CN104361328B - A kind of facial image normalization method based on adaptive multiple row depth model - Google Patents
A kind of facial image normalization method based on adaptive multiple row depth model Download PDFInfo
- Publication number
- CN104361328B CN104361328B CN201410677837.XA CN201410677837A CN104361328B CN 104361328 B CN104361328 B CN 104361328B CN 201410677837 A CN201410677837 A CN 201410677837A CN 104361328 B CN104361328 B CN 104361328B
- Authority
- CN
- China
- Prior art keywords
- ssda
- image
- training
- layer
- face
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010606 normalization Methods 0.000 title claims abstract description 22
- 230000003044 adaptive effect Effects 0.000 title claims abstract description 12
- 230000001815 facial effect Effects 0.000 title claims abstract 18
- 238000012549 training Methods 0.000 claims abstract description 65
- 238000000034 method Methods 0.000 claims abstract description 50
- 230000008859 change Effects 0.000 claims abstract description 28
- 238000012937 correction Methods 0.000 claims abstract description 16
- 238000005457 optimization Methods 0.000 claims abstract description 9
- 238000005286 illumination Methods 0.000 claims description 46
- 238000013528 artificial neural network Methods 0.000 claims description 23
- 239000013598 vector Substances 0.000 claims description 14
- 230000004913 activation Effects 0.000 claims description 9
- 238000000605 extraction Methods 0.000 claims description 9
- 239000011159 matrix material Substances 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 8
- 238000013527 convolutional neural network Methods 0.000 claims description 4
- 238000011478 gradient descent method Methods 0.000 claims description 3
- 230000006698 induction Effects 0.000 claims description 3
- 239000000284 extract Substances 0.000 claims description 2
- 238000001914 filtration Methods 0.000 claims description 2
- 238000011176 pooling Methods 0.000 claims 1
- 238000013459 approach Methods 0.000 abstract description 2
- 230000006872 improvement Effects 0.000 abstract description 2
- 238000003062 neural network model Methods 0.000 abstract description 2
- 230000006870 function Effects 0.000 description 10
- 230000000694 effects Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 4
- 230000000875 corresponding effect Effects 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000013179 statistical model Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 208000027697 autoimmune lymphoproliferative syndrome due to CTLA4 haploinsuffiency Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000008921 facial expression Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/16—Human faces, e.g. facial parts, sketches or expressions
- G06V40/161—Detection; Localisation; Normalisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/088—Non-supervised learning, e.g. competitive learning
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Mathematical Physics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Computational Linguistics (AREA)
- Software Systems (AREA)
- Life Sciences & Earth Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Human Computer Interaction (AREA)
- Multimedia (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
Abstract
Description
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410677837.XA CN104361328B (en) | 2014-11-21 | 2014-11-21 | A kind of facial image normalization method based on adaptive multiple row depth model |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410677837.XA CN104361328B (en) | 2014-11-21 | 2014-11-21 | A kind of facial image normalization method based on adaptive multiple row depth model |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104361328A CN104361328A (en) | 2015-02-18 |
CN104361328B true CN104361328B (en) | 2018-11-02 |
Family
ID=52528586
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410677837.XA Active CN104361328B (en) | 2014-11-21 | 2014-11-21 | A kind of facial image normalization method based on adaptive multiple row depth model |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104361328B (en) |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104778448B (en) * | 2015-03-24 | 2017-12-15 | 孙建德 | A kind of face identification method based on structure adaptive convolutional neural networks |
