CN104212455B - A kind of Ce3+The garnet structure fluorescent material activated and its preparation method - Google Patents
A kind of Ce3+The garnet structure fluorescent material activated and its preparation method Download PDFInfo
- Publication number
- CN104212455B CN104212455B CN201410392323.XA CN201410392323A CN104212455B CN 104212455 B CN104212455 B CN 104212455B CN 201410392323 A CN201410392323 A CN 201410392323A CN 104212455 B CN104212455 B CN 104212455B
- Authority
- CN
- China
- Prior art keywords
- combination
- phosphor
- fluorescent material
- garnet structure
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002223 garnet Substances 0.000 title claims abstract description 33
- 239000000463 material Substances 0.000 title claims abstract description 14
- 238000002360 preparation method Methods 0.000 title claims description 29
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 15
- 239000000126 substance Substances 0.000 claims abstract description 13
- 229910052712 strontium Inorganic materials 0.000 claims abstract description 10
- 229910052788 barium Inorganic materials 0.000 claims abstract description 9
- 229910052733 gallium Inorganic materials 0.000 claims abstract description 8
- 229910052732 germanium Inorganic materials 0.000 claims abstract description 7
- 229910052706 scandium Inorganic materials 0.000 claims abstract description 7
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 7
- 229910052688 Gadolinium Inorganic materials 0.000 claims abstract description 6
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 6
- 229910052746 lanthanum Inorganic materials 0.000 claims abstract description 6
- 239000000843 powder Substances 0.000 claims description 63
- 239000002994 raw material Substances 0.000 claims description 29
- 239000000203 mixture Substances 0.000 claims description 28
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 22
- 150000001875 compounds Chemical class 0.000 claims description 13
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 9
- 239000001257 hydrogen Substances 0.000 claims description 9
- 229910052739 hydrogen Inorganic materials 0.000 claims description 9
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 5
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 5
- 238000005406 washing Methods 0.000 claims description 3
- 239000012467 final product Substances 0.000 claims 2
- 241001025261 Neoraja caerulea Species 0.000 claims 1
- 238000005538 encapsulation Methods 0.000 claims 1
- 238000010792 warming Methods 0.000 claims 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 75
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 32
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 24
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 20
- 239000000395 magnesium oxide Substances 0.000 description 18
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 18
- 239000011777 magnesium Substances 0.000 description 17
- 239000002245 particle Substances 0.000 description 16
- 239000007787 solid Substances 0.000 description 13
- 238000002441 X-ray diffraction Methods 0.000 description 12
- 239000004570 mortar (masonry) Substances 0.000 description 12
- 229910052593 corundum Inorganic materials 0.000 description 11
- 239000010431 corundum Substances 0.000 description 11
- 238000001228 spectrum Methods 0.000 description 11
- 239000011575 calcium Substances 0.000 description 10
- 229910000420 cerium oxide Inorganic materials 0.000 description 10
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 10
- 239000000377 silicon dioxide Substances 0.000 description 10
- 235000012239 silicon dioxide Nutrition 0.000 description 10
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 9
- 229910004298 SiO 2 Inorganic materials 0.000 description 9
- 229910019990 cerium-doped yttrium aluminum garnet Inorganic materials 0.000 description 9
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 8
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 8
- 230000005284 excitation Effects 0.000 description 8
- CMIHHWBVHJVIGI-UHFFFAOYSA-N gadolinium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Gd+3].[Gd+3] CMIHHWBVHJVIGI-UHFFFAOYSA-N 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 239000008367 deionised water Substances 0.000 description 7
- 229910021641 deionized water Inorganic materials 0.000 description 7
- RUDFQVOCFDJEEF-UHFFFAOYSA-N oxygen(2-);yttrium(3+) Chemical compound [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 6
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 description 5
- 229910052791 calcium Inorganic materials 0.000 description 5
- QBAZWXKSCUESGU-UHFFFAOYSA-N yttrium(3+);trinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Y+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O QBAZWXKSCUESGU-UHFFFAOYSA-N 0.000 description 5
- 229910052684 Cerium Inorganic materials 0.000 description 4
- 229910000019 calcium carbonate Inorganic materials 0.000 description 4
- 229910001873 dinitrogen Inorganic materials 0.000 description 4
- 238000000295 emission spectrum Methods 0.000 description 4
- 238000000695 excitation spectrum Methods 0.000 description 4
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 238000009877 rendering Methods 0.000 description 4
- 238000004062 sedimentation Methods 0.000 description 4
- 229910000018 strontium carbonate Inorganic materials 0.000 description 4
- 229910002651 NO3 Inorganic materials 0.000 description 3
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 3
- 238000001354 calcination Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium dioxide Chemical compound O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 3
- BDAGIHXWWSANSR-NJFSPNSNSA-N hydroxyformaldehyde Chemical compound O[14CH]=O BDAGIHXWWSANSR-NJFSPNSNSA-N 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 229910052727 yttrium Inorganic materials 0.000 description 3
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- -1 ion activated yttrium aluminum garnet Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 238000007873 sieving Methods 0.000 description 2
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229910004631 Ce(NO3)3.6H2O Inorganic materials 0.000 description 1
- 229910017569 La2(CO3)3 Inorganic materials 0.000 description 1
- MXRIRQGCELJRSN-UHFFFAOYSA-N O.O.O.[Al] Chemical compound O.O.O.[Al] MXRIRQGCELJRSN-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- QQZMWMKOWKGPQY-UHFFFAOYSA-N cerium(3+);trinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O QQZMWMKOWKGPQY-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000005090 crystal field Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 1
- 238000002284 excitation--emission spectrum Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- NZPIUJUFIFZSPW-UHFFFAOYSA-H lanthanum carbonate Chemical compound [La+3].[La+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O NZPIUJUFIFZSPW-UHFFFAOYSA-H 0.000 description 1
- 229960001633 lanthanum carbonate Drugs 0.000 description 1
- YXEUGTSPQFTXTR-UHFFFAOYSA-K lanthanum(3+);trihydroxide Chemical compound [OH-].[OH-].[OH-].[La+3] YXEUGTSPQFTXTR-UHFFFAOYSA-K 0.000 description 1
- FYDKNKUEBJQCCN-UHFFFAOYSA-N lanthanum(3+);trinitrate Chemical compound [La+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O FYDKNKUEBJQCCN-UHFFFAOYSA-N 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 230000009103 reabsorption Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 238000010671 solid-state reaction Methods 0.000 description 1
- LEDMRZGFZIAGGB-UHFFFAOYSA-L strontium carbonate Chemical compound [Sr+2].[O-]C([O-])=O LEDMRZGFZIAGGB-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
Landscapes
- Luminescent Compositions (AREA)
Abstract
Description
技术领域 technical field
本发明属于发光材料技术领域,具体涉及应用于半导体照明的荧光粉,尤其是涉及一种可被蓝光LED芯片有效激发而发射橙黄光的荧光粉及其制备方法。 The invention belongs to the technical field of luminescent materials, and in particular relates to a fluorescent powder used in semiconductor lighting, in particular to a fluorescent powder which can be effectively excited by a blue LED chip to emit orange-yellow light and a preparation method thereof.
