为备选物理机,进行虚拟机的迁移;资源容量不满足,排除该物理机,重新选择出备选物理主机,进行虚拟机的迁移。The technical solution adopted in the present invention is a cloud computing resource scheduling method based on the minimum relative load imbalance, and the load balancer is used to evaluate the load level of each physical machine in the cluster to determine whether there is an overload phenomenon on the physical machine. Calculate the relative load imbalance of all normal running physical machines relative to the overloaded physical machine, select the physical machine with the smallest relative load imbalance value as the candidate physical host, and judge whether the computing resource capacity of the candidate host meets the requirements for migration. Virtual machine resource requirements, if the resource capacity is satisfied, the physical machine will be used as an alternative physical machine to migrate the virtual machine; if the resource capacity is not met, the physical machine will be excluded, and an alternative physical host will be reselected to migrate the virtual machine .

物理机的负载水平进行评估具体步骤为:The specific steps to evaluate the load level of the physical machine are as follows:

步骤1、监控器以某一时段为单位,追踪每一台物理机中的负载信息;Step 1. The monitor tracks the load information of each physical machine based on a certain period of time;

步骤2、负载信息存储器以与监控器相同的时段为单位,对步骤1中追踪到的所有负载信息进行记录;Step 2, the load information memory records all the load information tracked in step 1 in the unit of the same time period as the monitor;

步骤3、负载信息存储器将步骤2所记录某一时间间隔内的负载信息反馈给负载平衡器,负载平衡器对资源负载平均值进行计算:Step 3. The load information storage feeds back the load information recorded in step 2 within a certain time interval to the load balancer, and the load balancer calculates the average resource load:

δδ ii == ΣΣ TT ii ** Uu ii ΣΣ Uu ii ,,

其中,δi为资源负载平均值,Ui为物理机中资源的平均利用率,Ti为物理机中资源总量;Among them, δ i is the average resource load, U i is the average utilization rate of resources in the physical machine, and T i is the total amount of resources in the physical machine;

步骤4、根据步骤3所得值,计算出该物理机的负载值:Step 4. Calculate the load value of the physical machine according to the value obtained in step 3:

γi=E+δiγ i =E+δ i ,

其中,为物理机的负载值,E为相对较小的常数;Among them, is the load value of the physical machine, and E is a relatively small constant;

步骤5、将步骤4所得值与系统中设置的报警值进行对比,如果所得值超过负载报警值,即做出判断:该物理机负载过载;Step 5. Compare the value obtained in step 4 with the alarm value set in the system. If the obtained value exceeds the load alarm value, a judgment is made: the physical machine is overloaded;

所述相对负载不均衡度是指某时刻正常运行物理机资源负载值与过载物理机负载值的比值,根据公式计算:The relative load imbalance refers to the ratio of the resource load value of the normal operating physical machine to the load value of the overloaded physical machine at a certain moment, calculated according to the formula:

BB rr == ΣΣ ii == 11 II aa ii Uu rithe ri TT rithe ri Uu mimi TT mimi ,,

其中,Br为过载物理机相对负载不均衡度,Uri为正常运行物理机资源的平均利用率,Umi为过载物理机资源的平均利用率,Tri为正常运行物理机的资源容量,Tmi为过载物理机的资源容量,ai表示计算资源i的权重因子。Among them, B r is the relative load imbalance of the overloaded physical machine, U ri is the average utilization rate of the physical machine resources in normal operation, U mi is the average utilization rate of the overloaded physical machine resources, Tri is the resource capacity of the physical machine in normal operation, T mi is the resource capacity of the overloaded physical machine, and a i is the weight factor of computing resource i.

所述负载信息包括CPU、内存、存储空间以及网络带宽等资源的平均利用率Ui和总量Ti,i表示云计算资源维度。The load information includes the average utilization rate U i and the total amount T i of resources such as CPU, memory, storage space, and network bandwidth, and i represents the dimension of cloud computing resources.

本发明的有益效果是:The beneficial effects of the present invention are:

1、系统资源的利用率高:基于正常运行物理机负载信息与过载物理机负载信息比较得到相对不均衡度,选取具有最小相对不均衡度物理机,经过资源需求计算,符合条件后,进行虚拟机的动态迁移;1. The utilization rate of system resources is high: Based on the comparison of the load information of the normal operating physical machine and the load information of the overloaded physical machine, the relative imbalance is obtained, and the physical machine with the minimum relative imbalance is selected. After calculating the resource requirements and meeting the conditions, virtual Machine dynamic migration;

2、系统负载均衡:根据各个计算节点的负载水平来指导虚拟机调度以平衡节点的系统负载,提高了系统的稳定性。2. System load balancing: Guide the virtual machine scheduling according to the load level of each computing node to balance the system load of the nodes, which improves the stability of the system.

