CN104247114B - 具有梯度催化剂结构的燃料电池电极 - Google Patents
具有梯度催化剂结构的燃料电池电极 Download PDFInfo
- Publication number
- CN104247114B CN104247114B CN201280067704.XA CN201280067704A CN104247114B CN 104247114 B CN104247114 B CN 104247114B CN 201280067704 A CN201280067704 A CN 201280067704A CN 104247114 B CN104247114 B CN 104247114B
- Authority
- CN
- China
- Prior art keywords
- particle size
- fuel cell
- layer
- carbon
- platinum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8636—Inert electrodes with catalytic activity, e.g. for fuel cells with a gradient in another property than porosity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1004—Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8636—Inert electrodes with catalytic activity, e.g. for fuel cells with a gradient in another property than porosity
- H01M4/8642—Gradient in composition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8647—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
- H01M4/8652—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8647—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
- H01M4/8657—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9041—Metals or alloys
- H01M4/905—Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
- H01M4/9058—Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of noble metals or noble-metal based alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9075—Catalytic material supported on carriers, e.g. powder carriers
- H01M4/9083—Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
- H01M4/921—Alloys or mixtures with metallic elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
- H01M4/925—Metals of platinum group supported on carriers, e.g. powder carriers
- H01M4/926—Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0223—Composites
- H01M8/0226—Composites in the form of mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8803—Supports for the deposition of the catalytic active composition
- H01M4/8807—Gas diffusion layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8803—Supports for the deposition of the catalytic active composition
- H01M4/881—Electrolytic membranes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8825—Methods for deposition of the catalytic active composition
- H01M4/886—Powder spraying, e.g. wet or dry powder spraying, plasma spraying
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
- Catalysts (AREA)
Abstract
稳定电极结构的一个示例为使用梯度电极,其在被承载于常规碳上的膜的紧邻区域中采用大铂颗粒催化剂,并在电极的更靠近被承载于稳定碳上的GDL的部段中采用小铂颗粒。有助于电极性能稳定以及降低ECA变化的一些电极参数为铂‑碳比、电极的各个部分中的铂颗粒的尺寸、其它稳定催化剂而不是大颗粒尺寸铂(合金等)的使用、每个梯度子层的深度。稳定电极结构的另一示例为在碳载体上使用混合的铂颗粒尺寸,比如使用可以为6纳米和3纳米的铂颗粒。导电载体通常为一种或多种碳黑。
