CN104347730A - Semiconductor device and manufacturing method thereof - Google Patents
Semiconductor device and manufacturing method thereof Download PDFInfo
- Publication number
- CN104347730A CN104347730A CN201310317313.5A CN201310317313A CN104347730A CN 104347730 A CN104347730 A CN 104347730A CN 201310317313 A CN201310317313 A CN 201310317313A CN 104347730 A CN104347730 A CN 104347730A
- Authority
- CN
- China
- Prior art keywords
- groove
- well region
- type well
- region
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 50
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 17
- 229910052751 metal Inorganic materials 0.000 claims abstract description 45
- 239000002184 metal Substances 0.000 claims abstract description 45
- 239000000758 substrate Substances 0.000 claims abstract description 15
- 239000012535 impurity Substances 0.000 claims description 28
- 238000005530 etching Methods 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 17
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 9
- 229920005591 polysilicon Polymers 0.000 claims description 8
- 238000002513 implantation Methods 0.000 claims description 6
- 238000000151 deposition Methods 0.000 claims description 4
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims 1
- 229910052785 arsenic Inorganic materials 0.000 claims 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical group [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims 1
- 229910052796 boron Inorganic materials 0.000 claims 1
- 238000001259 photo etching Methods 0.000 claims 1
- 229920006395 saturated elastomer Polymers 0.000 claims 1
- 239000007943 implant Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910000673 Indium arsenide Inorganic materials 0.000 description 1
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- VTGARNNDLOTBET-UHFFFAOYSA-N gallium antimonide Chemical compound [Sb]#[Ga] VTGARNNDLOTBET-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- OCGWQDWYSQAFTO-UHFFFAOYSA-N tellanylidenelead Chemical compound [Pb]=[Te] OCGWQDWYSQAFTO-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D8/00—Diodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D8/00—Diodes
- H10D8/01—Manufacture or treatment
Landscapes
- Electrodes Of Semiconductors (AREA)
Abstract
本发明提供一种半导体器件及制作方法,包括N型衬底、位于所述N型衬底表面上的外延层,所述外延层包括凹槽;覆盖所述凹槽表面的金属层;覆盖除所述凹槽之外的所述外延层表面的绝缘层;位于所述外延层表面内,且包围所述凹槽的第一P型阱区,所述第一P型阱区隔离所述金属层和所述外延层;其中,所述第一P型阱区和所述金属层的接触区域形成欧姆接触。通过本发明提供的半导体器件及制造方法,能够有效减小器件的反向漏电流。
The invention provides a semiconductor device and a manufacturing method, comprising an N-type substrate, an epitaxial layer located on the surface of the N-type substrate, the epitaxial layer including a groove; a metal layer covering the surface of the groove; An insulating layer on the surface of the epitaxial layer outside the groove; a first P-type well region located in the surface of the epitaxial layer and surrounding the groove, the first P-type well region isolating the metal layer and the epitaxial layer; wherein, the contact region of the first P-type well region and the metal layer forms an ohmic contact. The semiconductor device and the manufacturing method provided by the invention can effectively reduce the reverse leakage current of the device.
Description
技术领域technical field
本发明涉及半导体领域,尤其涉及一种半导体器件及制造方法。The invention relates to the field of semiconductors, in particular to a semiconductor device and a manufacturing method.
背景技术Background technique
目前,常用的二极管通常包括PN结二极管和肖特基势垒二极管(Schottky Barrier Diode,缩写成SBD)等。其中,SBD与PN结二极管利用P型半导体与N型半导体接触形成PN结的结构原理不同,SBD采用的是金属与半导体接触形成的肖特基结的结构原理。At present, commonly used diodes usually include PN junction diodes and Schottky Barrier Diodes (Schottky Barrier Diode, abbreviated as SBD). Among them, the structural principle of SBD and PN junction diode is different by using the contact between P-type semiconductor and N-type semiconductor to form a PN junction. The SBD uses the structural principle of a Schottky junction formed by contacting a metal and a semiconductor.