附图说明Description of drawings

图1是云计算系统模型示意图;Fig. 1 is a schematic diagram of a cloud computing system model;

图2是本发明基于最小相对负载不均衡度的云计算资源调度方法流程图。Fig. 2 is a flow chart of the cloud computing resource scheduling method based on the minimum relative load imbalance degree of the present invention.

具体实施方式Detailed ways

下面结合附图和具体实施方式对本发明进行详细说明。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments.

图1为本发明云计算系统模型示意图:客户通过电脑终端发出请求,云系统将其存放在位于任务缓存器内的中央任务缓存队列中,并根据请求依次在物理机中建立虚拟机;监控器对物理机的负载信息进行实时追踪,并将结果存放到负载信息存储器中,负载信息存储器将接收到的物理机负载信息反馈给负载平衡器,负载平衡器对物理机负载水平进行评估,并判决物理机是否出现过载现象,如果过载,计算出所有正常运行物理机相对该负载过载物理机的相对负载不均衡度,选择其中相对负载不均衡度值最小的物理机作为备选物理主机,并判断备选主机计算资源容量是否满足需要迁移的虚拟机资源需求,如果资源容量满足,则将该物理机作为备选物理机,进行虚拟机的迁移;资源容量不满足,排除该物理机,重新选择出备选物理主机,进行虚拟机的迁移。Fig. 1 is a schematic diagram of the cloud computing system model of the present invention: the customer sends a request through a computer terminal, and the cloud system stores it in the central task buffer queue located in the task buffer, and builds a virtual machine in the physical machine in turn according to the request; the monitor Track the load information of the physical machine in real time and store the result in the load information storage. The load information storage feeds back the received load information of the physical machine to the load balancer. The load balancer evaluates the load level of the physical machine and makes a judgment Whether the physical machine is overloaded, if it is overloaded, calculate the relative load unbalance of all normal running physical machines relative to the overloaded physical machine, select the physical machine with the smallest relative load unbalanced value as the candidate physical host, and judge Whether the computing resource capacity of the candidate host meets the resource requirements of the virtual machine that needs to be migrated. If the resource capacity is sufficient, the physical machine will be used as the candidate physical machine to migrate the virtual machine; if the resource capacity is not satisfied, the physical machine will be excluded and re-selected. Select an alternative physical host to migrate the virtual machine.

本实施例基于最小相对负载不均衡度的云计算资源调度方法具体按照以下步骤实施,参见图2:In this embodiment, the cloud computing resource scheduling method based on the minimum relative load imbalance is specifically implemented according to the following steps, see FIG. 2:

步骤1、云系统接收到客户请求信息,将其依次存放并在物理机中建立对应虚拟机;Step 1. The cloud system receives the customer request information, stores it in turn and creates a corresponding virtual machine in the physical machine;

步骤2、监控器以T=20s为单位,追踪每台物理机的负载信息,负载信息存储器以与监控器相同的时段T为单位,记录所追踪到的负载信息;Step 2. The monitor tracks the load information of each physical machine in units of T=20s, and the load information memory records the tracked load information in units of the same period T as the monitor;

步骤3、在S时刻,负载信息存储器将该时刻接收到的所有物理机负载信息反馈给负载平衡器;Step 3. At time S, the load information memory feeds back all the physical machine load information received at this time to the load balancer;

步骤4、负载均衡器中利用步骤3中接收到的物理信息,获取资源的负载平均值:Step 4. The load balancer uses the physical information received in step 3 to obtain the resource load average:

δδ ii == ΣΣ TT ii ** Uu ii ΣΣ Uu ii

其中,δi为资源负载平均值,Ui为物理机中资源的平均利用率,Ti为物理机中资源总量;Among them, δ i is the average resource load, U i is the average utilization rate of resources in the physical machine, and T i is the total amount of resources in the physical machine;

步骤5、根据步骤4所得值,计算出该物理机的负载值:Step 5. Calculate the load value of the physical machine according to the value obtained in step 4:

γi=E+δi γ i =E+δ i

其中,γi为物理机的负载值,E为相对较小的常数;Among them, γ i is the load value of the physical machine, and E is a relatively small constant;