背景技术 Background technique
白光LED的制造方法中,在蓝色InGaN芯片上涂覆黄色荧光粉的方法由于其方法简单、成本低廉,并且所得到的LED器件效率高,而受到最多的关注。所使用的黄色荧光粉中,Ce3+离子激活的钇铝石榴石(Y3A15O12:Ce3+,简称YAG:Ce3+)由于可以高效地吸收蓝光并将其转换成黄光,从而成为目前最重要的商用黄色荧光粉。由InGaN芯片复合YAG:Ce3+荧光粉制出的白光LED,其效率可以超过80lm/W,几乎可以和荧光灯的效率媲美。但是由于YAG:Ce3+荧光粉发射光谱中绿色成分过多而红色成分太少,与蓝光LED芯片复合后,只能产生相对色温(CCT)高于4500K的白光。这种白光由于色调偏冷、显色性差,一般只能用于户外照明光源比如路灯、车头灯等,而不宜作为室内照明光源,从而严重制约了白光LED的发展。为了制造能产生CCT在2500-3200K内的暖白光LED,需要在YAG:Ce3+黄色荧光粉中混入(Sr,Ca)S:Eu2+、(Ba,Sr,Ca)2Si5N8:Eu2+、CaAlSiN3:Eu2+等能被蓝光激发的硫化物、氮化物基质红色荧光粉。这种方法虽然可以在一定程度上弥补YAG:Ce3+荧光粉的不足,但是也带来新的问题:首先是硫化物、氮化物有其各自的缺点,比如前者的化学稳定性不好,并且对环境有害,而后者的制备条件很苛刻,成本很高;其次,由于不同荧光粉之间发射能量的再吸收,使得其发光颜色不稳定。因此,开发新型的LED用黄色荧光粉成为一个热门的课题。 Among the manufacturing methods of white light LEDs, the method of coating yellow phosphor powder on blue InGaN chips has received the most attention because of its simplicity, low cost, and high efficiency of the obtained LED devices. Among the yellow phosphors used, Ce 3+ ion activated yttrium aluminum garnet (Y 3 A1 5 O 12 :Ce 3+ , referred to as YAG:Ce 3+ ) can efficiently absorb blue light and convert it into yellow light , thus becoming the most important commercial yellow phosphor. The efficiency of the white LED made of InGaN chip compounded with YAG:Ce 3+ phosphor can exceed 80lm/W, which is almost comparable to that of fluorescent lamps. However, due to the excessive green component and too little red component in the emission spectrum of the YAG:Ce 3+ phosphor, after compounding with the blue LED chip, it can only produce white light with a relative color temperature (CCT) higher than 4500K. Due to the cold tone and poor color rendering of this kind of white light, it can only be used for outdoor lighting sources such as street lamps and headlights, and is not suitable for indoor lighting sources, which seriously restricts the development of white LEDs. In order to manufacture warm white LEDs with a CCT of 2500-3200K, it is necessary to mix (Sr,Ca)S:Eu 2+ , (Ba,Sr,Ca) 2 Si 5 N 8 into YAG:Ce 3+ yellow phosphor :Eu 2+ , CaAlSiN 3 :Eu 2+ and other sulfide and nitride matrix red phosphors that can be excited by blue light. Although this method can make up for the deficiency of YAG:Ce 3+ phosphor to a certain extent, it also brings new problems: firstly, sulfide and nitride have their own shortcomings, such as the poor chemical stability of the former, And it is harmful to the environment, and the preparation conditions of the latter are very harsh and the cost is very high; secondly, due to the reabsorption of emission energy between different phosphors, the luminescent color is unstable. Therefore, the development of new yellow phosphors for LEDs has become a hot topic.
在新型黄色荧光粉的设计与选择过程中,能产生强晶体场的石榴石结构基质受到了人们的重视。2006年,Setlur等报道了Ce3+激活的主相为石榴石结构的荧光粉Lu2CaMg2Si3O12:Ce3+的发光特性。Lu2CaMg2Si3O12:Ce3+荧光粉的发光特性表明石榴石结构硅酸盐是潜在的黄光材料的优良基质。至今已见报道的利用固相反应法得到的石榴石结构的硅酸盐并不多见。除了Ce3+激活的Lu2CaMg2Si3O12之外,只有Ce3+激活的Ca3Sc2Si3O12。Lu2CaMg2Si3O12:Ce3+荧光粉的发射主峰在605nm。量子效率为60%,将Lu2CaMg2Si3O12:Ce3+与蓝光LED芯片进行封装,得到的白光色温为3500K,但是其显色性比较低,仅为76,容易导致颜色失真。而Ca3Sc2Si3O12:Ce3+荧光粉的主峰在505nm,发射的是绿光,无法直接与蓝光芯片组合发射白光,需要与红光荧光粉组合才能够得到白光。 In the design and selection process of new yellow phosphors, the garnet structure matrix that can generate a strong crystal field has been paid attention to. In 2006, Setlur et al. reported the luminescent properties of phosphors Lu 2 CaMg 2 Si 3 O 12 :Ce 3+ whose main phase activated by Ce 3+ was garnet structure. The luminescent properties of Lu 2 CaMg 2 Si 3 O 12 :Ce 3+ phosphors indicate that garnet-structured silicate is an excellent matrix for potential yellow light materials. So far, there are few silicates with garnet structure that have been reported by the solid-state reaction method. In addition to Ce 3+ activated Lu 2 CaMg 2 Si 3 O 12 , only Ce 3+ activated Ca 3 Sc 2 Si 3 O 12 . The main emission peak of Lu 2 CaMg 2 Si 3 O 12 :Ce 3+ phosphor is at 605nm. The quantum efficiency is 60%. Lu 2 CaMg 2 Si 3 O 12 :Ce 3+ is packaged with the blue LED chip, and the obtained white light has a color temperature of 3500K, but its color rendering is relatively low, only 76, which easily leads to color distortion. However, the main peak of Ca 3 Sc 2 Si 3 O 12 :Ce 3+ phosphor is at 505nm, which emits green light and cannot be directly combined with a blue light chip to emit white light. It needs to be combined with a red light phosphor to obtain white light.
发明内容 Contents of the invention
针对现有技术中存在的上述问题,本发明的目的在于提供一种新型的发射波长相对于YAG:Ce3+明显红移、制备温度低的白光LED用铈离子激活的石榴石结构荧光粉及其制备方法。 In view of the above-mentioned problems existing in the prior art, the object of the present invention is to provide a novel emission wavelength with respect to YAG:Ce 3+ obvious red-shift, white light LED with low preparation temperature garnet structure phosphor powder activated by cerium ions and its preparation method.
本发明采用的技术方案是: The technical scheme adopted in the present invention is:
一种Ce3+激活的石榴石结构荧光粉,其特征在于所述荧光粉的化学表达式为: A Ce 3+ activated garnet structure phosphor, characterized in that the chemical expression of the phosphor is:
Mg2-aAaY2-x-bBbM2N2O12:xCe3+ Mg 2-a A a Y 2-xb B b M 2 N 2 O 12 :xCe 3+
式中:A为Ba、Sr、Ca中的一种或两种以上的组合,B为Gd、La、Sc中的一种或两种以上的组合,M为Al、Ga中的一种或两种任意比例的组合,N为Si、Ge中的一种或两种任意比例的组合,x、a、b为各自的摩尔分数,它们的取值范围为:0.01≤x≤0.12,0≤a≤0.2,0≤b≤0.2。 In the formula: A is a combination of one or more of Ba, Sr, and Ca, B is a combination of one or more of Gd, La, and Sc, and M is one or a combination of Al and Ga. A combination of any proportion, N is one of Si and Ge or a combination of two in any proportion, x, a, b are their respective mole fractions, and their value ranges are: 0.01≤x≤0.12, 0≤a ≤0.2, 0≤b≤0.2.
进一步,优选0.03≤x≤0.09。 Further, it is preferable that 0.03≦x≦0.09.
本发明提供的荧光粉中,a、b各自可以为0,即不掺杂A元素或B元素。a和b同时为0时,即表示荧光粉中同时不掺杂A和B。 In the phosphor powder provided by the present invention, each of a and b can be 0, that is, no element A or element B is doped. When a and b are 0 at the same time, it means that A and B are not doped in the phosphor at the same time.
进一步,A优选为Ba、Sr或Ba、Sr、Ca物质的量之比1:0.5~1.5:0.5~1.5的混合。 Furthermore, A is preferably Ba, Sr or a mixture of Ba, Sr, and Ca substances in a ratio of 1:0.5 to 1.5:0.5 to 1.5.
B优选为La或Gd。 B is preferably La or Gd.
M优选为Al、Ga或Al、Ga物质的量之比为1:0.1~10的组合。 M is preferably Al, Ga or a combination in which the amount ratio of Al and Ga is 1:0.1-10.
N优选为Si、Ge或Si、Ge物质的量之比为1:0.1~10的组合。 N is preferably Si, Ge or a combination in which the amount ratio of Si and Ge is 1:0.1-10.
进一步,优选本发明所述荧光粉最基本的结构式为Mg2Y2-xM2N2O12:xCe3+,掺杂A、B离子和改变M、N的成分可调整荧光粉的性能。 Further, it is preferable that the most basic structural formula of the phosphor powder in the present invention is Mg 2 Y 2-x M 2 N 2 O 12 : xCe 3+ , doping A and B ions and changing the composition of M and N can adjust the performance of the phosphor powder .