CN104850735A (en) * | 2015-04-28 | 2015-08-19 | 浙江大学 | Activity recognition method based on stack own coding |
US9633306B2 (en) * | 2015-05-07 | 2017-04-25 | Siemens Healthcare Gmbh | Method and system for approximating deep neural networks for anatomical object detection |
CN105654028A (en) * | 2015-09-29 | 2016-06-08 | 厦门中控生物识别信息技术有限公司 | True and false face identification method and apparatus thereof |
US9904874B2 (en) * | 2015-11-05 | 2018-02-27 | Microsoft Technology Licensing, Llc | Hardware-efficient deep convolutional neural networks |
CN105426860B (en) * | 2015-12-01 | 2019-09-27 | 北京眼神智能科技有限公司 | The method and apparatus of recognition of face |
US10460231B2 (en) * | 2015-12-29 | 2019-10-29 | Samsung Electronics Co., Ltd. | Method and apparatus of neural network based image signal processor |
CN105657402B (en) * | 2016-01-18 | 2017-09-29 | 深圳市未来媒体技术研究院 | A kind of depth map restoration methods |
US10325351B2 (en) * | 2016-03-11 | 2019-06-18 | Qualcomm Technologies, Inc. | Systems and methods for normalizing an image |
CN106157307B (en) | 2016-06-27 | 2018-09-11 | 浙江工商大学 | A kind of monocular image depth estimation method based on multiple dimensioned CNN and continuous CRF |
CN106529589A (en) * | 2016-11-03 | 2017-03-22 | 温州大学 | Visual object detection method employing de-noising stacked automatic encoder network |
CN106780662B (en) * | 2016-11-16 | 2020-09-18 | 北京旷视科技有限公司 | Face image generation method, device and equipment |
CN106780658B (en) | 2016-11-16 | 2021-03-09 | 北京旷视科技有限公司 | Face feature adding method, device and equipment |
CN106599878A (en) * | 2016-12-28 | 2017-04-26 | 深圳市捷顺科技实业股份有限公司 | Face reconstruction correction method and device based on deep learning |
US10424045B2 (en) * | 2017-06-21 | 2019-09-24 | International Business Machines Corporation | Machine learning model for automatic image registration quality assessment and correction |
CN107680036A (en) * | 2017-08-15 | 2018-02-09 | 湖北工业大学 | The joint sparse Vector Parallel method for reconstructing of network is stacked based on convolution depth |
CN107886062B (en) * | 2017-11-03 | 2019-05-10 | 北京达佳互联信息技术有限公司 | Image processing method, system and server |
CN109934062A (en) * | 2017-12-18 | 2019-06-25 | 比亚迪股份有限公司 | Training method, face identification method, device and the equipment of eyeglasses removal model |
CN108829683B (en) * | 2018-06-29 | 2022-06-10 | 北京百度网讯科技有限公司 | Hybrid label learning neural network model and training method and device thereof |
CN111191655B (en) | 2018-11-14 | 2024-04-16 | 佳能株式会社 | Object identification method and device |
CN109934116B (en) * | 2019-02-19 | 2020-11-24 | 华南理工大学 | Standard face generation method based on confrontation generation mechanism and attention generation mechanism |
CN109919864A (en) * | 2019-02-20 | 2019-06-21 | 重庆邮电大学 | A kind of compression of images cognitive method based on sparse denoising autoencoder network |
CN109872291B (en) * | 2019-02-21 | 2021-04-23 | 中国科学技术大学 | Regularization method and system for resisting convergent noise in ANN |
CN110363099A (en) * | 2019-06-24 | 2019-10-22 | 昆明理工大学 | A kind of expression recognition method based on local parallel deep neural network |
US11443137B2 (en) | 2019-07-31 | 2022-09-13 | Rohde & Schwarz Gmbh & Co. Kg | Method and apparatus for detecting signal features |
CN113569598A (en) * | 2020-04-29 | 2021-10-29 | 华为技术有限公司 | Image processing method and image processing apparatus |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104112263A (en) * | 2014-06-28 | 2014-10-22 | 南京理工大学 | Method for fusing full-color image and multispectral image based on deep neural network |
-
2014
- 2014-11-21 CN CN201410677837.XA patent/CN104361328B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104112263A (en) * | 2014-06-28 | 2014-10-22 | 南京理工大学 | Method for fusing full-color image and multispectral image based on deep neural network |
Non-Patent Citations (4)
Title |
---|
adaptive multi-column deep neural networks with application to robust image denoising;forest agostinelli et al;《advances in neural information processing systems 2013》;20140224;第1、3-4页 * |
image denoising and inpainting with deep neural networks;junyuan xie et al;《advances in neural information processing systems 2012》;20130325;第1、3-6页 * |