步骤6、将步骤5所得值与系统中设置的报警值进行对比,如果所得值超过负载报警值,负载判决器即做出判断:在S时刻该物理机负载过载,需要对运行在该物理机上的虚拟机进行迁移;Step 6. Compare the value obtained in step 5 with the alarm value set in the system. If the obtained value exceeds the load alarm value, the load determiner will make a judgment: at time S, the load of the physical machine is overloaded, and the physical machine running on the physical machine needs to be checked. virtual machines for migration;

步骤7、负载信息存储器对S-1时刻各正常运行物理主机负载信息和该过载物理机负载信息进行反馈,并计算该过载物理机相对负载不均衡度:Step 7. The load information memory feeds back the load information of each normal operating physical host and the load information of the overloaded physical machine at time S-1, and calculates the relative load unbalance degree of the overloaded physical machine:

BB rr == ΣΣ ii == 11 II aa ii Uu rithe ri TT rithe ri Uu mimi TT mimi

其中,Br为过载物理机相对负载不均衡度,Uri为S-1时刻正常运行物理机资源的平均利用率,Umi为S-1时刻过载物理机资源的平均利用率,Tri为S-1时刻正常运行物理机的资源容量,Tmi为S-1时刻过载物理机的资源容量,ai表示计算资源i的权重因子;Among them, B r is the relative load unbalance degree of the overloaded physical machine, U ri is the average utilization rate of the physical machine resources in normal operation at the time S-1, U mi is the average utilization rate of the overloaded physical machine resources at the time S-1, Tri is The resource capacity of the physical machine running normally at time S-1, T mi is the resource capacity of the overloaded physical machine at time S-1, and a i represents the weight factor of computing resource i;

步骤8、任务调度器结合负载均衡器发出的判决,选取最小相对不均衡度所对应的物理机作为虚拟迁移的备选主机;Step 8. The task scheduler combines the judgment issued by the load balancer, and selects the physical machine corresponding to the minimum relative imbalance as the candidate host for virtual migration;

步骤9、对备选主机进行资源约束检查,从任务缓存器中获取S-1时刻分配给物理机的任务请求,判断该任务请求是否会造成备选主机发生负载过载:如果所需迁移虚拟机对资源需求为一个I维向量,用每一个维度代表对某一项计算资源的需求,则:H=(h1,h2...hi...hI),i=1,2,3...I;从负载信息存储器中获取S时刻备选主机的负载信息,仍然写成向量形式:=(n1,n2...ni...nI),i=1,2,3...I;依次比较hi和ni的大小,如果满足条件hi≤ni,i=1,2,3…I;则将过载物理机中虚拟机动态迁移到此备选主机;如果hi>ni,i=1,2,3…I,则排除此备选机,重新进行备选主机的选择,直到选出满足要求的备选主机;Step 9. Check the resource constraints on the candidate host, obtain the task request assigned to the physical machine at time S-1 from the task cache, and judge whether the task request will cause the candidate host to be overloaded: if the virtual machine needs to be migrated The resource demand is an I-dimensional vector, and each dimension represents the demand for a certain computing resource, then: H=(h 1 ,h 2 ...h i ...h I ),i=1,2 , 3...I; Obtain the load information of the candidate mainframe at the moment S from the load information memory, and still write it into vector form: =(n 1 ,n 2 ...n i ...n I ), i=1,2,3...I; compare h i and n i in turn, if the condition h i ≤n i is satisfied, i=1, 2, 3...I; then dynamically migrate the virtual machine in the overloaded physical machine to this alternative host; if h i >n i , i=1, 2, 3...I, then exclude this alternative host, Re-select the candidate host until the candidate host that meets the requirements is selected;

步骤10、将虚拟机迁移到备选主机中。Step 10, migrate the virtual machine to an alternative host.

Claims (4)