本发明还提供所述荧光粉的制备方法,可采用高温固相法来制备,所述方法为:按照荧光粉的化学表达式:Mg2-aAaY2-x-bBbM2N2O12:xCe3+,式中:A为Ba、Sr、Ca中的一种或两种以上的组合,B为Gd、La、Sc中的一种或两种以上的组合,M为Al、Ga中的一种或两种任意比例的组合,N为Si、Ge中的一种或两种任意比例的组合,x、a、b为各自的摩尔分数,它们的取值范围为:0.01≤x≤0.12,0≤a≤0.2,0≤b≤0.2; The present invention also provides a method for preparing the fluorescent powder, which can be prepared by a high-temperature solid-phase method. The method is as follows: according to the chemical expression of the fluorescent powder: Mg 2-a A a Y 2-xb B b M 2 N 2 O 12 :xCe 3+ , where: A is one or a combination of two or more of Ba, Sr, and Ca, B is one or a combination of two or more of Gd, La, and Sc, and M is Al, One of Ga or a combination of two in any proportion, N is one of Si and Ge or a combination of two in any proportion, x, a, b are their respective mole fractions, and their value range is: 0.01≤ x≤0.12, 0≤a≤0.2, 0≤b≤0.2;
以分别含化学表达式中的各元素的化合物为原料,,按上述化学表达式中各元素的摩尔比例称取相应的所述原料,直接以固体粉末研磨混匀得前驱体,将前驱体放在还原性气氛中,升温至900℃~1350℃温度下焙烧1~5次(优选1~2次),得到最终焙烧产物;所述升温速率通常为5℃/min~20℃/min,每次焙烧时间为5~24小时,每两次焙烧之间冷却到室温进行研磨处理,最后一次焙烧在还原性气氛下进行,所述还原性气氛为含5-10v%氢气的氮气混合气或含5-10v%一氧化碳的氮气混合气,最终焙烧产物经破碎、磨细、粒径分级,并经洗涤除杂、烘干即制得所述的Ce3+激活的石榴石结构荧光粉。 Using compounds containing each element in the chemical expression as raw materials, weigh the corresponding raw materials according to the molar ratio of each element in the above chemical expression, directly grind and mix the precursor with solid powder, and put the precursor into In a reducing atmosphere, heat up to 900°C to 1350°C for 1 to 5 times (preferably 1 to 2 times) to obtain the final calcined product; the heating rate is usually 5°C/min to 20°C/min. The primary calcination time is 5 to 24 hours, and the grinding process is carried out after cooling to room temperature between every two calcinations, and the final calcination is carried out under a reducing atmosphere, which is a nitrogen gas mixture containing 5-10v% hydrogen or containing 5-10v% carbon monoxide mixed with nitrogen gas, the final roasted product is crushed, ground, particle size classified, washed to remove impurities, and dried to obtain the Ce 3+ activated garnet structure phosphor.
本发明所述研磨可在玛瑙研钵或球磨机中进行。 The grinding of the present invention can be carried out in an agate mortar or a ball mill.
所述粒径分级的方法为沉降法、筛分法或气流法中的一种或几种。 The particle size classification method is one or more of sedimentation method, sieving method or air flow method.
最终焙烧产物经破碎、磨细、粒径分级,是指采用手工破碎后再以球磨方式使烧结体的颗粒尺寸磨细,经沉降法、筛分法或气流法分级,取粒度为3~10微米的固体粉末。 The final roasted product is crushed, ground, and particle size classified, which means that the particle size of the sintered body is ground by ball milling after manual crushing, and classified by sedimentation method, sieving method or air flow method, and the particle size is 3 to 10. Micron solid powder.
所述洗涤除杂、烘干是依次用水、甲醇洗涤,过滤分离出固相,于100℃~115℃烘干。 The washing to remove impurities and drying is to wash with water and methanol in sequence, filter to separate the solid phase, and dry at 100°C to 115°C.
所述荧光粉的原料为分别含化学表达式中的各元素的化合物,可根据化学表达式中含有的各种元素选取含有该元素的化合物作为原料。具体的,所述荧光粉的原料包括各自含Mg、Y、M、N、Ce的化合物,荧光粉中掺杂A或B时,则原料还包括各自含A或B的化合物。 The raw material of the phosphor is a compound containing each element in the chemical expression, and the compound containing the element can be selected as the raw material according to the various elements contained in the chemical expression. Specifically, the raw materials of the phosphor powder include compounds containing Mg, Y, M, N, and Ce respectively, and when the phosphor powder is doped with A or B, the raw materials also include compounds containing A or B respectively.
更具体的,所述含Mg、Ca、Sr或Ba的化合物为含Mg、Ca、Sr或Ba各自对应的氧化物、碳酸盐、氢氧化物或硝酸盐;含Al的化合物为氧化铝、氢氧化铝或硝酸铝中;含Y或Ce的化合物为含Y或Ce各自对应的氧化物或硝酸盐;含Si的化合物为二氧化硅或硅酸钠;含Ge、Gd、Ga或Sc的化合物为含Ge、Gd、Ga或Sc各自对应的氧化物;含La的化合物为氧化镧、硝酸镧、氢氧化镧或碳酸镧。 More specifically, the compound containing Mg, Ca, Sr or Ba is the corresponding oxide, carbonate, hydroxide or nitrate containing Mg, Ca, Sr or Ba; the compound containing Al is aluminum oxide, In aluminum hydroxide or aluminum nitrate; the compound containing Y or Ce is the corresponding oxide or nitrate containing Y or Ce; the compound containing Si is silicon dioxide or sodium silicate; the compound containing Ge, Gd, Ga or Sc The compounds are respective oxides containing Ge, Gd, Ga or Sc; the compounds containing La are lanthanum oxide, lanthanum nitrate, lanthanum hydroxide or lanthanum carbonate.
本发明提供的Ce3+激活的石榴石结构荧光粉是一种在蓝光激发下发橙黄光的荧光粉。 The Ce 3+ activated garnet structure fluorescent powder provided by the invention is a fluorescent powder that emits orange-yellow light when excited by blue light.
本发明所述Ce3+激活的石榴石结构荧光粉可以应用在白光LED中。 The Ce 3+ activated garnet structure phosphor powder of the present invention can be applied in white light LEDs.
具体的,所述应用的方法为,Ce3+激活的石榴石结构荧光粉与蓝光LED二极管芯片封装,用于制备白光LED。 Specifically, the application method is that Ce 3+ activated garnet structure phosphor powder is packaged with a blue LED diode chip to prepare a white LED.
与现有技术相比,本发明的有益效果如下: Compared with the prior art, the beneficial effects of the present invention are as follows:
1)本发明通过采用上述技术方案,加入Ce3+做激活剂得到的石榴石结构荧光粉,是一种适合于蓝光LED芯片激发的白光LED应用的新型材料,其烧结温度比合成YAG:Ce(T=1400~1600℃)低,节能。 1) The present invention adopts the above-mentioned technical scheme, and the garnet structure phosphor obtained by adding Ce 3+ as an activator is a new type of material suitable for the application of white LEDs excited by blue LED chips, and its sintering temperature is higher than that of synthetic YAG:Ce (T=1400~1600℃) low, energy saving.
2)本发明所述的荧光粉可以吸收在450nm到500nm的蓝光,因此能够被波长为450nm到470nm的蓝光InGaN有效激发,发射光谱的范围为500nm到750nm。更具体的是,本发明在波长为460nm蓝光激发下,所述石榴石结构荧光粉的发射波长范围为500到750nm,其主峰在601nm左右,与YAG:Ce3+相比红移了大约60nm。利用波长为460nm到470nm的GaN基蓝光LED基础光源来激发,从而被激发出橙黄光,剩余的蓝光与橙黄光混合后可产生白光本发明与YAG:Ce3+相比,其显色指数更高,色温更低。 2) The fluorescent powder of the present invention can absorb blue light from 450nm to 500nm, so it can be effectively excited by InGaN blue light with a wavelength of 450nm to 470nm, and the emission spectrum ranges from 500nm to 750nm. More specifically, under the excitation of blue light with a wavelength of 460nm in the present invention, the emission wavelength range of the garnet structure phosphor is 500 to 750nm, and its main peak is around 601nm, which is about 60nm red shifted compared with YAG:Ce 3+ . The GaN-based blue LED basic light source with a wavelength of 460nm to 470nm is used to excite, thereby being excited to emit orange light, and the remaining blue light and orange light can be mixed to produce white light. Compared with YAG:Ce 3+ , the color rendering index of the present invention is higher High, lower color temperature.
附图说明 Description of drawings
图1是本发明实施例1制得的掺Ce3+的石榴石结构荧光粉的激发光谱和发射光谱图。 Fig. 1 is the excitation spectrum and emission spectrum diagram of the Ce 3+ -doped garnet structure phosphor prepared in Example 1 of the present invention.
图中:实线部分是激发光谱图,虚线部分是发射光谱图。 In the figure: the solid line is the excitation spectrum, and the dotted line is the emission spectrum.