相对于PN结二极管来说,SBD具备低功耗、反向恢复时间短,正向导通压降低等优点。但与此同时,上述两种结构的二极管的反向性能均不理想,尤其是器件的反向漏电流较大,从而导致器件性能的降低。因此,如何有效减小二极管的反向漏电流成为亟待解决的问题。Compared with PN junction diodes, SBD has the advantages of low power consumption, short reverse recovery time, and reduced forward voltage. But at the same time, the reverse performance of the diodes with the above two structures is not ideal, especially the reverse leakage current of the device is relatively large, which leads to a decrease in the performance of the device. Therefore, how to effectively reduce the reverse leakage current of the diode has become an urgent problem to be solved.
发明内容Contents of the invention
本发明提供一种半导体器件及制造方法,用于解决现有二极管的反向漏电流较大的问题。The invention provides a semiconductor device and a manufacturing method, which are used to solve the problem of large reverse leakage current of existing diodes.
本发明的第一个方面是提供一种半导体器件,包括:N型衬底、位于所述N型衬底表面上的外延层,所述外延层包括凹槽;A first aspect of the present invention is to provide a semiconductor device, comprising: an N-type substrate, an epitaxial layer on the surface of the N-type substrate, and the epitaxial layer includes a groove;
覆盖所述凹槽表面的金属层;a metal layer covering the surface of the groove;
覆盖除所述凹槽之外的所述外延层表面的绝缘层;an insulating layer covering the surface of the epitaxial layer except the groove;
位于所述外延层表面内,且包围所述凹槽的第一P型阱区,所述第一P型阱区隔离所述金属层和所述外延层;A first P-type well region located in the surface of the epitaxial layer and surrounding the groove, the first P-type well region isolating the metal layer and the epitaxial layer;
其中,所述第一P型阱区和所述金属层的接触区域形成欧姆接触。Wherein, an ohmic contact is formed between the first P-type well region and the contact region of the metal layer.
本发明的另一个方面是提供一种半导体器件制造方法,包括:Another aspect of the present invention provides a method of manufacturing a semiconductor device, comprising:
在N型衬底的外延层的表面上形成绝缘层;forming an insulating layer on the surface of the epitaxial layer of the N-type substrate;
通过刻蚀,去除预设区域内的所述绝缘层,以露出所述外延层的表面,形成窗口;removing the insulating layer in the preset region by etching to expose the surface of the epitaxial layer to form a window;
向所述窗口第一次注入P型杂质,并进行驱入,以形成位于所述外延层表面内的第一P型阱区,所述第一P型阱区对应的区域包含且大于所述窗口对应的区域;Implanting P-type impurities into the window for the first time, and driving in to form a first P-type well region located in the surface of the epitaxial layer, the region corresponding to the first P-type well region includes and is larger than the The area corresponding to the window;
根据预设的刻蚀深度,刻蚀所述窗口对应的区域,以在所述外延层的表面形成凹槽;Etching a region corresponding to the window according to a preset etching depth to form a groove on the surface of the epitaxial layer;
在所述凹槽的表面上,淀积金属层,以覆盖所述凹槽的表面;on the surface of the groove, depositing a metal layer to cover the surface of the groove;
其中,所述第一P型阱区隔离所述金属层和所述外延层。Wherein, the first P-type well region isolates the metal layer and the epitaxial layer.
本发明提供的半导体器件及制造方法,通过在外延层设置凹槽,并在所述外延层表面内形成包围所述凹槽的P型阱区,且所述P型阱区隔离覆盖在所述凹槽表面的金属层和所述外延层的技术方案,有效减小器件的反向漏电流。In the semiconductor device and manufacturing method provided by the present invention, a groove is provided in the epitaxial layer, and a P-type well region surrounding the groove is formed in the surface of the epitaxial layer, and the P-type well region isolates and covers the The technical scheme of the metal layer on the surface of the groove and the epitaxial layer can effectively reduce the reverse leakage current of the device.