1. The cloud computing resource scheduling method based on the minimum relative load imbalance degree is characterized in that a load balancer is used for evaluating the load level of each physical machine in a cluster, judging whether an overload phenomenon occurs on the physical machine or not, if the physical machine is overloaded, calculating the relative load imbalance degree of all normally-operated physical machines relative to the physical machine with the overloaded load, selecting the physical machine with the minimum relative load imbalance degree as an alternative physical host, judging whether the computing resource capacity of the alternative host meets the resource requirement of a virtual machine needing to be migrated or not, and if the resource capacity meets the requirement, taking the physical machine as the alternative physical machine to migrate the virtual machine; and if the resource capacity is not satisfied, excluding the physical machine from reselecting the alternative physical host.
2. The method for scheduling cloud computing resources based on minimum relative load imbalance according to claim 1, wherein the specific steps of evaluating the load level of the physical machine are as follows:
step 1, a monitor tracks load information in each physical machine by taking a certain time interval as a unit;
step 2, the load information memory takes the same time interval as the monitor as a unit to record all the load information tracked in the step 1;
step 3, the load information memory feeds back the load information recorded in the step 2 in a certain time interval to the load balancer, and the load balancer calculates the average value of the resource load:
<math> <mrow> <msub> <mi>&delta;</mi> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mi>&Sigma;</mi> <msub> <mi>T</mi> <mi>i</mi> </msub> <mo>*</mo> <msub> <mi>U</mi> <mi>i</mi> </msub> </mrow> <mrow> <mi>&Sigma;</mi> <msub> <mi>U</mi> <mi>i</mi> </msub> </mrow> </mfrac> <mo>,</mo> </mrow> </math>
wherein,iis the resource load average, UiIs the average utilization of resources in the physical machine, TiThe total amount of resources in the physical machine;
and 4, calculating the load value of the physical machine according to the value obtained in the step 3:
γi=E+i
wherein, γiE is a relatively small constant, and is the load value of the physical machine;
and 5, comparing the value obtained in the step 4 with an alarm value set in the system, and if the obtained value exceeds the load alarm value, judging: the physical machine is overloaded.
3. The method for scheduling cloud computing resources based on minimum relative load imbalance according to claim 1, wherein the relative load imbalance is a ratio of a resource load value of a normally operating physical machine to a load value of an overloaded physical machine at a certain time, and is calculated according to a formula:
<math> <mrow> <msub> <mi>B</mi> <mi>r</mi> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>I</mi> </munderover> <mfrac> <mrow> <msub> <mi>a</mi> <mi>i</mi> </msub> <msub> <mi>U</mi> <mi>ri</mi> </msub> <msub> <mi>T</mi> <mi>ri</mi> </msub> </mrow> <mrow> <msub> <mi>U</mi> <mi>mi</mi> </msub> <msub> <mi>T</mi> <mi>mi</mi> </msub> </mrow> </mfrac> <mo>,</mo> </mrow> </math>
wherein, BrFor the degree of imbalance of the relative loads of the overloaded physical machine, UriFor average utilization of resources of normally operating physical machines, UmiFor average utilization of overloaded physical machine resources, TriFor the resource capacity of a normally operating physical machine, TmiTo overload the resource capacity of a physical machine, aiRepresenting the weight factor of the computing resource i.
4. The method as claimed in claim 2, wherein the load information includes an average utilization rate U of resources such as CPU, memory, storage space, and network bandwidthiAnd the total amount TiAnd i represents a cloud computing resource dimension.
CN201410583300.7A 2014-10-27 2014-10-27 Cloud computing resource scheduling method based on the unbalanced degree of minimum relative load Active CN104375897B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410583300.7A CN104375897B (en) 2014-10-27 2014-10-27 Cloud computing resource scheduling method based on the unbalanced degree of minimum relative load

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410583300.7A CN104375897B (en) 2014-10-27 2014-10-27 Cloud computing resource scheduling method based on the unbalanced degree of minimum relative load

Publications (2)

Publication Number Publication Date
CN104375897A true CN104375897A (en) 2015-02-25
CN104375897B CN104375897B (en) 2018-02-27

Family

ID=52554833

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410583300.7A Active CN104375897B (en) 2014-10-27 2014-10-27 Cloud computing resource scheduling method based on the unbalanced degree of minimum relative load

Country Status (1)