图2是本发明实施例1制得的掺Ce3+的石榴石结构荧光粉的X射线衍射谱图。 Fig. 2 is an X-ray diffraction spectrum of the Ce 3+ -doped garnet structure phosphor prepared in Example 1 of the present invention.
具体实施方式 detailed description
下面以具体实施例来对本发明的方案作进一步说明,但本发明的保护范围不限于此。 The solutions of the present invention will be further described below with specific examples, but the protection scope of the present invention is not limited thereto.
实施例1: Example 1:
Mg2Y1.97Al2Si2O12:0.03Ce3+荧光粉的制备。 Preparation of Mg 2 Y 1.97 Al 2 Si 2 O 12 :0.03Ce 3+ phosphor.
制备方法如下: The preparation method is as follows:
分别称取0.4030克氧化镁(MgO)、1.1121克三氧化二钇(Y2O3)、0.6008克二氧化硅(SiO2)、0.0258克氧化铈(CeO2)、0.5098克三氧化二铝(Al2O3),以上原料纯度均在99%以上。将上述原料混合物在玛瑙研钵中,研磨均匀以后,装入刚玉坩埚中,以含5v%氢气的氮气混合气为还原气氛,升温速率为10℃/min,以900℃焙烧8小时,自然冷却至室温,将预烧过的样品取出再次研磨,再以10℃/min的速度升至所需温度(1350℃),恒温8h,冷却至室温。得到的烧结产品经破碎后,用球磨磨细,筛分法得到粒度在3~10微米的固体粉末,依次用去离子水(30ml)和甲醇(20ml)洗涤后过滤分离出荧光粉,在120℃的烘箱中烘干8小时即得到荧光粉产品。该荧光粉在460nm的蓝光激发下的发射波长在500nm到750nm之间,发射主波长599nm。色坐标为(x=0.500,y=0.485)。 Weigh respectively 0.4030 gram of magnesium oxide (MgO), 1.1121 gram of diyttrium trioxide (Y 2 O 3 ), 0.6008 gram of silicon dioxide (SiO 2 ), 0.0258 gram of cerium oxide (CeO 2 ), 0.5098 gram of aluminum oxide ( Al 2 O 3 ), the purity of the above raw materials is above 99%. Grind the above raw material mixture in an agate mortar evenly, put it into a corundum crucible, use nitrogen mixture containing 5v% hydrogen as reducing atmosphere, heat up at 10°C/min, bake at 900°C for 8 hours, and cool naturally After reaching room temperature, the pre-fired sample was taken out and ground again, then raised to the required temperature (1350°C) at a rate of 10°C/min, kept at a constant temperature for 8 hours, and cooled to room temperature. After the obtained sintered product is crushed, it is finely ground with a ball mill and sieved to obtain a solid powder with a particle size of 3 to 10 microns. After washing with deionized water (30ml) and methanol (20ml) successively, the fluorescent powder is separated by filtration. The fluorescent powder product can be obtained by drying in an oven at ℃ for 8 hours. The emission wavelength of the fluorescent powder is between 500nm and 750nm under the excitation of 460nm blue light, and the main emission wavelength is 599nm. The color coordinates are (x=0.500, y=0.485).
本实施例制得的掺Ce3+的石榴石结构荧光粉的激发光谱和发射光谱谱图如附图1所示,其中实线部分是激发光谱谱图(λem=599nm),虚线部分是发射光谱谱图(λex=460nm)。 The excitation spectrum and the emission spectrum spectrogram of the garnet structure phosphor powder doped with Ce that the present embodiment makes are as shown in accompanying drawing 1, and wherein solid line part is excitation spectrum spectrogram (λem=599nm), and dotted line part is emission Spectrogram (λex=460nm).
从图1中可以看出,该荧光粉在460nm的蓝光激发下的发射波长在500nm到750nm之间,发射主波长分别为599nm。测得其色坐标为(x=0.500,y=0.485)。该荧光粉可被从400nm到500nm的蓝光激发,是适合于蓝光LED芯片激发的白光LED应用的新型荧光粉。 It can be seen from FIG. 1 that the emission wavelength of the phosphor is between 500nm and 750nm under the excitation of 460nm blue light, and the main emission wavelengths are respectively 599nm. The measured color coordinates are (x=0.500, y=0.485). The phosphor can be excited by blue light from 400nm to 500nm, and is a new type of phosphor suitable for white LED applications excited by blue LED chips.
图2是实施例1制得的掺Ce3+的石榴石结构荧光粉的X射线衍射谱图,图2可以看出,所制得的荧光粉为石榴石结构。实施例2: Fig. 2 is the X-ray diffraction spectrogram of the Ce3+-doped phosphor with garnet structure prepared in Example 1. It can be seen from Fig. 2 that the phosphor obtained has a garnet structure. Example 2:
Mg1.8Ba0.2Y1.97Al2Si2O12:0.03Ce3+荧光粉的制备。 Preparation of Mg 1.8 Ba 0.2 Y 1.97 Al 2 Si 2 O 12 :0.03Ce 3+ phosphor.
制备方法如下: The preparation method is as follows:
分别称取0.3627克氧化镁(MgO)、0.1974克碳酸钡(BaCO3)、1.1121克三氧化二钇(Y2O3)、0.6008克二氧化硅(SiO2)、0.0258克氧化铈(CeO2)、0.5098克三氧化铝(Al2O3),以上原料纯度均在99%以上。将上述原料混合物在玛瑙研钵中研磨均匀后得到前驱体,将所得到的前驱体置于刚玉坩埚中,以5v%氢气的氮气混合气作为还原气氛,在马弗炉中以10℃/min的速度升温至900℃,恒温8h。将预烧过的样品取出再次研磨,再以10℃/min的速度升至所需温度(1340℃),恒温12h,冷却至室温,得到的烧结产品经破碎后,用球磨磨细,筛分法得到粒度在3~10微米的固体粉末,依次用去离子水(30ml)和甲醇(20ml)洗涤后过滤分离出荧光粉,在110℃的烘箱中烘干12小时即得到荧光粉产品。该荧光粉在460nm的蓝光激发下,发射主峰为601nm,发射波长在500nm到750nm之间。色坐标为(x=0.523,y=0.468)。该荧光粉可被从400nm到500nm的蓝光激发,是适合于蓝光LED芯片激发的白光LED应用的新型荧光粉。该荧光粉的X射线衍射谱图与图2类似,为石榴石结构。实施例3: Weigh 0.3627 grams of magnesium oxide (MgO), 0.1974 grams of barium carbonate (BaCO 3 ), 1.1121 grams of diyttrium trioxide (Y 2 O 3 ), 0.6008 grams of silicon dioxide (SiO 2 ), 0.0258 grams of cerium oxide (CeO 2 ), 0.5098 grams of aluminum trioxide (Al 2 O 3 ), and the purity of the above raw materials is above 99%. Grind the above raw material mixture evenly in an agate mortar to obtain a precursor, place the obtained precursor in a corundum crucible, use a 5v% hydrogen-nitrogen mixture as a reducing atmosphere, and heat it in a muffle furnace at 10°C/min The speed was raised to 900°C, and the temperature was kept constant for 8 hours. Take out the pre-fired sample and grind it again, then raise it to the required temperature (1340°C) at a speed of 10°C/min, keep the temperature constant for 12 hours, and cool to room temperature. The solid powder with a particle size of 3-10 microns was obtained by the method, washed with deionized water (30ml) and methanol (20ml) in sequence, filtered to separate the phosphor, and dried in an oven at 110°C for 12 hours to obtain the phosphor product. Under the excitation of 460nm blue light, the phosphor powder has a main emission peak at 601nm and an emission wavelength between 500nm and 750nm. The color coordinates are (x=0.523, y=0.468). The phosphor can be excited by blue light from 400nm to 500nm, and is a new type of phosphor suitable for white LED applications excited by blue LED chips. The X-ray diffraction spectrum of the fluorescent powder is similar to that shown in Figure 2, which is a garnet structure. Example 3:
Mg1.85Sr0.05Ca0.05Ba0.05Y1.94Al2Si2O12:0.06Ce3+荧光粉的制备。 Preparation of Mg 1.85 Sr 0.05 Ca 0.05 Ba 0.05 Y 1.94 Al 2 Si 2 O 12 :0.06Ce 3+ phosphor.