Description
本公开的背景
本公开涉及稳定电极结构,并且更特别地涉及用于燃料电池的稳定高活性催化剂。
燃料电池是众所周知的,并且用于生成电力。例如,燃料电池通常包括阳极电极,其包括阳极催化剂。阳极催化剂通常被承载于载体材料比如碳上。阴极电极包括被承载的阴极催化剂。电解质被配置在阳极电极与阴极电极之间,用于在电化学反应中生成电流,所述电化学反应由通过气体扩散层(GDL)供给的氧化剂和燃料维持,所述气体扩散层(GDL)通常面对处于膜表面相反侧的电极表面。一种示例电解质是质子交换膜(PEM)。
与燃料电池相关联的一个问题是电极催化剂的电化学表面面积(ECA)的损失以及燃料电池性能的相应损失。该ECA损失关联于数个关键因素:奥斯特瓦尔德熟化(OstwaldRipening)、铂溶解/沉积和关联于碳腐蚀的铂结团。另外,该ECA损失被在典型汽车和巴士驾驶周期中遇到的燃料电池电位(potential)循环的操作效果加剧。
迄今,对该问题的最有益解决方案是在操作以及启动和停机期间控制电池内的反应物环境和燃料电池电位极限(例如,见6,835,479“SYSTEM AND METHOD FOR SHUTTINGDOWN A FUEL CELL POWER PLANT”)。所需的是一种稳定电极结构,并且更特别是用于燃料电池的稳定高活性催化剂。
发明内容
稳定电极结构的一个示例为使用梯度(gradient)电极,其在被承载于常规碳上的膜的紧邻区域中采用大铂颗粒催化剂,并在电极的更靠近被承载于稳定碳上的GDL的部段中采用小铂颗粒。有助于电极性能稳定以及降低ECA变化的一些电极参数为铂-碳比、电极的各个部分中的铂颗粒的尺寸、其它稳定催化剂而不是大颗粒尺寸铂(合金等)的使用、每个梯度子层的深度。
稳定电极结构的另一示例为在碳载体上使用混合的铂颗粒尺寸,比如使用可以为6纳米和3纳米的铂颗粒。可用于本公开的导电载体通常为一种或多种碳黑。它们可以是炉黑、灯黑、乙炔黑、槽法碳黑、热碳黑或类似物。碳载体可以是:常规碳,比如XC72(Cabot公司),其典型表面面积为~240m2/g(平方米每克);或稳定碳,比如石墨化 其表面面积为~80m2/g。
附图说明
可通过参考以下详细描述在结合附图考虑时来进一步理解本公开,附图中:
图1是一示例燃料电池的示意图。
图2A是一示例电极组件的一部分的示意图。
图2B是另一示例电极组件的一部分的示意图。
图3是曲线图,对于采用处于润湿状态的梯度催化剂的燃料电池示出了在150小时耐久性循环后的性能损失。
图4是曲线图,示出了在150小时耐久性循环后与具有均匀填充度的催化剂相比采用梯度催化剂的燃料电池的性能损失。
具体实施方式
图1示意性地示出了燃料电池10,其具有阳极板12和阴极板14,它们配置在组合式电极组件24的两侧。组合式电极组件24包括具有配置在阳极催化剂22与阴极催化剂23之间的质子交换膜20的膜电极组件18,并且还包括阳极气体扩散层26和阴极气体扩散层27。
反应物源30,其可以提供比如氢等燃料,将反应物供给至阳极板12。氧化剂源32,比如空气,被提供至阴极板14。膜电极组件18内的电化学反应提供穿过负载28的电流,如本领域公知的。
参考图2A,示出了一示例阳极催化剂22。应该明白的是:可以类似地构造阴极催化剂23。阳极催化剂22由一个层或多个层提供,其至少包括第一和第二层34、36。每个层包括混合物,所述混合物包括离聚物(ionomer)、导电性载体材料(support material)和催化剂颗粒。离聚物在一个示例中为催化剂颗粒尺寸在每个层中是不同的。在该示例中,第一层34配置为相邻于质子交换膜20,而第二层36配置为相邻于气体扩散层26。
在一个示例中,第一和第二层34、36分别包括第一和第二载体材料42、44。第一和第二载体材料42、44可以不同于彼此,并且可以由碳材料提供,比如碳黑,例如炉黑、灯黑、乙炔黑、槽法碳黑、或热碳黑。在一个示例中,第一载体材料42是稳定碳,比如石墨化碳(stabilized carbon),例如表面面积大约为例如80m2/g的第二载体材料44由常规碳构造,比如XC72(Cabot 公司),其典型表面面积大约为例如240m2/g。在所示示例中,第一和第二载体材料42、44还可以区别在于:第一载体材料42具有的第一厚度38小于第二载体材料44的第二厚度40。
第一和第二催化剂颗粒46、48彼此不同之处在于:第一催化剂颗粒46具有的第一平均颗粒尺寸大于第二载体材料44上的催化剂颗粒,其具有第二平均颗粒尺寸。在一个示例中,第一和第二催化剂颗粒46、48是铂,比如铂黑。第一和第二催化剂颗粒46、48可以由其它过渡金属及其合金提供。在一个示例中,第一平均颗粒尺寸为4-10nm,并且在一个示例中为6nm。第二平均颗粒尺寸为例如2-5nm,并且在一个示例中为3nm。
第一和第二层34、36是通过将离聚物/载体材料催化剂颗粒混合物喷射到邻接结构上。在另一示例中,可使用膜转移(film transfer)方法,其中层被沉积到转移膜上,并且所述层然后从膜转移到结构。在一个示例中,第一层34被沉积到PEM 20上,而第二层36被沉积到第一层34上。在另一示例中,第二层36被沉积到GDL26上,而第一层36被沉积到第二层36或PEM20上。
较大的催化剂颗粒配置在溶解作用更强烈的区域中-邻近PEM。较小的催化剂颗粒,位于GDL处,提供性能优点。
在一个示例中,第一和第二层34、36具有大约50%的孔隙率。在一个示例中,第一层34包括大约60重量百分比的第一催化剂颗粒46,而第二层36包括大约50重量百分比的第二催化剂颗粒48。在一个示例中,第一和第二层34、36的催化剂颗粒填充度(loading)为大约0.1-0.2mg/cm2。
另一示例的稳定电极结构在图2B中示出。阳极催化剂122设置在PEM 20与GDL 126之间。铂颗粒146、148的混合物被提供在碳载体142中(连同离聚物)。铂颗粒146、148可以分别为6纳米和3纳米,彼此混和,而不是图2A中示出的离散层,这可缓解空运(airtransport)损失。