Country Link
CN (1) CN104375897B (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105141656A (en) * 2015-07-20 2015-12-09 浙江工商大学 Internet lightweight application load balancing realization method based on cloud platforms
CN105718310A (en) * 2016-01-13 2016-06-29 上海应用技术学院 Virtual machine scheduling method for IO dense application under cloud platform
CN106133693A (en) * 2015-02-28 2016-11-16 华为技术有限公司 The moving method of virtual machine, device and equipment
CN106648829A (en) * 2016-10-28 2017-05-10 广州市泰富信通科技有限公司 Virtual machine transferring method for efficient utilization of cloud resource
CN106843998A (en) * 2016-12-16 2017-06-13 郑州云海信息技术有限公司 A kind of data center management method and device
CN107370783A (en) * 2016-05-13 2017-11-21 北京金山云网络技术有限公司 A kind of dispatching method and device of cloud computing cluster resource
CN107707612A (en) * 2017-08-10 2018-02-16 北京奇艺世纪科技有限公司 A kind of appraisal procedure and device of the resource utilization of load balancing cluster
CN109144658A (en) * 2017-06-27 2019-01-04 阿里巴巴集团控股有限公司 Load-balancing method, device and the electronic equipment of limited resources
CN109840139A (en) * 2017-11-29 2019-06-04 北京金山云网络技术有限公司 Method, apparatus, electronic equipment and the storage medium of resource management
CN110198356A (en) * 2019-06-10 2019-09-03 莫毓昌 A kind of user's request scheduling mechanism based on mixed cloud
CN106656535B (en) * 2015-10-29 2021-01-15 阿里巴巴集团控股有限公司 Method and apparatus for resource scheduling
CN112738193A (en) * 2020-12-24 2021-04-30 山东鑫泰洋智能科技有限公司 Load balancing method and device for cloud computing
CN115269120A (en) * 2022-08-01 2022-11-01 江苏安超云软件有限公司 NUMA node scheduling method, device, equipment and storage medium of virtual machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102185759A (en) * 2011-04-12 2011-09-14 田文洪 Multi-physical server load equalizing method and device capable of meeting requirement characteristic
CN102232282A (en) * 2010-10-29 2011-11-02 华为技术有限公司 Method and apparatus for realizing load balance of resources in data center
CN103473142A (en) * 2013-10-08 2013-12-25 浪潮(北京)电子信息产业有限公司 Virtual machine transferring method and device under cloud computing operating system
US20140229949A1 (en) * 2011-11-22 2014-08-14 Hangzhou H3C Technologies Co., Ltd. Balancing virtual machine loads

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102232282A (en) * 2010-10-29 2011-11-02 华为技术有限公司 Method and apparatus for realizing load balance of resources in data center
CN102185759A (en) * 2011-04-12 2011-09-14 田文洪 Multi-physical server load equalizing method and device capable of meeting requirement characteristic
US20140229949A1 (en) * 2011-11-22 2014-08-14 Hangzhou H3C Technologies Co., Ltd. Balancing virtual machine loads
CN103473142A (en) * 2013-10-08 2013-12-25 浪潮(北京)电子信息产业有限公司 Virtual machine transferring method and device under cloud computing operating system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
景晨: "综合负载均衡度最小优先:一种实现云数据中心负载均衡的新方法", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106133693A (en) * 2015-02-28 2016-11-16 华为技术有限公司 The moving method of virtual machine, device and equipment
CN106133693B (en) * 2015-02-28 2019-10-25 华为技术有限公司 Moving method, device and the equipment of virtual machine
CN105141656B (en) * 2015-07-20 2018-05-01 浙江工商大学 A kind of implementation of load balancing of the internet lightweight application based on cloud platform
CN105141656A (en) * 2015-07-20 2015-12-09 浙江工商大学 Internet lightweight application load balancing realization method based on cloud platforms
CN106656535B (en) * 2015-10-29 2021-01-15 阿里巴巴集团控股有限公司 Method and apparatus for resource scheduling
CN105718310B (en) * 2016-01-13 2018-09-18 上海应用技术学院 The dispatching method of virtual machine that I/O intensive type is applied under a kind of cloud platform
CN105718310A (en) * 2016-01-13 2016-06-29 上海应用技术学院 Virtual machine scheduling method for IO dense application under cloud platform
CN107370783A (en) * 2016-05-13 2017-11-21 北京金山云网络技术有限公司 A kind of dispatching method and device of cloud computing cluster resource
CN106648829A (en) * 2016-10-28 2017-05-10 广州市泰富信通科技有限公司 Virtual machine transferring method for efficient utilization of cloud resource
CN106843998A (en) * 2016-12-16 2017-06-13 郑州云海信息技术有限公司 A kind of data center management method and device
CN109144658A (en) * 2017-06-27 2019-01-04 阿里巴巴集团控股有限公司 Load-balancing method, device and the electronic equipment of limited resources
CN109144658B (en) * 2017-06-27 2022-07-15 阿里巴巴集团控股有限公司 Load balancing method and device for limited resources and electronic equipment
CN107707612A (en) * 2017-08-10 2018-02-16 北京奇艺世纪科技有限公司 A kind of appraisal procedure and device of the resource utilization of load balancing cluster
CN109840139A (en) * 2017-11-29 2019-06-04 北京金山云网络技术有限公司 Method, apparatus, electronic equipment and the storage medium of resource management
CN110198356A (en) * 2019-06-10 2019-09-03 莫毓昌 A kind of user's request scheduling mechanism based on mixed cloud
CN112738193A (en) * 2020-12-24 2021-04-30 山东鑫泰洋智能科技有限公司 Load balancing method and device for cloud computing
CN112738193B (en) * 2020-12-24 2022-08-19 青岛民航凯亚系统集成有限公司 Load balancing method and device for cloud computing
CN115269120A (en) * 2022-08-01 2022-11-01 江苏安超云软件有限公司 NUMA node scheduling method, device, equipment and storage medium of virtual machine