制备方法如下: The preparation method is as follows:
分别称取0.3728克氧化镁(MgO)、0.0494克碳酸钡(BaCO3)、0.0369克碳酸锶(SrCO3)、0.0250克碳酸钙(CaCO3)、3.7152克六水合硝酸钇(Y(NO3)3·6H2O)、0.6008克二氧化硅(SiO2)、0.0516克氧化铈(CeO2)、0.3900克氢氧化铝(Al(OH)3),以上原料纯度均在99%以上。将上述原料混合物在玛瑙研钵中,研磨均匀以后,装入刚玉坩埚中,以含5v%氢气的氮气混合气为还原气氛,升温速率为10℃/min,升到900℃,然后恒温8小时,冷却至室温。将预烧过的样品取出再次研磨,再以5℃/min的速度升至所需温度(1350℃),恒温8h,冷却至室温,得到的烧结产品经破碎后,用球磨磨细,筛分法得到粒度在3~10微米的固体粉末,依次用去离子水(30ml)和甲醇(20ml)洗涤后过滤分离出荧光粉,在110℃的烘箱中烘干10小时即得到荧光粉产品。该荧光粉在460nm的蓝光激发下的发射波长在500nm到750nm之间,发射主波长为602nm。色坐标为(x=0.519,y=0.472)。该荧光粉可被从400nm到500nm的蓝光激发,是适合于蓝光LED芯片激发的白光LED应用的新型荧光粉。该荧光粉的X射线衍射谱图与图2类似,为石榴石结构。 Weigh 0.3728 grams of magnesium oxide (MgO), 0.0494 grams of barium carbonate (BaCO 3 ), 0.0369 grams of strontium carbonate (SrCO 3 ), 0.0250 grams of calcium carbonate (CaCO 3 ), 3.7152 grams of yttrium nitrate hexahydrate (Y(NO 3 ) 3.6H 2 O), 0.6008 grams of silicon dioxide (SiO 2 ), 0.0516 grams of cerium oxide (CeO 2 ) , 0.3900 grams of aluminum hydroxide (Al(OH) 3 ), the purity of the above raw materials is above 99%. Grind the above-mentioned raw material mixture in an agate mortar evenly, put it into a corundum crucible, use a nitrogen mixture containing 5v% hydrogen as a reducing atmosphere, and raise the temperature to 900°C at a rate of 10°C/min, and then keep the temperature for 8 hours , cooled to room temperature. Take out the pre-fired sample and grind it again, then raise it to the required temperature (1350°C) at a speed of 5°C/min, keep the temperature constant for 8 hours, and cool to room temperature. The solid powder with a particle size of 3-10 microns was obtained by the method, washed with deionized water (30ml) and methanol (20ml) in sequence, filtered to separate the phosphor, and dried in an oven at 110°C for 10 hours to obtain the phosphor product. The emission wavelength of the fluorescent powder is between 500nm and 750nm under the excitation of 460nm blue light, and the main emission wavelength is 602nm. The color coordinates are (x=0.519, y=0.472). The phosphor can be excited by blue light from 400nm to 500nm, and is a new type of phosphor suitable for white LED applications excited by blue LED chips. The X-ray diffraction spectrum of the fluorescent powder is similar to that shown in Figure 2, which is a garnet structure.
实施例4: Example 4:
Mg2Y1.97Ga2Si2O12:0.03Ce3+荧光粉的制备。 Preparation of Mg 2 Y 1.97 Ga 2 Si 2 O 12 :0.03Ce 3+ phosphor.
制备方法如下: The preparation method is as follows:
分别称取0.4030克氧化镁(MgO)、1.8863克六水合硝酸钇(Y(NO3)3·6H2O)、0.6008克二氧化硅(SiO2)、0.0651克六水合硝酸铈(Ce(NO3)3·6H2O)、0.9372克氧化镓(Ga2O3),以上原料纯度均在99%以上。将上述原料混合物在玛瑙研钵中,研磨均匀以后,装入刚玉坩埚中,以含5v%一氧化碳的氮气混合气为还原气氛,升温速率为10℃/min,以900℃焙烧8小时,冷却至室温,将预烧过的样品取出再次研磨,再以10℃/min的速度升至所需温度(1250℃),恒温8h,冷却至室温,再次研磨,再以10℃/min的速度升至所需温度(1300℃),恒温10h。得到的烧结产品经破碎后,用球磨磨细,筛分法得到粒度在3~10微米的固体粉末,依次用去离子水(30ml)和甲醇(20ml)各洗涤两次,最后过滤分离出荧光粉,在110℃的烘箱中烘干15小时即得到荧光粉产品。该荧光粉发射波长光在500nm到750nm之间,发射主波长为610nm,色坐标(x=0.519,y=0.471)。该荧光粉可被从400nm到500nm的蓝光激发,是适合于蓝光LED芯片激发的白光LED应用的新型荧光粉。该荧光粉的X射线衍射谱图与图2类似,为石榴石结构。 Weigh respectively 0.4030 gram of magnesium oxide (MgO), 1.8863 gram of yttrium nitrate hexahydrate (Y(NO 3 ) 3 6H 2 O), 0.6008 gram of silicon dioxide (SiO 2 ), 0.0651 gram of cerium nitrate hexahydrate (Ce(NO 3 ) 3.6H 2 O), 0.9372 grams of gallium oxide (Ga 2 O 3 ) , the purity of the above raw materials is above 99%. Grind the above-mentioned raw material mixture in an agate mortar evenly, put it into a corundum crucible, use a nitrogen gas mixture containing 5v% carbon monoxide as a reducing atmosphere, heat up at a rate of 10°C/min, bake at 900°C for 8 hours, and cool to At room temperature, take out the pre-fired sample and grind it again, then raise it to the required temperature (1250°C) at a rate of 10°C/min, keep the temperature for 8h, cool to room temperature, grind it again, and then increase it at a rate of 10°C/min to The desired temperature (1300°C) was kept constant for 10 hours. After the obtained sintered product is crushed, it is finely ground with a ball mill and sieved to obtain a solid powder with a particle size of 3 to 10 microns. It is washed twice with deionized water (30ml) and methanol (20ml) in turn, and finally filtered to separate the fluorescent powder. powder, and dried in an oven at 110°C for 15 hours to obtain a phosphor product. The fluorescent powder emits light with a wavelength between 500nm and 750nm, the main emission wavelength is 610nm, and the color coordinates are (x=0.519, y=0.471). The phosphor can be excited by blue light from 400nm to 500nm, and is a new type of phosphor suitable for white LED applications excited by blue LED chips. The X-ray diffraction spectrum of the fluorescent powder is similar to that shown in Figure 2, which is a garnet structure.
实施例5: Example 5:
Mg2Y1.91Al2Ge2O12:0.09Ce3+荧光粉的制备。 Preparation of Mg 2 Y 1.91 Al 2 Ge 2 O 12 :0.09Ce 3+ phosphor.
制备方法如下: The preparation method is as follows:
分别称取0.4030克氧化镁(MgO)、1.0782克三氧化二钇(Y2O3)、0.0774克氧化铈(CeO2)、0.5098克三氧化铝(Al2O3)、1.0464克氧化锗(GeO2),以上原料纯度均在99%以上。将上述原料混合物在玛瑙研钵中研磨均匀以后,装入刚玉坩埚中,以含5v%氢气的氮气混合气为还原气氛,升温速率为10℃/min,以900℃焙烧8小时,冷却至室温。将预烧过的样品取出再次研磨,再以10℃/min的速度升至所需温度(1300℃),恒温15h,冷却至室温,得到的烧结产品经破碎后,用球磨磨细,筛分得到粒度在3~10微米的固体粉末荧光粉。该荧光粉的发射波长在500nm到750nm之间,发射主波长为608nm,色坐标为(x=0.509,y=0.481)。该荧光粉可被从400nm到500nm的蓝光激发,是适合于蓝光LED芯片激发的白光LED应用的新型荧光粉。该荧光粉的X射线衍射谱图与图2类似,为石榴石结构。 Weigh respectively 0.4030 gram of magnesium oxide (MgO), 1.0782 gram of diyttrium trioxide (Y 2 O 3 ), 0.0774 gram of cerium oxide (CeO 2 ), 0.5098 gram of aluminum trioxide (Al 2 O 3 ), 1.0464 gram of germanium oxide ( GeO 2 ), the purity of the above raw materials is above 99%. Grind the above raw material mixture evenly in an agate mortar, put it into a corundum crucible, use a nitrogen mixture containing 5v% hydrogen as a reducing atmosphere, heat up at a rate of 10°C/min, bake at 900°C for 8 hours, and cool to room temperature . Take out the pre-fired sample and grind it again, then raise it to the required temperature (1300°C) at a speed of 10°C/min, keep the temperature constant for 15 hours, and cool to room temperature. A solid powder fluorescent powder with a particle size of 3-10 microns is obtained. The emission wavelength of the fluorescent powder is between 500nm and 750nm, the main emission wavelength is 608nm, and the color coordinates are (x=0.509, y=0.481). The phosphor can be excited by blue light from 400nm to 500nm, and is a new type of phosphor suitable for white LED applications excited by blue LED chips. The X-ray diffraction spectrum of the fluorescent powder is similar to that shown in Figure 2, which is a garnet structure.