multi-column deep neural networks for image classification;dan ciregan et al;《2012 ieee conference on computer vision and pattern recognition》;20121231;第3642-3649页 * |
改进的深度卷积网络及在碎纸片拼接中的应用;段宝彬,韩立新;《计算机工程与应用》;20140501;第50卷(第9期);第177-179页 * |
Also Published As
Publication number | Publication date |
---|---|
CN104361328A (en) | 2015-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104361328B (en) | A kind of facial image normalization method based on adaptive multiple row depth model | |
Dong et al. | Deep spatial–spectral representation learning for hyperspectral image denoising | |
Divakar et al. | Image denoising via CNNs: An adversarial approach | |
Bai et al. | Deep learning methods for solving linear inverse problems: Research directions and paradigms | |
US11645835B2 (en) | Hypercomplex deep learning methods, architectures, and apparatus for multimodal small, medium, and large-scale data representation, analysis, and applications | |
Dong et al. | Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization | |
Liew et al. | Gender classification: a convolutional neural network approach | |
Gai et al. | New image denoising algorithm via improved deep convolutional neural network with perceptive loss | |
Ahn et al. | Block-matching convolutional neural network for image denoising | |
Zaied et al. | A novel approach for face recognition based on fast learning algorithm and wavelet network theory | |
CN106548159A (en) | Reticulate pattern facial image recognition method and device based on full convolutional neural networks | |
Fu et al. | Adaptive spatial-spectral dictionary learning for hyperspectral image denoising | |
Liu et al. | The classification and denoising of image noise based on deep neural networks | |
Singh et al. | ResDNN: deep residual learning for natural image denoising | |
Zhao et al. | A novel deep learning algorithm for incomplete face recognition: Low-rank-recovery network | |
CN110321777A (en) | A kind of face identification method based on the sparse denoising self-encoding encoder of stack convolution | |
Routray et al. | An efficient image denoising method based on principal component analysis with learned patch groups | |
CN112950505B (en) | Image processing method, system and medium based on generation countermeasure network | |
Meng et al. | A novel gray image denoising method using convolutional neural network | |
Yang et al. | Blind image quality assessment of natural distorted image based on generative adversarial networks | |
Kang et al. | Stacked denoising autoencoders for face pose normalization | |
Zhou et al. | Sparse representation with enhanced nonlocal self-similarity for image denoising | |
CN117196963A (en) | Point cloud denoising method based on noise reduction self-encoder | |
Ahn et al. | Block-matching convolutional neural network (BMCNN): improving CNN-based denoising by block-matched inputs | |
Hu et al. | Patch-based low-rank minimization for image denoising |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C41 | Transfer of patent application or patent right or utility model | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20151222 Address after: 400714 No. 256 Fangzheng Road, Beibei District, Chongqing Applicant after: CHONGQING DELING TECHNOLOGY CO., LTD. Address before: 400714 Chongqing Road, Beibei District, No. 266 Applicant before: Chongqing Institute of Green and Intelligent Technology of the Chinese Academy of Sciences |
|
C41 | Transfer of patent application or patent right or utility model | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20160126 Address after: 401122 Chongqing hi tech park in northern New Mount Huangshan Central Avenue No. 5 mercury technology office building 6 Applicant after: CHONGQING ZHONGKE YUNCONG TECHNOLOGY CO., LTD. Address before: 400714 No. 256 Fangzheng Road, Beibei District, Chongqing Applicant before: CHONGQING DELING TECHNOLOGY CO., LTD. |
|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address |
Address after: 401120 5 stories, Block 106, West Jinkai Avenue, Yubei District, Chongqing Patentee after: Chongqing Zhongke Yuncong Technology Co., Ltd. Address before: 401122 Central Office Building, Mercury Science and Technology Building, No. 5 Huangshan Avenue, High-tech Park, North New District, Chongqing Patentee before: CHONGQING ZHONGKE YUNCONG TECHNOLOGY CO., LTD. |
|
CP03 | Change of name, title or address |