Also Published As

Publication number Publication date
CN104375897B (en) 2018-02-27

Similar Documents

Publication Publication Date Title
CN104375897B (en) Cloud computing resource scheduling method based on the unbalanced degree of minimum relative load
US9286099B2 (en) Balancing virtual machine loads
CN110134495B (en) A container cross-host online migration method, storage medium and terminal device
CN103338228B (en) Cloud computing load balancing dispatching algorithms based on double weighting Smallest connection algorithms
US20140082202A1 (en) Method and Apparatus for Integration of Virtual Cluster and Virtual Cluster System
CN111966453B (en) Load balancing method, system, equipment and storage medium
CN108196935B (en) A cloud computing-oriented virtual machine energy-saving migration method
TW201535266A (en) Resource adjustment methods and systems for virtual machines
CN103595780A (en) Cloud computing resource scheduling method based on repeat removing
CN107346264A (en) A kind of method, apparatus and server apparatus of virtual machine load balance scheduling
CN106528270A (en) Automatic migration method and system of virtual machine based on OpenStack cloud platform
WO2018086467A1 (en) Method, apparatus and system for allocating resources of application clusters under cloud environment
CN104978236A (en) HDFS load source and sink node selection method based on multiple measurement indexes
CN107911399A (en) A kind of elastic telescopic method and system based on load estimation
CN106095531A (en) A kind of dispatching method of virtual machine loaded based on grade and physical machine in cloud platform
CN106201700A (en) The dispatching method that a kind of virtual machine migrates online
CN103677960A (en) Game resetting method for virtual machines capable of controlling energy consumption
CN111953732A (en) Resource scheduling method and device in cloud computing system
CN108089918A (en) A kind of figure computational load equalization methods towards heterogeneous server structure
CN104063501A (en) Copy balancing method based HDFS
CN106034144B (en) A virtual asset data storage method based on load balancing
CN104199724A (en) Virtual resource dispatching and optimizing method based on cost performance
CN114741160B (en) A dynamic virtual machine integration method and system based on balancing energy consumption and service quality
CN109976879B (en) A cloud computing virtual machine placement method based on complementary resource usage curve
CN105635285A (en) State-sensing-based VM migration scheduling method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20190626

Address after: 430040 Rubik's Cube Project of Guanggu Core Center 303 Guanggu Avenue, Donghu Development Zone, Wuhan City, Hubei Province (2-07 Building of Guanggu Core Center) Room 2-1020

Patentee after: Wuhan Heyue Digital Technology Co.,Ltd.

Address before: 710048 Jinhua South Road, Xi'an, Shaanxi Province, No. 19

Patentee before: XI'AN POLYTECHNIC University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230731

Address after: 518000 Qianhai Xiangbin Building 311-A133, No. 18 Zimao West Street, Nanshan Street, Qianhai Shenzhen Hong Kong Cooperation Zone, Shenzhen, Guangdong Province

Patentee after: Shenzhen Heneng Transportation Technology Co.,Ltd.

Address before: 430040 Rubik's Cube Project of Guanggu Core Center 303 Guanggu Avenue, Donghu Development Zone, Wuhan City, Hubei Province (2-07 Building of Guanggu Core Center) Room 2-1020

Patentee before: Wuhan Heyue Digital Technology Co.,Ltd.

CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 518000 Qianhai Xiangbin Building 311-A133, No. 18 Zimao West Street, Nanshan Street, Qianhai Shenzhen Hong Kong Cooperation Zone, Shenzhen, Guangdong Province

Patentee after: Shenzhen Xinghe Power Technology Co.,Ltd.

Country or region after: China

Address before: 518000 Qianhai Xiangbin Building 311-A133, No. 18 Zimao West Street, Nanshan Street, Qianhai Shenzhen Hong Kong Cooperation Zone, Shenzhen, Guangdong Province

Patentee before: Shenzhen Heneng Transportation Technology Co.,Ltd.

Country or region before: China