实施例6: Embodiment 6:
Mg2Y1.88La0.05Al2Si2O12:0.07Ce3+荧光粉的制备。 Preparation of Mg 2 Y 1.88 La 0.05 Al 2 Si 2 O 12 :0.07Ce 3+ phosphor.
制备方法如下: The preparation method is as follows:
分别称取0.4030克氧化镁(MgO)、3.6003克六水合硝酸钇(Y(NO3)3·6H2O)、0.6008克二氧化硅(SiO2)、0.0602克氧化铈(CeO2)、0.5098克三氧化铝(Al2O3)、0.0407克三氧化二镧(La2O3),以上原料纯度均在99%以上。将上述原料混合物在玛瑙研钵中,研磨均匀以后,装入刚玉坩埚中,以含5v%氢气的氮气混合气为还原气氛,升温速率为10℃/min,以900℃焙烧8小时,冷却至室温,将预烧过的样品取出再次研磨,再以10℃/min的速度升至所需温度(1350℃),恒温8h,冷却至室温。得到的烧结产品经破碎后,用球磨磨细,筛分法得到粒度在3~10微米的固体粉末,依次用去离子水(30ml)和甲醇(20ml)各洗涤两次,最后过滤分离出荧光粉,在100℃的烘箱中烘干20小时即得到荧光粉产品。该荧光粉在460nm蓝光激发下的发射波长在500nm到750nm之间,发射主波长为601nm,色坐标为(x=0.508,y=0.482)。该荧光粉可被从400nm到500nm的蓝光激发,是适合于蓝光LED芯片激发的白光LED应用的新型荧光粉。该荧光粉的X射线衍射谱图与图2类似,为石榴石结构。 Weigh respectively 0.4030 gram of magnesium oxide (MgO), 3.6003 gram of yttrium nitrate hexahydrate (Y(NO 3 ) 3 6H 2 O), 0.6008 gram of silicon dioxide (SiO 2 ), 0.0602 gram of cerium oxide (CeO 2 ), 0.5098 gram of aluminum trioxide (Al 2 O 3 ), and 0.0407 gram of dilanthanum trioxide (La 2 O 3 ), the purity of the above raw materials is above 99%. Grind the above-mentioned raw material mixture in an agate mortar evenly, put it into a corundum crucible, use a nitrogen mixture containing 5v% hydrogen as a reducing atmosphere, heat up at a rate of 10°C/min, bake at 900°C for 8 hours, and cool to At room temperature, the pre-fired sample was taken out and ground again, and then raised to the required temperature (1350°C) at a rate of 10°C/min, kept at a constant temperature for 8h, and cooled to room temperature. After the obtained sintered product is crushed, it is finely ground with a ball mill and sieved to obtain a solid powder with a particle size of 3 to 10 microns. It is washed twice with deionized water (30ml) and methanol (20ml) in turn, and finally filtered to separate the fluorescent powder. powder, and dried in an oven at 100°C for 20 hours to obtain the phosphor product. The emission wavelength of the fluorescent powder is between 500nm and 750nm under the excitation of 460nm blue light, the main emission wavelength is 601nm, and the color coordinates are (x=0.508, y=0.482). The phosphor can be excited by blue light from 400nm to 500nm, and is a new type of phosphor suitable for white LED applications excited by blue LED chips. The X-ray diffraction spectrum of the fluorescent powder is similar to that shown in Figure 2, which is a garnet structure.
实施例7 Example 7
Mg2Y1.87La0.1Al2Si1.8Ge0.2O12:0.03Ce3+荧光粉的制备。 Preparation of Mg 2 Y 1.87 La 0.1 Al 2 Si 1.8 Ge 0 . 2 O 12 :0.03Ce 3+ phosphor.
制备方法如下: The preparation method is as follows:
分别称取0.4030克氧化镁(MgO)、1.7906克三氧化二钇(Y2O3),0.5407克二氧化硅(SiO2)、0.0258克氧化铈(CeO2)、0.5098克三氧化铝(Al2O3)、0.0814克三氧化二镧(La2O3)、0.1046克氧化锗(GeO2),以上原料纯度均在99%以上。将上述原料混合物在玛瑙研钵中研磨均匀以后,装入刚玉坩埚中,以含5v%一氧化碳的氮气混合气为还原气氛,升温速率为5℃/min,以900℃焙烧8小时,冷却至室温,将预烧过的样品取出再次研磨,再以5℃/min的速度升至所需温度(1320℃),恒温15h,冷却至室温。取烧结产物研磨后再升温,按上述焙烧条件焙烧2次,得到的烧结产品经破碎后用球磨磨细,沉降法得到粒度在3~10微米的固体粉末,依次用去离子水(30ml)和甲醇(20ml)各洗涤两次,最后过滤分离出荧光粉,在110℃的烘箱中烘干20小时即得到荧光粉产品。该荧光粉在460nm蓝光激发下的发射波长在500nm到750nm之间,发射主波长为604nm,覆盖了整个可见光范围。色坐标为(x=0.508,y=0.482)。该荧光粉可被从400nm到500nm的蓝光激发,是适合于蓝光LED芯片激发的白光LED应用的新型荧光粉。该荧光粉的X射线衍射谱图与图2类似,为石榴石结构。 Weigh respectively 0.4030 gram of magnesia (MgO), 1.7906 gram of diyttrium trioxide (Y 2 O 3 ), 0.5407 gram of silicon dioxide (SiO 2 ), 0.0258 gram of cerium oxide (CeO 2 ), 0.5098 gram of aluminum trioxide (Al 2 O 3 ), 0.0814 grams of lanthanum trioxide (La 2 O 3 ), and 0.1046 grams of germanium oxide (GeO 2 ), all of which have a purity of more than 99%. Grind the above raw material mixture evenly in an agate mortar, put it into a corundum crucible, use a nitrogen mixture containing 5v% carbon monoxide as a reducing atmosphere, heat up at a rate of 5°C/min, bake at 900°C for 8 hours, and cool to room temperature , take out the pre-fired sample and grind it again, then raise it to the required temperature (1320°C) at a rate of 5°C/min, keep the temperature constant for 15h, and cool to room temperature. Get the sintered product and grind it to raise the temperature again, and roast it twice according to the above-mentioned roasting conditions. The obtained sintered product is ground with a ball mill after crushing, and the solid powder with a particle size of 3 to 10 microns is obtained by the sedimentation method, and deionized water (30ml) and Methanol (20ml) was washed twice each, and finally the fluorescent powder was separated by filtration, and dried in an oven at 110° C. for 20 hours to obtain the fluorescent powder product. The emission wavelength of the fluorescent powder is between 500nm and 750nm under the excitation of 460nm blue light, and the main emission wavelength is 604nm, covering the entire range of visible light. The color coordinates are (x=0.508, y=0.482). The phosphor can be excited by blue light from 400nm to 500nm, and is a new type of phosphor suitable for white LED applications excited by blue LED chips. The X-ray diffraction spectrum of the fluorescent powder is similar to that shown in Figure 2, which is a garnet structure.
实施例8: Embodiment 8:
Mg2Y1.90Gd0.05Al2Si2O12:0.05Ce3+荧光粉的制备。 Preparation of Mg 2 Y 1.90 Gd 0.05 Al 2 Si 2 O 12 :0.05Ce 3+ phosphor.