附图说明Description of drawings
图1为本发明实施例一提供的一种半导体器件的剖面示意图;FIG. 1 is a schematic cross-sectional view of a semiconductor device provided by Embodiment 1 of the present invention;
图2为本发明实施例二提供的另一种半导体器件的剖面示意图;2 is a schematic cross-sectional view of another semiconductor device provided by Embodiment 2 of the present invention;
图3为本发明实施例三提供的一种半导体器件制作方法的流程示意图;FIG. 3 is a schematic flowchart of a method for manufacturing a semiconductor device provided by Embodiment 3 of the present invention;
图4-图7为本发明实施例三执行过程中半导体器件的剖面示意图;4-7 are schematic cross-sectional views of semiconductor devices during the execution of Embodiment 3 of the present invention;
图8为本发明实施例四提供的另一种半导体器件的制作方法的流程示意图;FIG. 8 is a schematic flowchart of another semiconductor device manufacturing method provided by Embodiment 4 of the present invention;
图9为本发明实施例五提供的又一种半导体器件制作方法的流程示意图。FIG. 9 is a schematic flowchart of another method for manufacturing a semiconductor device provided by Embodiment 5 of the present invention.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。为了方便说明,放大或者缩小了不同层和区域的尺寸,所以图中所示大小和比例并不一定代表实际尺寸,也不反映尺寸的比例关系。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention more clear, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. For convenience of description, the sizes of different layers and regions are enlarged or reduced, so the sizes and ratios shown in the drawings do not necessarily represent actual sizes, nor do they reflect the proportional relationship of sizes.
图1为本发明实施例一提供的一种半导体器件的剖面示意图,如图1所示,所述器件包括:N型衬底11、位于所述N型衬底表面上的外延层12,所述外延层包括凹槽;FIG. 1 is a schematic cross-sectional view of a semiconductor device provided by Embodiment 1 of the present invention. As shown in FIG. 1, the device includes: an N-type substrate 11, and an epitaxial layer 12 located on the surface of the N-type substrate. The epitaxial layer includes grooves;
覆盖所述凹槽表面的金属层13;a metal layer 13 covering the surface of the groove;
覆盖除所述凹槽之外的外延层12表面的绝缘层14;an insulating layer 14 covering the surface of the epitaxial layer 12 except for the groove;
位于外延层12表面内且包围所述凹槽的第一P型阱区15,第一P型阱区15隔离金属层13和外延层12,第一P型阱区15与金属层13的接触区域形成欧姆接触;The first P-type well region 15 located in the surface of the epitaxial layer 12 and surrounding the groove, the first P-type well region 15 isolates the metal layer 13 and the epitaxial layer 12, and the contact between the first P-type well region 15 and the metal layer 13 areas form ohmic contacts;
其中,N型衬底11和外延层12可以为半导体元素,例如单晶硅、多晶硅或非晶结构的硅或硅锗(SiGe),也可以为混合的半导体结构,例如碳化硅、锑化铟、碲化铅、砷化铟、磷化铟、砷化镓或锑化镓、合金半导体或其组合。本实施例在此不对其进行限制。Wherein, the N-type substrate 11 and the epitaxial layer 12 can be semiconductor elements, such as monocrystalline silicon, polycrystalline silicon or silicon or silicon germanium (SiGe) with an amorphous structure, or a mixed semiconductor structure, such as silicon carbide, indium antimonide , lead telluride, indium arsenide, indium phosphide, gallium arsenide or gallium antimonide, alloy semiconductors, or combinations thereof. This embodiment does not limit it here.
具体的,金属层13的材料可以为金、银、铝、铂或钼,具体材料的选择可根据实际情况而定。绝缘层14的材料包括二氧化硅。Specifically, the material of the metal layer 13 may be gold, silver, aluminum, platinum or molybdenum, and the selection of specific materials may be determined according to actual conditions. The material of the insulating layer 14 includes silicon dioxide.