参考图3和4,示出了示例所公开的催化剂的150小时耐久性循环之后的性能损失的曲线图被示为与常规地填充的催化剂进行比较。曲线图中示出的结果涉及这样一种示例燃料电池,其具有0.2mg/cm2的铂,其中第一层对于大约1.8μm的深度具有大约250,000的每催化剂单位体积的电化学面积,而第二层对于2.4μm的深度为400,000。图3示出了150小时耐久性循环之后的性能损失对于处于润湿状态(100%RH)的梯度催化剂而言是可忽略的。图4示出了如在以下状态下测试的催化剂:包括37度干露点温度,具有60℃的冷却剂和4040kPa的操作压力。所测试的梯度催化剂呈现出可忽略的性能损失,在150小时后在1000mA/cm2处只有8%损失。
尽管已经公开了优选实施例,但是本领域的技术人员将意识到某些修改将落入权利要求书的范围内。因此,应该研究后附权利要求书来确定它们的真实范围和内容。
Claims (8)
1.一种燃料电池电极组件,包括:
第一层,其包括第一载体材料,所述第一载体材料具有第一平均颗粒尺寸的第一催化剂颗粒,邻接质子交换膜;
第二层,其邻接所述第一层,并包括第二载体材料,所述第二载体材料具有第二平均颗粒尺寸的第二催化剂颗粒,邻接气体扩散层,所述第一平均颗粒尺寸大于所述第二平均颗粒尺寸,
其中,所述第一层和第二层分别包括对应于60重量百分比和50重量百分比的第一催化剂颗粒和第二催化剂颗粒,
其中,填充在所述第一层和第二层上的铂为0.2mg/cm2。
2.根据权利要求1所述的燃料电池电极组件,其中,所述第一催化剂颗粒和第二催化剂颗粒是过渡金属。
3.根据权利要求1所述的燃料电池电极组件,其中,所述第一平均颗粒尺寸和第二平均颗粒尺寸分别为4-10nm和2-5nm。
4.根据权利要求3所述的燃料电池电极组件,其中,所述第一平均颗粒尺寸和第二平均颗粒尺寸为6nm和3nm。
5.根据权利要求1所述的燃料电池电极组件,其中,所述第一载体材料和第二载体材料彼此不同。
6.根据权利要求5所述的燃料电池电极组件,其中,所述第一载体材料和第二载体材料分别为稳定碳和常规碳。
7.根据权利要求5所述的燃料电池电极组件,其中,所述第一载体材料和第二载体材料分别包括彼此不同的第一厚度和第二厚度。
8.根据权利要求6所述的燃料电池电极组件,其中,碳材料具有50%的孔隙率。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2012/021972 WO2013109283A1 (en) | 2012-01-20 | 2012-01-20 | Fuel cell electrode with gradient catalyst structure |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104247114A CN104247114A (zh) | 2014-12-24 |
CN104247114B true CN104247114B (zh) | 2017-09-29 |
Family
ID=48799553
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201280067704.XA Active CN104247114B (zh) | 2012-01-20 | 2012-01-20 | 具有梯度催化剂结构的燃料电池电极 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9761899B2 (zh) |
EP (1) | EP2805368B1 (zh) |
JP (1) | JP5900995B2 (zh) |
KR (1) | KR101867132B1 (zh) |
CN (1) | CN104247114B (zh) |
CA (1) | CA2862291C (zh) |
WO (1) | WO2013109283A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9484583B2 (en) * | 2013-10-14 | 2016-11-01 | Nissan North America, Inc. | Fuel cell electrode catalyst having graduated layers |
EP3167502B1 (en) | 2014-07-08 | 2019-09-04 | BDF IP Holdings Ltd | Cathode design for electrochemical cells |
US20180198146A1 (en) * | 2015-07-10 | 2018-07-12 | Daimler Ag | Multi-layer fuel cell electrodes with different loadings on the supported catalysts |
US11909083B2 (en) | 2018-12-28 | 2024-02-20 | Xerox Corporation | Apparatus and method for forming a multilayer extrusion comprising component layers of an electrochemical cell |
CN110993960A (zh) * | 2019-11-11 | 2020-04-10 | 上海交通大学 | 一种强化催化剂耐久性的阴极催化层结构及其制备方法 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2233575A1 (en) | 1995-10-06 | 1997-04-10 | The Dow Chemical Company | Flow field structures for membrane electrode assemblies of fuel cells |
US7098163B2 (en) | 1998-08-27 | 2006-08-29 | Cabot Corporation | Method of producing membrane electrode assemblies for use in proton exchange membrane and direct methanol fuel cells |
US6277513B1 (en) * | 1999-04-12 | 2001-08-21 | General Motors Corporation | Layered electrode for electrochemical cells |
US20020192535A1 (en) | 2001-06-13 | 2002-12-19 | Kaoru Fukuda | Electrode for solid polymer type fuel cell and manufacturing method therefor |
US20050019649A1 (en) | 2001-11-30 | 2005-01-27 | Osamu Kakutani | Method for manufacturing electrode for fuel cell |
US6835479B2 (en) | 2002-06-26 | 2004-12-28 | Utc Fuel Cells, Llc | System and method for shutting down a fuel cell power plant |
JP4221980B2 (ja) * | 2002-09-18 | 2009-02-12 | トヨタ自動車株式会社 | 燃料電池用の膜・電極触媒構造体 |
KR101082859B1 (ko) * | 2003-10-29 | 2011-11-11 | 우미코레 아게 운트 코 카게 | 물 가수분해를 위한 귀금속 산화물 촉매 |
JP2005141920A (ja) | 2003-11-04 | 2005-06-02 | Nissan Motor Co Ltd | 触媒担持電極 |
JP2006079917A (ja) | 2004-09-09 | 2006-03-23 | Nissan Motor Co Ltd | 燃料電池用mea、および、これを用いた燃料電池 |
JP5044920B2 (ja) | 2004-11-25 | 2012-10-10 | 日産自動車株式会社 | 固体高分子型燃料電池 |
US7691780B2 (en) | 2004-12-22 | 2010-04-06 | Brookhaven Science Associates, Llc | Platinum- and platinum alloy-coated palladium and palladium alloy particles and uses thereof |
KR100658688B1 (ko) * | 2005-12-19 | 2006-12-15 | 삼성에스디아이 주식회사 | 연료 전지용 막-전극 어셈블리 및 이를 포함하는 연료 전지시스템 |
JP5204382B2 (ja) | 2006-05-11 | 2013-06-05 | パナソニック株式会社 | カソード触媒層、およびそれを用いた膜触媒接合体、カソードガス拡散電極、膜電極接合体ならびに高分子電解質形燃料電池 |
KR101319377B1 (ko) * | 2006-06-14 | 2013-10-17 | 삼성에스디아이 주식회사 | 연료 전지용 촉매, 이를 포함하는 막-전극 어셈블리 및이를 포함하는 연료 전지 시스템 |
TWI347702B (en) * | 2007-05-23 | 2011-08-21 | Univ Yuan Ze | A fuel cell membrane electrode assembly thereof |
EP2228857A1 (de) * | 2009-03-06 | 2010-09-15 | Basf Se | Verbesserte Membran-Elektrodeneinheiten |
US8735023B2 (en) | 2009-12-14 | 2014-05-27 | GM Global Technology Operations LLC | Fuel cell with layered electrode |
US20110159403A1 (en) | 2010-03-02 | 2011-06-30 | Ford Global Technologies, Llc | Layered Catalyst Assembly and Electrode Assembly Employing the Same |
JP5660603B2 (ja) | 2010-03-19 | 2015-01-28 | 学校法人同志社 | 白金コアシェル触媒の製造方法 |
US8524405B2 (en) * | 2010-05-20 | 2013-09-03 | GM Global Technology Operations LLC | Detection of small anode leaks in fuel cell systems |
-
2012
- 2012-01-20 JP JP2014553282A patent/JP5900995B2/ja active Active
- 2012-01-20 WO PCT/US2012/021972 patent/WO2013109283A1/en active Application Filing
- 2012-01-20 CA CA2862291A patent/CA2862291C/en active Active
- 2012-01-20 US US14/373,299 patent/US9761899B2/en active Active
- 2012-01-20 CN CN201280067704.XA patent/CN104247114B/zh active Active
- 2012-01-20 EP EP12865893.7A patent/EP2805368B1/en active Active
- 2012-01-20 KR KR1020147023213A patent/KR101867132B1/ko active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
EP2805368A4 (en) | 2016-02-10 |
CN104247114A (zh) | 2014-12-24 |
EP2805368B1 (en) | 2020-03-11 |
CA2862291A1 (en) | 2013-07-25 |
EP2805368A1 (en) | 2014-11-26 |
JP5900995B2 (ja) | 2016-04-06 |
WO2013109283A1 (en) | 2013-07-25 |
KR101867132B1 (ko) | 2018-06-12 |
US9761899B2 (en) | 2017-09-12 |
CA2862291C (en) | 2017-09-05 |
KR20140143358A (ko) | 2014-12-16 |
US20140356757A1 (en) | 2014-12-04 |
JP2015508216A (ja) | 2015-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yu et al. | PtCo/C cathode catalyst for improved durability in PEMFCs | |
KR101154315B1 (ko) | 고분자 전해질 연료전지용 전극 및 이를 이용한 막-전극 어셈블리 제조 방법 | |
US7745037B2 (en) | Membrane electrode assembly for solid polymer electrolyte fuel cell | |
JP3634304B2 (ja) | 固体高分子型燃料電池用電極構造体 | |
Lin et al. | Optimizing the structural design of cathode catalyst layer for PEM fuel cells for improving mass-specific power density | |
JP2006054165A (ja) | 固体高分子型燃料電池及び固体高分子型燃料電池の製造方法 | |
CN104969395B (zh) | 阳极催化剂层的用途 | |
Garsany et al. | High power, Low-Pt membrane electrode assemblies for proton exchange membrane fuel cells | |
Braesch et al. | Nickel 3D structures enhanced by electrodeposition of nickel nanoparticles as high performance anodes for direct borohydride fuel cells | |
CN104247114B (zh) | 具有梯度催化剂结构的燃料电池电极 | |
WO2007005081A2 (en) | Voltage cycling durable catalysts | |
Yu et al. | Carbon-support requirements for highly durable fuel cell operation | |
CN101127406A (zh) | 利用牺牲材料以减轻燃料电池电极中催化剂载体的腐蚀 | |
Wang et al. | Study of failure mechanisms of the reversal tolerant fuel cell anode via novel in-situ measurements | |
JP5101564B2 (ja) | 固体高分子型燃料電池用膜電極構造体 | |
JP6727266B2 (ja) | 燃料電池用アノード触媒層及びそれを用いた燃料電池 | |
JP2020047429A (ja) | 燃料電池用アノード触媒層及びそれを用いた燃料電池 | |
JP2006318707A (ja) | 固体高分子型燃料電池の電極構造体 | |
JP2020047430A (ja) | 燃料電池用アノード触媒層及びそれを用いた燃料電池 | |
Hibino et al. | Intermediate-temperature alkaline fuel cells with non-platinum electrodes | |
JP2005135671A (ja) | 燃料電池用電極 | |
JP2005294264A (ja) | 電気化学燃料電池の触媒構造 | |
JP2006134629A (ja) | 固体高分子型燃料電池の電極構造体 | |
Kalinnikov et al. | Optimization of a reversible fuel cell oxygen electrode composition and structure | |
JP6807009B2 (ja) | りん酸形燃料電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C41 | Transfer of patent application or patent right or utility model | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20160223 Address after: Germany Ingolstadt Applicant after: Audi AG Address before: Canadian British Columbia Applicant before: Ballard Power Systems |
|
GR01 | Patent grant | ||
GR01 | Patent grant |