制备方法如下: The preparation method is as follows:
分别称取0.4030克氧化镁(MgO)、1.0726克三氧化二钇(Y2O3),0.6008克二氧化硅(SiO2)、0.0430克氧化铈(CeO2)、0.5098克三氧化铝(Al2O3)、0.0453克三氧化二钆(Gd2O3),以上原料纯度均在99%以上。将上述原料混合物在玛瑙研钵中,研磨均匀以后,装入刚玉坩埚中,以含5v%一氧化碳的氮气混合气为还原气氛,升温速率为10℃/min,以900℃焙烧8小时,冷却至室温,将预烧过的样品取出再次研磨,再以5℃/min的速度升至所需温度(1350℃),恒温8h,冷却至室温。得到的烧结产品经破碎后,用球磨磨细,沉降法得到粒度在3~10微米的固体粉末,依次用去离子水(30ml)和甲醇(20ml)各洗涤两次,最后过滤分离出荧光粉,在110℃的烘箱中烘干20小时即得到荧光粉产品。该荧光粉在460nm蓝光激发下的发射波长在500nm到750nm之间,发射主波长为592nm,覆盖了整个可见光范围。色坐标为(x=0.481,y=0.496)。该荧光粉可被从400nm到500nm的蓝光激发,是适合于蓝光LED芯片激发的白光LED应用的新型荧光粉。该荧光粉的X射线衍射谱图与图2类似,为石榴石结构。 Weigh respectively 0.4030 gram of magnesia (MgO), 1.0726 gram of diyttrium trioxide (Y 2 O 3 ), 0.6008 gram of silicon dioxide (SiO 2 ), 0.0430 gram of cerium oxide (CeO 2 ), 0.5098 gram of aluminum trioxide (Al 2 O 3 ), 0.0453 g of gadolinium trioxide (Gd 2 O 3 ), the purity of the above raw materials is above 99%. Grind the above-mentioned raw material mixture in an agate mortar evenly, put it into a corundum crucible, use a nitrogen gas mixture containing 5v% carbon monoxide as a reducing atmosphere, heat up at a rate of 10°C/min, bake at 900°C for 8 hours, and cool to At room temperature, the pre-fired sample was taken out and ground again, then raised to the required temperature (1350°C) at a rate of 5°C/min, kept at a constant temperature for 8 hours, and cooled to room temperature. After the sintered product is crushed, it is finely ground with a ball mill, and the solid powder with a particle size of 3 to 10 microns is obtained by the sedimentation method. It is washed twice with deionized water (30ml) and methanol (20ml) in turn, and finally filtered to separate the phosphor. , drying in an oven at 110°C for 20 hours to obtain the phosphor product. The emission wavelength of the fluorescent powder is between 500nm and 750nm under the excitation of 460nm blue light, and the main emission wavelength is 592nm, covering the entire range of visible light. The color coordinates are (x=0.481, y=0.496). The phosphor can be excited by blue light from 400nm to 500nm, and is a new type of phosphor suitable for white LED applications excited by blue LED chips. The X-ray diffraction spectrum of the fluorescent powder is similar to that shown in Figure 2, which is a garnet structure.
实施例9: Embodiment 9:
Mg1.8Ba0.2Y1.87Gd0.1Al2Si2O12:0.03Ce3+荧光粉的制备。 Preparation of Mg 1.8 Ba 0.2 Y 1.87 Gd 0.1 Al 2 Si 2 O 12 :0.03Ce 3+ phosphor.
制备方法如下: The preparation method is as follows:
分别称取0.3627克氧化镁(MgO)、0.1974克碳酸钡(BaCO3)、1.0557克三氧化二钇(Y2O3),0.6008克二氧化硅(SiO2)、0.0258克氧化铈(CeO2)、0.5098克三氧化铝(Al2O3)、0.0906克三氧化二钆(Gd2O3),以上原料纯度均在99%以上。将上述原料混合物在玛瑙研钵中研磨均匀以后,装入刚玉坩埚中,以含5v%氢气的氮气混合气为还原气氛,升温速率为10℃/min,以900℃焙烧8小时,冷却至室温。将预烧过的样品取出再次研磨,再以10℃/min的速度升至所需温度(1350℃),恒温8h,将烧过的样品重新研磨,再以10℃/min的速度升至所需温度(1350℃),恒温8h,冷却至室温,得到的烧结产品经破碎后,用球磨磨细,筛分得到粒度在3~10微米的固体粉末荧光粉。该荧光粉的发射波长在500nm到750nm之间,发射主波长为608nm,色坐标为(x=0.481,y=0.496显色指数Ra=91。该荧光粉可被从400nm到500nm的蓝光激发,是适合于蓝光LED芯片激发的白光LED应用的新型荧光粉。该荧光粉的X射线衍射谱图与图2类似,为石榴石结构。 Weigh respectively 0.3627 grams of magnesium oxide (MgO), 0.1974 grams of barium carbonate (BaCO3), 1.0557 grams of diyttrium trioxide (Y 2 O 3 ), 0.6008 grams of silicon dioxide (SiO 2 ), 0.0258 grams of cerium oxide (CeO 2 ) , 0.5098 grams of aluminum trioxide (Al 2 O 3 ), and 0.0906 grams of gadolinium trioxide (Gd 2 O 3 ), the purity of the above raw materials is above 99%. Grind the above raw material mixture evenly in an agate mortar, put it into a corundum crucible, use a nitrogen mixture containing 5v% hydrogen as a reducing atmosphere, heat up at a rate of 10°C/min, bake at 900°C for 8 hours, and cool to room temperature . Take out the pre-fired sample and grind it again, then raise it to the required temperature (1350°C) at a speed of 10°C/min, keep the temperature for 8 hours, grind the burnt sample again, and then raise it to the desired temperature at a speed of 10°C/min Required temperature (1350°C), constant temperature for 8 hours, cooling to room temperature, the obtained sintered product is crushed, finely ground with a ball mill, and sieved to obtain a solid powder phosphor with a particle size of 3-10 microns. The emission wavelength of the phosphor is between 500nm and 750nm, the main emission wavelength is 608nm, and the color coordinates are (x=0.481, y=0.496 color rendering index Ra=91. The phosphor can be excited by blue light from 400nm to 500nm, It is a new type of phosphor suitable for the application of white LEDs excited by blue LED chips. The X-ray diffraction spectrum of the phosphor is similar to that in Figure 2, which is a garnet structure.
实施例10: Example 10:
Mg1.85Sr0.05Ca0.05Ba0.05Y1.77Gd0.2Al2Si2O12:0.03Ce3+荧光粉的制备。 Preparation of Mg 1.85 Sr 0.05 Ca 0.05 Ba 0.05 Y 1.77 Gd 0.2 Al 2 Si 2 O 12 :0.03Ce 3+ phosphor powder.
制备方法如下: The preparation method is as follows:
分别称取0.3729克氧化镁(MgO)、0.0494克碳酸钡(BaCO3)、0.0369克碳酸锶(SrCO3)、0.0250克碳酸钙(CaCO3)、2.9914克六水合硝酸钇(Y(NO3)3·6H2O)、0.6008克二氧化硅(SiO2)、0.0258克氧化铈(CeO2)、0.5098克三氧化铝(Al2O3)、0.1812克三氧化二钆(Gd2O3),以上原料纯度均在99%以上。将上述原料混合物在玛瑙研钵中研磨均匀以后,装入刚玉坩埚中,以含5v%氢气的氮气混合气为还原气氛,升温速率为10℃/min,以900℃焙烧8小时,冷却至室温。将预烧过的样品取出再次研磨,再以5℃/min的速度升至所需温度(1340℃),恒温10h,冷却至室温,得到的烧结产品经破碎后,用球磨磨细,筛分得到粒度在3~10微米的固体粉末荧光粉。该荧光粉的发射波长在500nm到750nm之间,发射主波长为608nm,色坐标为(x=0.481,y=0.495)。该荧光粉可被从400nm到500nm的蓝光激发,是适合于蓝光LED芯片激发的白光LED应用的新型荧光粉。该荧光粉的X射线衍射谱图与图2类似,为石榴石结构。 Weigh 0.3729 grams of magnesium oxide (MgO), 0.0494 grams of barium carbonate (BaCO3), 0.0369 grams of strontium carbonate ( SrCO3 ), 0.0250 grams of calcium carbonate (CaCO3), 2.9914 grams of yttrium nitrate hexahydrate (Y( NO3 ) 3 6H 2 O), 0.6008 grams of silicon dioxide (SiO 2 ), 0.0258 grams of cerium oxide (CeO 2 ), 0.5098 grams of aluminum trioxide (Al 2 O 3 ), 0.1812 grams of gadolinium trioxide (Gd 2 O 3 ), The purity of the above raw materials is above 99%. Grind the above raw material mixture evenly in an agate mortar, put it into a corundum crucible, use a nitrogen mixture containing 5v% hydrogen as a reducing atmosphere, heat up at a rate of 10°C/min, bake at 900°C for 8 hours, and cool to room temperature . Take out the pre-fired sample and grind it again, then raise it to the required temperature (1340°C) at a speed of 5°C/min, keep the temperature constant for 10 hours, and cool to room temperature. A solid powder fluorescent powder with a particle size of 3-10 microns is obtained. The emission wavelength of the fluorescent powder is between 500nm and 750nm, the main emission wavelength is 608nm, and the color coordinates are (x=0.481, y=0.495). The phosphor can be excited by blue light from 400nm to 500nm, and is a new type of phosphor suitable for white LED applications excited by blue LED chips. The X-ray diffraction spectrum of the fluorescent powder is similar to that shown in Figure 2, which is a garnet structure.