可以理解,在本实施例提供的半导体器件中,第一P型阱区15位于外延层12表面内,包围所述凹槽,且隔离金属层13和外延层12之间的接触,避免金属与半导体的直接接触。具体的,第一P型阱区15与金属层13的接触区域形成欧姆接触,第一P型阱区15与外延层12的接触区域形成PN结,以使当该半导体器件被施加反向压降时,第一P型阱区15与外延层12接触形成的PN结反向截止,从而形成耗尽区,并且,随着反向压降的增大,所述耗尽区的宽度逐渐增大,有效阻止反向漏电流,从而有效减小器件的反向漏电流,并使所述器件能够承受较大的反向电压。It can be understood that in the semiconductor device provided in this embodiment, the first P-type well region 15 is located in the surface of the epitaxial layer 12, surrounds the groove, and isolates the contact between the metal layer 13 and the epitaxial layer 12, avoiding the contact between the metal layer 13 and the epitaxial layer 12. Semiconductor direct contact. Specifically, the contact region between the first P-type well region 15 and the metal layer 13 forms an ohmic contact, and the contact region between the first P-type well region 15 and the epitaxial layer 12 forms a PN junction, so that when the semiconductor device is applied with a reverse voltage When the pressure drops, the PN junction formed by the contact between the first P-type well region 15 and the epitaxial layer 12 is reversely blocked, thereby forming a depletion region, and, as the reverse voltage drop increases, the width of the depletion region gradually increases Large, effectively prevent the reverse leakage current, thereby effectively reducing the reverse leakage current of the device, and enabling the device to withstand a relatively large reverse voltage.
在本实施例的一种实施方式中,所述器件还可以包括:In an implementation manner of this embodiment, the device may further include:
位于外延层12表面内和第一P型阱区15内,且处于所述凹槽下方的第二P型阱区16,第二P型阱区16的宽度大于所述凹槽的宽度,第一P型阱区15的宽度大于第二P型阱区16的宽度,第一P型阱区15的杂质浓度小于第二P型阱区16的杂质浓度;The second P-type well region 16 located in the surface of the epitaxial layer 12 and in the first P-type well region 15 and below the groove, the width of the second P-type well region 16 is greater than the width of the groove, the second P-type well region 16 The width of a P-type well region 15 is greater than the width of the second P-type well region 16, and the impurity concentration of the first P-type well region 15 is smaller than the impurity concentration of the second P-type well region 16;
具体的,第二P型阱区16和金属层13的接触区域形成欧姆接触。通常的,杂质浓度高的半导体有利于形成更好的欧姆接触,可以理解,由于第二P型阱区16的杂质浓度大于第一P型阱区15的杂质浓度,因此,通过第二P型阱区的设置,能够通过其与金属层13形成更好的欧姆接触,从而有效降低金属与半导体之间的正向导通电阻,提高器件的正向特性。Specifically, the contact area between the second P-type well region 16 and the metal layer 13 forms an ohmic contact. Generally, a semiconductor with a high impurity concentration is conducive to forming a better ohmic contact. It can be understood that since the impurity concentration of the second P-type well region 16 is greater than the impurity concentration of the first P-type well region 15, through the second P-type well region 16 The setting of the well region can form a better ohmic contact with the metal layer 13, thereby effectively reducing the forward conduction resistance between the metal and the semiconductor, and improving the forward characteristics of the device.
本实施例提供的半导体器件,通过在外延层设置凹槽,并在所述外延层表面内形成包围所述凹槽的P型阱区,且所述P型阱区隔离覆盖在所述凹槽表面的金属层和所述外延层的技术方案,有效减小器件的反向漏电流。In the semiconductor device provided in this embodiment, a groove is provided in the epitaxial layer, and a P-type well region surrounding the groove is formed in the surface of the epitaxial layer, and the P-type well region isolates and covers the groove. The technical solution of the metal layer on the surface and the epitaxial layer can effectively reduce the reverse leakage current of the device.
图2为本发明实施例二提供的另一种半导体器件的剖面示意图,如图2所示,根据实施例一所述的半导体器件,金属层13还覆盖绝缘层14的上表面和靠近所述凹槽的侧面;所述器件还可以包括:FIG. 2 is a schematic cross-sectional view of another semiconductor device provided by Embodiment 2 of the present invention. As shown in FIG. The sides of the groove; the device may also include:
位于第一P型阱区15内的N型区域17,N型区域17围绕所述凹槽的侧面,且与金属层13和绝缘层14均接触;An N-type region 17 located in the first P-type well region 15, the N-type region 17 surrounds the side of the groove, and is in contact with both the metal layer 13 and the insulating layer 14;
其中,N型区域17未与外延层12接触,且N型区域17的深度小于所述凹槽的深度。Wherein, the N-type region 17 is not in contact with the epitaxial layer 12 , and the depth of the N-type region 17 is smaller than the depth of the groove.
可以理解,根据本实施方式提供的半导体器件,当所述半导体器件被施加正向压降时,即在金属层13上施加一个正向电压时,第一P型区域15中位于绝缘层14下方且靠近绝缘层14的区域发生反型,从而在N型区域17和外延层12之间形成导电沟道,实现正向导通;并且,第一P型区域15或第二P型区域16,与外延层12形成的PN结也正向导通,从而使器件实现较大的正向电流。It can be understood that, according to the semiconductor device provided in this embodiment, when the semiconductor device is applied with a forward voltage drop, that is, when a forward voltage is applied to the metal layer 13, the first P-type region 15 is located under the insulating layer 14 And the region close to the insulating layer 14 undergoes inversion, thereby forming a conductive channel between the N-type region 17 and the epitaxial layer 12, and realizing forward conduction; and, the first P-type region 15 or the second P-type region 16, and The PN junction formed by the epitaxial layer 12 is also forward-conducting, so that the device can realize a larger forward current.
具体的,在本实施方式中,所述器件还可以包括:位于金属层13与绝缘层14之间的多晶硅层18。Specifically, in this implementation manner, the device may further include: a polysilicon layer 18 located between the metal layer 13 and the insulating layer 14 .
通过本实施例提供的半导体器件,能够在有效减小器件反向漏电流的同时,有效改善器件的正向特性,提高器件的性能。Through the semiconductor device provided by this embodiment, the forward characteristic of the device can be effectively improved while the reverse leakage current of the device can be effectively reduced, and the performance of the device can be improved.
图3为本发明实施例三提供的一种半导体器件制作方法的流程示意图,为了对本实施例中的方法进行清楚系统的描述,图4-图7为实施例三执行过程中半导体器件的剖面示意图,如图3所示,所述方法包括以下步骤:Fig. 3 is a schematic flow chart of a method for manufacturing a semiconductor device provided by Embodiment 3 of the present invention. In order to describe the method in this embodiment clearly and systematically, Figs. 4-7 are schematic cross-sectional views of the semiconductor device during the execution of Embodiment 3 , as shown in Figure 3, the method includes the following steps:
301、在N型衬底的外延层的表面上形成绝缘层。301. Form an insulating layer on a surface of an epitaxial layer of an N-type substrate.
具体地,执行301之后的所述半导体器件的剖面示意图如图4所示,其中,所述N型衬底用标号11表示,所述外延层用标号12表示,所述绝缘层用标号14表示。Specifically, a schematic cross-sectional view of the semiconductor device after performing 301 is shown in FIG. 4 , wherein the N-type substrate is denoted by a numeral 11, the epitaxial layer is denoted by a numeral 12, and the insulating layer is denoted by a numeral 14. .
302、通过刻蚀,去除预设区域内的绝缘层,以露出外延层的表面,形成窗口。302. Remove the insulating layer in the preset region by etching to expose the surface of the epitaxial layer and form a window.
具体地,执行302之后的所述半导体器件的剖面示意图如图5所示。Specifically, a schematic cross-sectional view of the semiconductor device after performing 302 is shown in FIG. 5 .
303、向所述窗口第一次注入P型杂质,并进行驱入,以形成位于所述外延层表面内的第一P型阱区,所述第一P型阱区对应的区域包含且大于所述窗口对应的区域。303. Implant P-type impurities into the window for the first time, and drive them in to form a first P-type well region located in the surface of the epitaxial layer, and the region corresponding to the first P-type well region includes and is greater than The region corresponding to the window.
具体地,执行303之后的所述半导体器件的剖面示意图如图6所示,其中,所述第一P型阱区用标号15表示。Specifically, a schematic cross-sectional view of the semiconductor device after performing 303 is shown in FIG. 6 , wherein the first P-type well region is denoted by reference numeral 15 .
304、根据预设的刻蚀深度,刻蚀所述窗口对应的区域,以在所述外延层的表面形成凹槽。304. Etch a region corresponding to the window according to a preset etching depth, so as to form a groove on the surface of the epitaxial layer.
具体地,执行304之后的所述半导体器件的剖面示意图如图7所示。Specifically, a schematic cross-sectional view of the semiconductor device after performing 304 is shown in FIG. 7 .
305、在所述凹槽的表面上,淀积金属层,以覆盖所述凹槽的表面。305. On the surface of the groove, deposit a metal layer to cover the surface of the groove.
其中,所述第一P型阱区隔离所述金属层和所述外延层。Wherein, the first P-type well region isolates the metal layer and the epitaxial layer.
具体地,执行305之后的所述半导体器件的剖面示意图如图1所示,其中,所述金属层用标号13表示。Specifically, a schematic cross-sectional view of the semiconductor device after performing 305 is shown in FIG. 1 , wherein the metal layer is denoted by reference numeral 13 .
在实际应用中,所述金属层的覆盖范围可以包括但不限于所述凹槽表面,也可为所述凹槽和所述绝缘层的表面,图中给出的只是一种具体的实施方式而并未对其进行限制。In practical applications, the coverage of the metal layer may include but not limited to the surface of the groove, and may also be the surface of the groove and the insulating layer, and what is shown in the figure is only a specific implementation without restricting it.
本实施例提供的半导体器件,通过在外延层设置凹槽,并在所述外延层表面内形成包围所述凹槽的P型阱区,且所述P型阱区隔离覆盖在所述凹槽表面的金属层和所述外延层的技术方案,有效减小器件的反向漏电流。In the semiconductor device provided in this embodiment, a groove is provided in the epitaxial layer, and a P-type well region surrounding the groove is formed in the surface of the epitaxial layer, and the P-type well region isolates and covers the groove. The technical solution of the metal layer on the surface and the epitaxial layer can effectively reduce the reverse leakage current of the device.
图8为本发明实施例四提供的另一种半导体器件的制作方法的流程示意图,如图8所示,根据实施例二所述的半导体器件制作方法,为了提高该半导体器件的正向特性,在本实施例一种可实施的方式中,在304之后,所述方法还可以包括:FIG. 8 is a schematic flowchart of another semiconductor device manufacturing method provided in Embodiment 4 of the present invention. As shown in FIG. 8 , according to the semiconductor device manufacturing method described in Embodiment 2, in order to improve the forward characteristics of the semiconductor device, In an implementable manner of this embodiment, after step 304, the method may further include:
801、向所述凹槽第二次注入P型杂质,并进行驱入,以形成位于所述第一P型阱区内且处于所述凹槽下方的第二P型阱区。801. Implant P-type impurities into the groove for a second time, and perform driving to form a second P-type well region located in the first P-type well region and below the groove.
具体的,第一次注入P型杂质的能量大于第二次注入P型杂质的能量,且第一次注入P型杂质的杂质剂量小于第二次注入P型杂质的杂质剂量,并且,所述第二P型阱区对应的区域包含且大于所述凹槽对应的区域,所述第一P型阱区对应的区域包含且大于所述第二P型阱区对应的区域。Specifically, the energy of the first implantation of P-type impurities is greater than the energy of the second implantation of P-type impurities, and the impurity dose of the first implantation of P-type impurities is smaller than the second implantation of P-type impurities, and, the A region corresponding to the second P-type well region includes and is larger than a region corresponding to the groove, and a region corresponding to the first P-type well region includes and is larger than a region corresponding to the second P-type well region.
本实施例提供的方法,通过形成第二P型阱区,能够使其与金属层形成更好的欧姆接触,从而有效降低金属与半导体之间的正向导通电阻,提高器件的正向特性。The method provided in this embodiment can form a better ohmic contact with the metal layer by forming the second P-type well region, thereby effectively reducing the forward conduction resistance between the metal and the semiconductor, and improving the forward characteristics of the device.
图9为本发明实施例五提供的又一种半导体器件制作方法的流程示意图,如图9所示,根据上述任一实施例所述的半导体器件制作方法,为了进一步提高半导体器件的正向特性,在304之前,还可以包括:Fig. 9 is a schematic flow chart of another method for manufacturing a semiconductor device provided in Embodiment 5 of the present invention. As shown in Fig. 9, according to the method for manufacturing a semiconductor device described in any of the above embodiments, in order to further improve the forward characteristics of , before 304, can also include:
901、向所述窗口注入N型杂质,并进行驱入,以形成位于所述第一P型阱区内的N型阱区,所述第一P型阱区对应的区域包含且大于所述N型阱区对应的区域,所述N型阱区对应的区域包含且大于所述窗口对应的区域;901. Implant and drive N-type impurities into the window to form an N-type well region located in the first P-type well region, and a region corresponding to the first P-type well region includes and is larger than the A region corresponding to the N-type well region, where the region corresponding to the N-type well region includes and is larger than the region corresponding to the window;
则相应的,304具体包括:Correspondingly, 304 specifically includes:
902、以大于所述N型阱区的深度的所述刻蚀深度,刻蚀所述窗口对应的区域,以去除所述N型阱区中位于所述窗口下方的区域,保留所述N型阱区中位于所述绝缘层下方的区域;902. Etch the region corresponding to the window with the etching depth greater than the depth of the N-type well region, so as to remove the region below the window in the N-type well region and retain the N-type well region. a region under the insulating layer in the well region;
相应的,305具体包括:Correspondingly, 305 specifically includes:
903、在所述凹槽的表面上、所述绝缘层的上表面和靠近所述凹槽的侧面上,淀积金属层,以覆盖所述凹槽的表面、及所述绝缘层的上表面和靠近所述凹槽的侧面。903. Deposit a metal layer on the surface of the groove, the upper surface of the insulating layer, and the side surface close to the groove, so as to cover the surface of the groove and the upper surface of the insulating layer and near the sides of the groove.
可选的,在本实施方式中,在302之前,还可以包括:Optionally, in this embodiment, before 302, it may also include:
904、在所述绝缘层的表面上形成多晶硅层,并光刻所述多晶硅层,以露出所述区域内所述绝缘层的表面。904. Form a polysilicon layer on the surface of the insulating layer, and photoetch the polysilicon layer, so as to expose the surface of the insulating layer in the region.
通过上述实施方式,能够在有效减小器件反向漏电流的同时,有效改善器件的正向特性,提高器件的性能。Through the above embodiments, while effectively reducing the reverse leakage current of the device, the forward characteristic of the device can be effectively improved, and the performance of the device can be improved.
需要说明的是,依次执行步骤301、904、302、303、901、902、801、903之后,可以得到如图2所示的半导体器件。具体的,本实施例中各结构的标号与前述实施例中各结构的标号对应。It should be noted that after performing steps 301 , 904 , 302 , 303 , 901 , 902 , 801 , and 903 in sequence, a semiconductor device as shown in FIG. 2 can be obtained. Specifically, the labels of the structures in this embodiment correspond to the labels of the structures in the foregoing embodiments.
本实施例提供的半导体器件,能够在有效减小器件反向漏电流的同时,有效改善器件的正向特性,提高器件的性能。The semiconductor device provided in this embodiment can effectively reduce the reverse leakage current of the device, effectively improve the forward characteristics of the device, and improve the performance of the device.
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,前述各实施例中器件的具体制作方法,可以参考上述方法实施例中的对应过程。Those skilled in the art can clearly understand that for the convenience and brevity of description, for the specific manufacturing methods of the devices in the foregoing embodiments, reference can be made to the corresponding processes in the foregoing method embodiments.
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present invention, rather than limiting them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: It is still possible to modify the technical solutions described in the foregoing embodiments, or perform equivalent replacements for some or all of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the technical solutions of the various embodiments of the present invention. scope.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310317313.5A CN104347730A (en) | 2013-07-25 | 2013-07-25 | Semiconductor device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310317313.5A CN104347730A (en) | 2013-07-25 | 2013-07-25 | Semiconductor device and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104347730A true CN104347730A (en) | 2015-02-11 |
Family
ID=52502920
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310317313.5A Pending CN104347730A (en) | 2013-07-25 | 2013-07-25 | Semiconductor device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104347730A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030057482A1 (en) * | 1997-06-18 | 2003-03-27 | Masana Harada | Semiconductor device and method for manufacturing thereof |
JP2009105200A (en) * | 2007-10-23 | 2009-05-14 | Hitachi Ltd | Junction barrier Schottky diode |
CN102084487A (en) * | 2008-05-21 | 2011-06-01 | 克里公司 | Junction barrier schottky diodes with current surge capability |
-
2013
- 2013-07-25 CN CN201310317313.5A patent/CN104347730A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030057482A1 (en) * | 1997-06-18 | 2003-03-27 | Masana Harada | Semiconductor device and method for manufacturing thereof |
JP2009105200A (en) * | 2007-10-23 | 2009-05-14 | Hitachi Ltd | Junction barrier Schottky diode |
CN102084487A (en) * | 2008-05-21 | 2011-06-01 | 克里公司 | Junction barrier schottky diodes with current surge capability |
Non-Patent Citations (1)
Title |
---|
谢刚等: "一种新型超势垒整流器", 《微电子学》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5739813B2 (en) | Semiconductor device | |
WO2018161412A1 (en) | Sic dual-trench mosfet device having integrated schottky diode and preparation method therefor | |
CN103413822B (en) | Reduce the method for floating empty buried regions semiconductor device creepage | |
JP6067133B2 (en) | Silicon carbide semiconductor device | |
CN104253153B (en) | Field cut-off type reverse-conducting insulated gate bipolar transistor npn npn and its manufacture method | |
US10304930B2 (en) | Semiconductor device implanted with arsenic and nitrogen | |
US8835935B2 (en) | Trench MOS transistor having a trench doped region formed deeper than the trench gate | |
JP2014060376A (en) | Schottky barrier diode and manufacturing method of the same | |
CN101771088A (en) | PN (positive-negative) junction and Schottky junction mixed type diode and preparation method thereof | |
CN105810754A (en) | Metal oxide semiconductor diode with accumulation layer | |
CN104253151B (en) | Field stop type reverse conducting insulated gate bipolar transistor and manufacturing method thereof | |
CN102610523A (en) | Method for integrating Schottky diode in super-junction MOSFET (metal-oxide-semiconductor field effect transistor) | |
CN103094358A (en) | Schottky diode and manufacturing method thereof | |
CN112018162A (en) | A 4H-SiC side gate integrated SBD MOSFET device and preparation method thereof | |
CN206574721U (en) | A kind of double trench MOSFET devices of SiC of integrated schottky diode | |
CN106653610A (en) | Improved groove superbarrier rectifier device and manufacturing method thereof | |
JP6044203B2 (en) | Manufacturing method of semiconductor device | |
JP6930113B2 (en) | Semiconductor devices and manufacturing methods for semiconductor devices | |
CN105023953A (en) | Vertical field effect diode and manufacture method thereof | |
CN106298537B (en) | Terminal structure manufacturing method | |
CN210607276U (en) | Groove type power device based on Schottky structure | |
CN106158983A (en) | The manufacture method of a kind of superjunction diode and superjunction diode | |
CN107403728A (en) | Semiconductor element and manufacture method | |
CN107123691A (en) | It is a kind of to mix the groove-shaped Schottky-barrier diode of knot | |
CN104347730A (en) | Semiconductor device and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20150211 |