实施例11: Example 11:
Mg1.85Sr0.05Ca0.05Ba0.05Y1.77Gd0.2Al2Ge2O12:0.03Ce3+荧光粉的制备。 Preparation of Mg 1.85 Sr 0.05 Ca 0.05 Ba 0.05 Y 1.77 Gd 0.2 Al 2 Ge 2 O 12 :0.03Ce 3+ phosphor powder.
制备方法如下: The preparation method is as follows:
分别称取0.3729克氧化镁(MgO)、0.0494克碳酸钡(BaCO3)、0.0369克碳酸锶(SrCO3)、0.0250克碳酸钙(CaCO3)、2.9914克六水合硝酸钇(Y(NO3)3·6H2O)、0.0258克氧化铈(CeO2)、0.5098克三氧化铝(Al2O3)、0.1812克三氧化二钆(Gd2O3)、1.0464克氧化锗(GeO2),以上原料纯度均在99%以上。将上述原料混合物在玛瑙研钵中研磨均匀以后,装入刚玉坩埚中,以含5v%氢气的氮气混合气为还原气氛,升温速率为10℃/min,以900℃焙烧8小时,冷却至室温。将预烧过的样品取出再次研磨,再以5℃/min的速度升至所需温度(1310℃),恒温10h,冷却至室温,得到的烧结产品经破碎后,用球磨磨细,筛分得到粒度在3~10微米的固体粉末荧光粉。该荧光粉的发射波长在500nm到750nm之间,发射主波长为608nm,色坐标为(x=0.481,y=0.495)。该荧光粉可被从400nm到500nm的蓝光激发,是适合于蓝光LED芯片激发的白光LED应用的新型荧光粉。该荧光粉的X射线衍射谱图与图2类似,为石榴石结构。 Weigh 0.3729 grams of magnesium oxide (MgO), 0.0494 grams of barium carbonate (BaCO 3 ), 0.0369 grams of strontium carbonate (SrCO 3 ), 0.0250 grams of calcium carbonate (CaCO 3 ), 2.9914 grams of yttrium nitrate hexahydrate (Y(NO 3 ) 3.6H 2 O), 0.0258 grams of cerium oxide (CeO 2 ), 0.5098 grams of aluminum trioxide (Al 2 O 3 ), 0.1812 grams of gadolinium trioxide (Gd 2 O 3 ) , 1.0464 grams of germanium oxide (GeO 2 ), The purity of the above raw materials is above 99%. Grind the above raw material mixture evenly in an agate mortar, put it into a corundum crucible, use a nitrogen mixture containing 5v% hydrogen as a reducing atmosphere, heat up at a rate of 10°C/min, bake at 900°C for 8 hours, and cool to room temperature . Take out the pre-fired sample and grind it again, then raise it to the required temperature (1310°C) at a speed of 5°C/min, keep the temperature for 10 hours, and cool it to room temperature. A solid powder fluorescent powder with a particle size of 3-10 microns is obtained. The emission wavelength of the fluorescent powder is between 500nm and 750nm, the main emission wavelength is 608nm, and the color coordinates are (x=0.481, y=0.495). The phosphor can be excited by blue light from 400nm to 500nm, and is a new type of phosphor suitable for white LED applications excited by blue LED chips. The X-ray diffraction spectrum of the fluorescent powder is similar to that shown in Figure 2, which is a garnet structure.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410392323.XA CN104212455B (en) | 2014-08-11 | 2014-08-11 | A kind of Ce3+The garnet structure fluorescent material activated and its preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410392323.XA CN104212455B (en) | 2014-08-11 | 2014-08-11 | A kind of Ce3+The garnet structure fluorescent material activated and its preparation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104212455A CN104212455A (en) | 2014-12-17 |
CN104212455B true CN104212455B (en) | 2016-06-15 |
Family
ID=52094370
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410392323.XA Active CN104212455B (en) | 2014-08-11 | 2014-08-11 | A kind of Ce3+The garnet structure fluorescent material activated and its preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104212455B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105860975B (en) * | 2016-04-13 | 2018-11-09 | 厦门大学 | Lower conversion green emitting phosphor of one kind and preparation method thereof |
CN107880885B (en) * | 2016-09-29 | 2021-01-19 | 有研稀土新材料股份有限公司 | Garnet type aluminosilicate phosphor, method of preparing the same, and light emitting device including the same |
CN109628093A (en) * | 2019-01-02 | 2019-04-16 | 吉林大学 | A kind of Eu2+Ion doping alumino-silicate blue colour fluorescent powder and preparation method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012170266A1 (en) * | 2011-06-07 | 2012-12-13 | Cree, Inc. | Gallium-substituted yttrium aluminum garnet phosphor and light emitting devices including the same |
-
2014
- 2014-08-11 CN CN201410392323.XA patent/CN104212455B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012170266A1 (en) * | 2011-06-07 | 2012-12-13 | Cree, Inc. | Gallium-substituted yttrium aluminum garnet phosphor and light emitting devices including the same |
Non-Patent Citations (2)
Title |
---|
Cerium-, terbium-andeuropium-activatedCaScAlSiO6 as afull-color emitting phosphor;WeiLü 等;《Journal ofLuminescence》;20131013;第147卷;159–162 * |
Tunable Color of Ce3+/Tb3+/Mn2+-Coactivated CaScAlSiO6 via Energy Transfer: A Single-Component Red/White-Emitting Phosphor;Wei Lü 等;《Inorg. Chem.》;20130227;第52卷;3007-3012 * |
Also Published As
Publication number | Publication date |
---|---|
CN104212455A (en) | 2014-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104877675B (en) | A kind of mixed valence europium ion-doped single-matrix Color tunable fluorescent material and preparation method thereof | |
CN113185977B (en) | Europium-doped ultra-wideband red fluorescent material and preparation method and application thereof | |
CN106497555A (en) | Long persistence luminescent silicate material and preparation method thereof | |
CN101818062A (en) | Praseodym or praseodym-europim doped strontium lithium silicate yellow-red fluorescent powder and preparation method thereof | |
CN115287066B (en) | A kind of Eu2+-activated halogen-containing borate cyan fluorescent powder and its preparation method and application | |
CN113249125B (en) | Ce3+-doped silicate-based green phosphors, preparation method and application thereof | |
CN102559179B (en) | Single-matrix white light fluorescent powder for white light light-emitting diode (LED) and preparation method thereof | |
CN114686225A (en) | Near-infrared fluorescent powder and preparation method and application thereof | |
CN103881705B (en) | Cerium, terbium or europium silico-aluminate blue-green fluorescent powder mixing activation altogether and preparation method thereof | |
CN102517016A (en) | Solid solution fluorescent light-emitting material for blue light excitation and preparation method thereof | |
CN108570323A (en) | A kind of phosphorus strontium aluminate lithium fluorescent powder and preparation method thereof | |
CN106929017B (en) | The fluorescent powder of garnet type structure and its manufactured light emitting device | |
CN106635014A (en) | Garnet-structure single-matrix white-light fluorescent powder and preparation method and application thereof | |
CN104212455B (en) | A kind of Ce3+The garnet structure fluorescent material activated and its preparation method | |
CN105670613B (en) | A kind of non-rare earth ion doped silicate yellow fluorescent powder and its preparation method and application | |
CN104987864A (en) | Layered perovskite red phosphor for white LED and preparation method thereof | |
CN112920801B (en) | Red light fluorescent powder material and preparation method thereof | |
CN108865122A (en) | A kind of cerium, terbium are co-doped with activation alumino-silicate luminescent phosphor and preparation method thereof | |
CN111607397B (en) | Eu (Eu) 2+ -Eu 3+ Co-doped silicate fluorescent powder and preparation method and application thereof | |
CN106635015B (en) | A kind of nitric oxide fluorescent powder and its preparation method and application with garnet structure | |
CN106590655A (en) | Ce<3+> and Mn<2+> double doped apatite structure nitrogen oxide white phosphor and its preparation method and application | |
CN103992795B (en) | A kind of LED red fluorescence powder and preparation method thereof | |
CN102660262A (en) | A kind of Eu2+ activated calcium chlorosilicate fluorescent powder, preparation method and application | |
CN108276998B (en) | Trivalent samarium ion doped barium gadolinium titanate red fluorescent powder and preparation method thereof | |
CN102585808B (en) | Borate fluorescent powder for white-light LED and preparation method of borate fluorescent powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |