[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN104200217A - Hyperspectrum classification method based on composite kernel function - Google Patents

Hyperspectrum classification method based on composite kernel function Download PDF

Info

Publication number
CN104200217A
CN104200217A CN201410386737.1A CN201410386737A CN104200217A CN 104200217 A CN104200217 A CN 104200217A CN 201410386737 A CN201410386737 A CN 201410386737A CN 104200217 A CN104200217 A CN 104200217A
Authority
CN
China
Prior art keywords
kernel function
mapping
gaussian
phi
function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410386737.1A
Other languages
Chinese (zh)
Other versions
CN104200217B (en
Inventor
王立国
郝思媛
窦峥
赵春晖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN201410386737.1A priority Critical patent/CN104200217B/en
Publication of CN104200217A publication Critical patent/CN104200217A/en
Application granted granted Critical
Publication of CN104200217B publication Critical patent/CN104200217B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

本发明提供的是基于一种复合核函数的高光谱分类方法。输入一幅高光谱图像,类别数为N;以支持向量机为基分类器,同时从所述高光谱图像每个类别中随机地选取s个样本组成训练集,剩余样本组成测试集,确定各参数的变化范围,然后结合K次交叉验证确定支持向量机的最优性能参数,包括惩罚因子和核参数;利用复合核构建策略,构造复合核函数,对支持向量机进行训练;利用训练过程得到的支持向量机判决函数的参数,循环N次,进而得到测试集属于每类别的判决函数值,组成矩阵确定多分类器策略,即找到矩阵每列的最大值。本发明具有可以更好的描述数据集的分布特征,且分类精度相对较高等特点。其参数优化所消耗的时间相对于传统多核学习方法也相对较短。

The invention provides a hyperspectral classification method based on a composite kernel function. Input a hyperspectral image, the number of categories is N; take the support vector machine as the base classifier, and at the same time randomly select s samples from each category of the hyperspectral image to form a training set, and the remaining samples form a test set, and determine each The variation range of the parameters, and then combined with K times of cross-validation to determine the optimal performance parameters of the support vector machine, including penalty factors and kernel parameters; use the composite kernel construction strategy to construct a composite kernel function, and train the support vector machine; use the training process to get The parameters of the decision function of the support vector machine, loop N times, and then get the decision function value of the test set belonging to each category, and form a matrix Determine the multi-classifier strategy, i.e. find the matrix The maximum value for each column. The invention has the characteristics of better describing the distribution characteristics of the data set, and relatively high classification accuracy. Compared with traditional multi-core learning methods, the time consumed by its parameter optimization is relatively short.

Description

基于一种复合核函数的高光谱分类方法A Hyperspectral Classification Method Based on a Composite Kernel Function

技术领域 technical field

本发明涉及的是一种高光谱图像的分类方法,特别是基于一种新复合核函数的高光谱分类方法(Hyperspectral Image Classification Based on A New Composite Kernel)。  The present invention relates to a hyperspectral image classification method, in particular to a hyperspectral image classification method based on a new composite kernel function (Hyperspectral Image Classification Based on A New Composite Kernel). the

背景技术 Background technique

近些年,卫星传感器的发展提高了空间分辨率和光谱分辨率,同时也缩短了访问时间,进而为高光谱分类方法的发展创造了条件。神经网络分类器,K近邻分类器,贝叶斯分类器,决策树分类器以及基于核的分类器等已经广泛地应用于高光谱领域,其中基于核函数的分类方法得到越来越多的关注。支持向量机(Support Vector Machine,SVM)是最为典型的基于核函数的分类方法,在处理有限的高维训练样本时,依然可以取得良好的分类性能,使得其在高光谱分类中占有一定的地位。鉴于实际数据的多源性且表达方式的多样性,传统的单核已不足以满足实际需求。近十多年里,多核学习(Multiple Kernel Learning,MKL)技术得到了关注和发展,主要从四个方面进行改进:1)多核学习策略的改进;如Rakotomamonjy等提出的简单多核学习(Simple-MKL),其使用梯度下降法来解决多核学习问题。2)参数优化的改进;Li等提出不使用任何凸约束项的参数优化方式。3)多个核函数结合方式的改进;如Xia等利用了boosting的结合方式。4)快速策略的改进;如Gu等人提出高光谱分类的代表性多核学习。最为常见的多核学习方法为混合核函数(Mixture Kernels,MKs),即将多个核函数线性加权求和,该核函数的有效性已经得到了验证且广泛地应用于高光谱分类领域。但是其在训练过程中,参数优化所消耗的时间却也是巨大的。  In recent years, the development of satellite sensors has improved the spatial resolution and spectral resolution, and also shortened the access time, which in turn created the conditions for the development of hyperspectral classification methods. Neural network classifiers, K-nearest neighbor classifiers, Bayesian classifiers, decision tree classifiers, and kernel-based classifiers have been widely used in the hyperspectral field, among which kernel function-based classification methods have received more and more attention. . Support Vector Machine (SVM) is the most typical classification method based on kernel function. When dealing with limited high-dimensional training samples, it can still achieve good classification performance, making it occupy a certain position in hyperspectral classification. . In view of the multiple sources of actual data and the diversity of expression methods, the traditional single-core is not enough to meet the actual needs. In the past ten years, the technology of Multiple Kernel Learning (MKL) has received attention and development, and it has been mainly improved in four aspects: 1) The improvement of multi-kernel learning strategy; the simple multi-kernel learning (Simple-MKL) proposed by Rakotomamonjy et al. ), which uses gradient descent to solve multi-core learning problems. 2) Improvement of parameter optimization; Li et al. proposed a parameter optimization method that does not use any convex constraint items. 3) Improvement of the combination of multiple kernel functions; for example, Xia et al. used the combination of boosting. 4) Improvement of fast strategies; for example, Gu et al. proposed representative multi-kernel learning for hyperspectral classification. The most common multi-kernel learning method is Mixture Kernels (MKs), which is the linear weighted sum of multiple kernel functions. The effectiveness of this kernel function has been verified and is widely used in the field of hyperspectral classification. However, during the training process, the time consumed by parameter optimization is also huge. the

发明内容 Contents of the invention

本发明的目的在于提供一种可以更好的描述数据集的分布特征,且分类精度相对较高,参数优化所消耗的时间相对较短的基于一种复合核函数的高光谱分类方法。  The purpose of the present invention is to provide a hyperspectral classification method based on a compound kernel function that can better describe the distribution characteristics of the data set, has relatively high classification accuracy, and consumes relatively short time for parameter optimization. the

本发明的目的是这样实现的:  The purpose of the present invention is achieved like this:

步骤1:输入一幅高光谱图像,类别数为N;  Step 1: Input a hyperspectral image, the number of categories is N;

步骤2:以支持向量机为基分类器,同时从所述高光谱图像每个类别中随机地选取s个样本组成训练集,剩余样本组成测试集,确定各参数的变化范围,然后结合K次交叉验证确定支持向量机的最优性能参数,包括惩罚因子和核参数;  Step 2: Using the support vector machine as the base classifier, randomly select s samples from each category of the hyperspectral image to form a training set, and the remaining samples form a test set, determine the variation range of each parameter, and then combine K times Cross-validation determines the optimal performance parameters of the support vector machine, including penalty factors and kernel parameters;

步骤3:利用复合核构建策略,构造复合核函数,对支持向量机进行训练;  Step 3: Use the composite kernel construction strategy to construct a composite kernel function and train the support vector machine;

步骤4:利用训练过程得到的支持向量机判决函数的参数,循环N次,进而得到测试集属于每类别的判决函数值,组成矩阵其中ntest表示测试样本的个数;  Step 4: Use the parameters of the decision function of the support vector machine obtained in the training process, loop N times, and then obtain the value of the decision function of each category in the test set, and form a matrix Where n test represents the number of test samples;

步骤5:确定多分类器策略,即找到矩阵每列的最大值,其行序号对应每个测试样本的预测标签,i=1,...,ntest。  Step 5: Determine the multi-classifier strategy, i.e. find the matrix the maximum value of each column whose row number corresponds to the predicted label for each test sample, i=1,...,n test .

本发明的特点在于:  The present invention is characterized in that:

1、参数设置过程中基分类器的选择可以使用其他基于核的分类器代替支持向量机。  1. In the selection of the base classifier in the parameter setting process, other kernel-based classifiers can be used instead of the support vector machine. the

2、参数设置过程中最优性能参数的确定,是采用网格搜索和K次交叉验证相结合的方式。  2. The determination of the optimal performance parameters in the parameter setting process is a combination of grid search and K times cross-validation. the

3、训练过程中复合核函数的构建是通过多次非线性映射而得到的,计算如下:  3. The construction of the composite kernel function in the training process is obtained through multiple nonlinear mappings, and the calculation is as follows:

K1(x,z)=φ1(x)·φ1(z)  K 1 (x, z) = φ 1 (x) · φ 1 (z)

K2(x,z)=φ21(x)]·φ21(z)]  K 2 (x,z)=φ 21 (x)]·φ 21 (z)]

...  ...

KM(x,z)=φMM-1(x)]·φMM-1(z)]  K M (x,z)=φ MM-1 (x)]·φ MM-1 (z)]

其中KM(x,z)表示样本x和z的核函数,φM表示第M次非线性映射函数。φM可以是高斯映射,多项式映射或是其他非线性映射,且当M=2时,基于该复合核函数分类器的分类性能可达到收敛状态。  Among them, K M (x, z) represents the kernel function of samples x and z, and φ M represents the Mth nonlinear mapping function. φ M can be Gaussian mapping, polynomial mapping or other nonlinear mapping, and when M=2, the classification performance of the classifier based on the compound kernel function can reach a convergent state.

4、当M=2时,复合核函数的参数优化时间要远小于传统的混合核函数的参数优化时间。  4. When M=2, the parameter optimization time of the composite kernel function is much shorter than that of the traditional hybrid kernel function. the

基于上述特点,本发明提出的基于一种新复合核函数的高光谱分类方法具有可以更好的描述数据集的分布特征,且分类精度相对较高等特点。与此同时,其参数优化所消耗的时间相对于传统多核学习方法也相对较短。  Based on the above characteristics, the hyperspectral classification method based on a new composite kernel function proposed by the present invention has the characteristics of better describing the distribution characteristics of the data set and relatively high classification accuracy. At the same time, the time consumed by its parameter optimization is relatively short compared with traditional multi-core learning methods. the

附图说明 Description of drawings

图1为本发明的基于一种复合核函数的高光谱分类方法流程图。  FIG. 1 is a flowchart of a hyperspectral classification method based on a compound kernel function of the present invention. the

图2a-图2b为高光谱图像Indian Pines,其中:图2a为灰度图、图2b为参考地物类别。  Figures 2a-2b are hyperspectral images of Indian Pines, where: Figure 2a is a grayscale image, and Figure 2b is a reference object category. the

图3a-图3b为双月牙形模拟数据集分类边界视觉图,其中:图3a为高斯核函数Gauss分类边界视觉图、图3b为连续高斯映射复合核函数G(G)分类边界视觉图。图中空心符号代表测试样本,实心符号代表训练样本。  Figure 3a-Figure 3b is a visual map of the classification boundary of the double crescent-shaped simulated data set, wherein: Figure 3a is a visual map of the classification boundary of the Gaussian kernel function Gauss, and Figure 3b is a visual map of the classification boundary of the continuous Gaussian mapping composite kernel function G(G). Hollow symbols in the figure represent test samples, and solid symbols represent training samples. the

图4为针对高光谱数据集Indian Pines不同核函数分类性能比较表1。表格中Linear表示单一线性核函数,Polynomial表示单一多项式核函数,Gauss表示单一高斯核函数,MKs表示混合核函数,G(G)表示连续高斯映射复合核函数,G(P)表示多项式-高斯映射复合核函数,P(G)表示高斯-多项式映射复合核函数,P(P)表示连续多项式映射复合核函数。  Figure 4 is a comparison table 1 of the classification performance of different kernel functions for the hyperspectral dataset Indian Pines. In the table, Linear represents a single linear kernel function, Polynomial represents a single polynomial kernel function, Gauss represents a single Gaussian kernel function, MKs represents a mixed kernel function, G(G) represents a continuous Gaussian mapping composite kernel function, and G(P) represents a polynomial-Gaussian mapping Composite kernel function, P(G) represents Gaussian-polynomial mapping composite kernel function, P(P) represents continuous polynomial mapping composite kernel function. the

图5为不同核函数参数优化时间对比表2。  Figure 5 is a comparison table 2 of the optimization time of different kernel function parameters. the

图6为不同的训练样本数目对不同核函数分类性能的影响表3。  Figure 6 shows the impact of different numbers of training samples on the classification performance of different kernel functions in Table 3. the

具体实施方式 Detailed ways

下面结合附图举例对本发明做更详细地描述。  The present invention will be described in more detail below with reference to the accompanying drawings. the

本发明为基于一种新复合核函数的高光谱分类方法,包括输入过程、参数设置、训练过程、分类过程以及输出过程五个步骤。输入过程即输入一幅高光谱图像;参数设置是初始化以及参数优化的过程;训练过程是以支持向量机为基分类器,训练基分类器模型的过程;分类过程是利用上述过程得到的模型参数,从而给出测试集属于每类别的判决函数值过程;输出过程是确定多分类器策略,且给出测试样本预测标签的过程。下面给出详细过程:  The present invention is a hyperspectral classification method based on a new compound kernel function, including five steps of input process, parameter setting, training process, classification process and output process. The input process is to input a hyperspectral image; the parameter setting is the process of initialization and parameter optimization; the training process is the process of training the base classifier model based on the support vector machine; the classification process is the model parameters obtained by using the above process , so as to give the decision function value process that the test set belongs to each category; the output process is to determine the multi-classifier strategy and give the test sample prediction label process. The detailed process is given below:

具体分析步骤如下:  The specific analysis steps are as follows:

步骤S1:输入过程。输入一幅高光谱图像,N表示类别数。  Step S1: Input process. Input a hyperspectral image, N represents the number of categories. the

步骤S2:参数设置。从图像中每个类别中随机地选取s个样本组成训练集,剩余样本组成测试集。确定各参数的变化范围,然后结合K次交叉验证确定支持向量机的最优性能参数。该步骤进一步包括以下步骤:  Step S2: parameter setting. Randomly select s samples from each category in the image to form the training set, and the remaining samples form the test set. Determine the variation range of each parameter, and then determine the optimal performance parameters of the support vector machine combined with K times of cross-validation. This step further includes the following steps:

步骤S2.1:样本集的确定;从高光谱图像的N个类别中每类随机地选取s个样本组成有标签训练样本集D={(x1,y1),...,(xn,yn)},其中xi表示第i个有标签样本的光谱特征,yi表示样本xi的标签,n=16s表示训练样本个数。剩余样本组成测试集ntest表示测试样本个数。  Step S2.1: Determination of the sample set; randomly select s samples from each of the N categories of hyperspectral images to form a labeled training sample set D={(x 1 ,y 1 ),...,(x n , y n )}, where xi represents the spectral feature of the i-th labeled sample, y i represents the label of sample xi , and n=16s represents the number of training samples. The remaining samples form the test set n test represents the number of test samples.

步骤S2.2:参数范围的确定;采用多项式核函数以及高斯核函数为基本核函数进行复合核函数的合成。多项式核为KP(x,z)=φP(x)·φP(z)=[(x·z)+1]d,其参数为d,φP(x)表示样本x的多项式映射函数。高斯核为KG(x,z)=φG(x)·φG(z)=exp(-||x-z||22),其高斯半径为σ,φG(x)表示样本x的高斯映射核函数。支持向量机的惩罚因子C,高斯半径σ以及d的变化范围分别为:{20,21,...,28},{2-5,2-4,...,21}和{2-2,2-1,..,24}。  Step S2.2: Determination of parameter ranges; polynomial kernel functions and Gaussian kernel functions are used as basic kernel functions to synthesize composite kernel functions. The polynomial kernel is K P (x, z) = φ P (x) φ P (z) = [(x z) + 1] d , its parameter is d, φ P (x) represents the polynomial mapping of sample x function. The Gaussian kernel is K G (x, z) = φ G (x) φ G (z) = exp(-||xz|| 22 ), its Gaussian radius is σ, and φ G (x) represents the sample The Gaussian map kernel function of x. The penalty factor C of the support vector machine, the Gaussian radius σ and the variation range of d are: {2 0 ,2 1 ,...,2 8 }, {2 -5 ,2 -4 ,...,2 1 } and {2 -2 ,2 -1 ,...,2 4 }.

步骤S2.3:K次交叉验证;在每个参数组合情况下,将训练样本集D分割成K个子集,依次保留一子集用于测试,其余的K-1个子集用于训练SVM分类器模型。交叉验证重复K次,每个子集验证一次,且计算K次分类精度的平均值。当平均精度达到最大值时,说明该参数组合为最优的。  Step S2.3: K cross-validation; in the case of each parameter combination, the training sample set D is divided into K subsets, one subset is reserved for testing, and the remaining K-1 subsets are used for training SVM classification device model. The cross-validation is repeated K times, each subset is validated once, and the average of K classification accuracy is calculated. When the average precision reaches the maximum value, it indicates that the parameter combination is optimal. the

步骤S3:训练过程。利用复合核构建策略,构造复合核函数,对支持向量机进行训练。该步骤进一步包括以下步骤:  Step S3: training process. Using the composite kernel construction strategy, construct the composite kernel function, and train the support vector machine. This step further includes the following steps:

步骤S3.1:复合核函数的构建;通过多次非线性映射得到复合核函数,计算如下:  Step S3.1: Construction of the composite kernel function; the composite kernel function is obtained through multiple nonlinear mappings, and the calculation is as follows:

K1(x,z)=φ1(x)·φ1(z)  K 1 (x, z) = φ 1 (x) · φ 1 (z)

K2(x,z)=φ21(x)]·φ21(z)]  K 2 (x,z)=φ 21 (x)]·φ 21 (z)]

...  ...

KM(x,z)=φMM-1(x)]·φMM-1(z)]  K M (x,z)=φ MM-1 (x)]·φ MM-1 (z)]

其中KM(x,z)表示样本x和z的核函数,φM表示第M次非线性映射函数。φM可以是高斯映射,多项式映射或是其他非线性映射,且当M=2时,基于该复合核函数分类器的分类性能可达到收敛状态。当M=2时,KG(G),KG(P),KP(G)和KP(P)分别为连续高斯映射复合核函数,多项式-高斯映射复合核函数,高斯-多项式映射复合核函数以及连续多项式映射复合核函数。表达式如下:  Among them, K M (x, z) represents the kernel function of samples x and z, and φ M represents the Mth nonlinear mapping function. φ M can be Gaussian mapping, polynomial mapping or other nonlinear mapping, and when M=2, the classification performance of the classifier based on the compound kernel function can reach a convergent state. When M=2, K G(G) , K G(P) , K P(G) and K P(P) are continuous Gaussian mapping composite kernel function, polynomial-Gaussian mapping composite kernel function, Gaussian-polynomial mapping respectively Composite kernel functions and continuous polynomial mapping composite kernel functions. The expression is as follows:

KG(G)(x,z)=φGG(x)]·φGG(z)]  K G(G) (x,z)=φ GG (x)]·φ GG (z)]

=exp[-||φG(x)-φG(z)||22 2=exp[-||φ G (x)-φ G (z)|| 22 2 ]

                                (1)  (1)

=exp[-[φG(x)·φG(x)+φG(z)·φG(z)-2φG(x)·φG(z)]/σ2 2=exp[-[φ G (x) φ G (x)+φ G (z) φ G (z)-2φ G (x) φ G (z)]/σ 2 2 ]

=exp[-[KG(x,x)+KG(z,z)-2KG(x,z)]/σ2 2=exp[-[K G (x,x)+K G (z,z)-2K G (x,z)]/σ 2 2 ]

KG(P)(x,z)=φGP(x)]·φGP(z)]  K G(P) (x,z)=φ GP (x)]·φ GP (z)]

=exp[-||φP(x)-φP(z)||22 2=exp[-||φ P (x)-φ P (z)|| 22 2 ]

                           (2)  (2)

=exp[-[φP(x)·φP(x)+φP(z)·φP(z)-2φP(x)·φP(z)]/σ2 2=exp[-[φ P (x) φ P (x)+φ P (z) φ P (z)-2φ P (x) φ P (z)]/σ 2 2 ]

=exp[-[KP(x,x)+KP(z,z)-2KP(x,z)]/σ2 2=exp[-[K P (x,x)+K P (z,z)-2K P (x,z)]/σ 2 2 ]

KK pp (( GG )) (( xx ,, zz )) == φφ PP [[ φφ GG (( xx )) ]] ·· φφ PP [[ φφ GG (( zz )) ]] == [[ (( φφ GG (( xx )) ·· φφ GG (( zz )) )) ++ 11 ]] dd 22 == [[ KK GG (( xx ,, zz )) ++ 11 ]] dd 22 -- -- -- (( 33 ))

KK PP (( PP )) (( xx ,, zz )) == φφ PP [[ φφ PP (( xx )) ]] ·· φφ PP [[ φφ PP (( zz )) ]] == [[ (( φφ PP (( xx )) ·· φφ PP (( zz )) )) ++ 11 ]] dd 22 == [[ KK PP (( xx ,, zz )) ++ 11 ]] dd 22 -- -- -- (( 44 ))

其中x和z表示两个像元,σ2表示第二次高斯映射的高斯半径,d2表示第二次多项式映射的多项式参数。注意式(1)(3)中第一次高斯映射的高斯半径为σ1,相似地,式(2)(4)中第一次多项式映射的多项式参数为d1。  Where x and z represent two pixels, σ2 represents the Gaussian radius of the second-order Gaussian mapping, and d2 represents the polynomial parameter of the second-order polynomial mapping. Note that the Gaussian radius of the first Gaussian mapping in equations (1)(3) is σ 1 , similarly, the polynomial parameter of the first polynomial mapping in equations (2)(4) is d 1 .

步骤S3.2:支持向量机的训练;对支持向量机进行训练,得到支持向量机决策函数的权重向量和阈值α*和b*。  Step S3.2: Training of the support vector machine; train the support vector machine to obtain the weight vector and thresholds α * and b * of the decision function of the support vector machine.

步骤S4:分类过程。利用训练过程得到的支持向量机判决函数的参数,循环N次,进而得到测试集属于每类别的判决函数值,组成矩阵其中ntest表示测试样本的个数。  Step S4: classification process. Using the parameters of the decision function of the support vector machine obtained during the training process, loop N times, and then obtain the value of the decision function of the test set belonging to each category, and form a matrix Where n test represents the number of test samples.

步骤S5:输出过程。确定多分类器策略,即找到矩阵每列的最大值,其行序号对应每个测试样本的预测标签,i=1,...,ntest。  Step S5: Output process. Determine the multi-classifier strategy, i.e. find the matrix the maximum value of each column whose row number corresponds to the predicted label for each test sample, i=1,...,n test .

步骤S5.1:多分类器策略的确定;采用“一对余”多分类器策略将多分类问题转化成多个二分类问题。  Step S5.1: Determination of the multi-classifier strategy; the multi-classification problem is transformed into multiple binary classification problems by using the "one-to-remainder" multi-classifier strategy. the

步骤S5.2:分类精度的计算;分别计算采用不同复合核函数情况下支持向量机的整体分类精度(Overall Accuracy,OA),Kappa系数(Kappa Statistic,Kappa),平均分类精度(Average Accuracy,AA)以及每个类别的分类精度。  Step S5.2: Calculation of classification accuracy; respectively calculate the overall classification accuracy (Overall Accuracy, OA) of the support vector machine under the situation of different composite kernel functions, the Kappa coefficient (Kappa Statistic, Kappa), the average classification accuracy (Average Accuracy, AA ) and the classification accuracy for each category. the

为了说明本发明的有效性,特进行如下实验论证。实验数据来自双月牙形(Two Moons)模拟数据集以及真实高光谱数据集(Indian Pines)。  In order to illustrate the effectiveness of the present invention, the following experimental demonstration is specially carried out. The experimental data comes from the two-moon (Two Moons) simulation dataset and the real hyperspectral dataset (Indian Pines). the

1)Two Moons:该模拟数据集包含两个类别,分别含有96和104个像元,且每个像元由两个特征表示。  1) Two Moons: This simulated data set contains two categories with 96 and 104 pixels respectively, and each pixel is represented by two features. the

2)Indian Pines:该高光谱遥感图像来自1992年获取的美国印第安纳州西北部印第安农林,其包含144×144个像元,16个类别,220个波段,由于噪声等因素除去其中的20个波段。图像除去背景以外包含16类植被的有监督数据。  2) Indian Pines: This hyperspectral remote sensing image comes from Indian agriculture and forestry in northwestern Indiana, USA acquired in 1992. It contains 144×144 pixels, 16 categories, and 220 bands. Due to noise and other factors, 20 bands were removed. . The image contains supervised data of 16 types of vegetation except the background. the

首先设置本发明的一些参数:首先从每类中随机地选取s个样本组成D={(x1,y1),...,(xn,yn)},剩余样本组成测试集选用十次交叉验证(K=10)和网格搜索相结合的方法估计最优的参数,支持向量机的惩罚因子C,高斯半径σ以及d的变化范围分别为:{20,21,...,28},{2-5,2-4,...,21}和{2-2,2-1,..,24}。针对提出的复合核函数,令非线性映射次数M=2,此时分类性能收敛。  First set up some parameters of the present invention: first randomly select s samples from each class to form D={(x 1 ,y 1 ),...,(x n ,y n )}, and the remaining samples form the test set Choose the method of combining ten times of cross-validation (K=10) and grid search to estimate the optimal parameters. The range of penalty factor C, Gaussian radius σ and d of the support vector machine are: {2 0 ,2 1 , ...,2 8 }, {2 -5 ,2 -4 ,...,2 1 } and {2 -2 ,2 -1 ,...,2 4 }. For the proposed compound kernel function, the nonlinear mapping times M=2, and the classification performance converges at this time.

第一组实验中重点研究使用SVM为基分类器,分别采用高斯核(Gauss Kernel)和复合核函数(连续高斯非线性映射G(G)Composite Kernel),分类边界的分布情况。如图2所示,a)高斯核函数Gauss分类边界b)复合核函数G(G)分类边界。通过该组比较可知采用复合核函数时,SVM的分类边界可以更好的描述数据集的分布情况,且分类精度也相对较高。  The first group of experiments focused on using SVM as the base classifier, respectively using Gauss Kernel (Gauss Kernel) and composite kernel function (continuous Gaussian nonlinear mapping G(G) Composite Kernel), and the distribution of classification boundaries. As shown in Figure 2, a) Gaussian kernel function Gauss classification boundary b) compound kernel function G(G) classification boundary. Through this group comparison, it can be seen that when the composite kernel function is used, the classification boundary of SVM can better describe the distribution of the data set, and the classification accuracy is relatively high. the

第二组实验中重点研究不同核函数对分类性能的影响。该组实验的参数设置为s=10。实验结果如表1所示,可归纳为:1、针对单一核函数,高斯核函数获得的分类精度较线性核(Linear Kernel)和多项式核(Polynomial Kernel)获的分类精度高;2、当采用混合核函数(Mixture Kernels,MKs),即线性加权求和混合核,可以有效提高单一核函数的分类精度;3、较其他核形式,采用复合核函数时,SVM的分类精度较高,且G(G)复合核性能最优。  The second set of experiments focuses on the impact of different kernel functions on classification performance. The parameters of this group of experiments were set to s=10. The experimental results are shown in Table 1, which can be summarized as follows: 1. For a single kernel function, the classification accuracy obtained by the Gaussian kernel function is higher than that obtained by the linear kernel (Linear Kernel) and the polynomial kernel (Polynomial Kernel); 2. When using Mixture Kernels (Mixture Kernels, MKs), that is, linear weighted summation mixed kernels, can effectively improve the classification accuracy of a single kernel function; 3. Compared with other kernel forms, when using a composite kernel function, the classification accuracy of SVM is higher, and G (G) Composite core has the best performance. the

第三组实验中重点研究不同核函数对参数优化时间的影响。该组实验均采用十次交叉验证,即K=10。实验结果如表2,可知当非线性映射次数M=2时,较单一核,复合核函数参数优化的时 间较长,与此同时,其优化时间要远小于混合核函数所消耗的时间。  The third group of experiments focuses on the influence of different kernel functions on the parameter optimization time. All experiments in this group adopt ten times of cross-validation, that is, K=10. The experimental results are shown in Table 2. It can be seen that when the number of nonlinear mappings is M=2, the optimization time of the composite kernel function parameters is longer than that of the single kernel, and at the same time, the optimization time is much shorter than the time consumed by the hybrid kernel function. the

第四组实验中重点研究不同训练样本个数对不同核函数性能的影响。该组实验令s在集合{5,10,50,100}中变化,实验结果如表3所示,归纳为:1、随着s增大,不同核函数的分类能力明显提高了,但是不同核函数之间的差异变小;2、小样本情况下,更能体现出核函数的优势;3、每一种核函数,它不是恒定有效的,其有效性与数据集的实际分布情况有关。若一种核函数在某种情况下可以取得好的性能,那么便说明这种核函数是有效的。基于此,本发明中的复合核函数是有效的核函数。  The fourth group of experiments focuses on the influence of different numbers of training samples on the performance of different kernel functions. This group of experiments made s change in the set {5, 10, 50, 100}. The experimental results are shown in Table 3, which can be summarized as follows: 1. With the increase of s, the classification ability of different kernel functions is obviously improved, but different kernel functions 2. In the case of small samples, the advantages of the kernel function can be better reflected; 3. Each kernel function is not constant and effective, and its effectiveness is related to the actual distribution of the data set. If a kernel function can achieve good performance under certain circumstances, it means that the kernel function is effective. Based on this, the composite kernel function in the present invention is an effective kernel function. the

Claims (3)

1.基于一种复合核函数的高光谱分类方法,其特征是:1. Based on a kind of hyperspectral classification method of composite kernel function, it is characterized in that: 步骤1:输入一幅高光谱图像,类别数为N;Step 1: Input a hyperspectral image, the number of categories is N; 步骤2:以支持向量机为基分类器,同时从所述高光谱图像每个类别中随机地选取s个样本组成训练集,剩余样本组成测试集,确定各参数的变化范围,然后结合K次交叉验证确定支持向量机的最优性能参数,包括惩罚因子和核参数;Step 2: Using the support vector machine as the base classifier, randomly select s samples from each category of the hyperspectral image to form a training set, and the remaining samples form a test set, determine the variation range of each parameter, and then combine K times Cross-validation determines the optimal performance parameters of the support vector machine, including penalty factors and kernel parameters; 步骤3:利用复合核构建策略,构造复合核函数,对支持向量机进行训练;Step 3: Use the composite kernel construction strategy to construct a composite kernel function and train the support vector machine; 步骤4:利用训练过程得到的支持向量机判决函数的参数,循环N次,进而得到测试集属于每类别的判决函数值,组成矩阵其中ntest表示测试样本的个数;Step 4: Use the parameters of the decision function of the support vector machine obtained in the training process, loop N times, and then obtain the value of the decision function of each category in the test set, and form a matrix Where n test represents the number of test samples; 步骤5:确定多分类器策略,即找到矩阵每列的最大值,其行序号对应每个测试样本的预测标签, y ^ i ∈ y , i = 1 , . . . , n test . Step 5: Determine the multi-classifier strategy, i.e. find the matrix the maximum value of each column whose row number corresponds to the predicted label for each test sample, the y ^ i ∈ the y , i = 1 , . . . , no test . 2.根据权利要求1所述的基于一种复合核函数的高光谱分类方法,其特征是:所述步骤2具体包括:2. the hyperspectral classification method based on a kind of composite kernel function according to claim 1, is characterized in that: described step 2 specifically comprises: 步骤2.1:从高光谱图像的N个类别中每类随机地选取s个样本组成有标签训练样本集D={(x1,y1),...,(xn,yn)},其中xi表示第i个有标签样本的光谱特征,yi表示样本xi的标签,n=16s表示训练样本个数,剩余样本组成测试集ntest表示测试样本个数;Step 2.1: Randomly select s samples from each of the N categories of hyperspectral images to form a labeled training sample set D={(x 1 ,y 1 ),...,(x n ,y n )}, Among them, x i represents the spectral feature of the i-th labeled sample, y i represents the label of sample x i , n=16s represents the number of training samples, and the remaining samples form the test set n test represents the number of test samples; 步骤2.2:采用多项式核函数以及高斯核函数为基本核函数进行复合核函数的合成,多项式核为KP(x,z)=φP(x)·φP(z)=[(x·z)+1]d,其参数为d,φP(x)表示样本x的多项式映射函数;高斯核为KG(x,z)=φG(x)·φG(z)=exp(-||x-z||22),其高斯半径为σ,φG(x)表示样本x的高斯映射核函数;支持向量机的惩罚因子C,高斯半径σ以及d的变化范围分别为:{20,21,...,28},{2-5,2-4,...,21}和{2-2,2-1,..,24};Step 2.2: Use the polynomial kernel function and the Gaussian kernel function as the basic kernel function to synthesize the composite kernel function. The polynomial kernel is K P (x, z) = φ P (x) φ P (z) = [(x z )+1] d , whose parameter is d, φ P (x) represents the polynomial mapping function of the sample x; the Gaussian kernel is K G (x, z) = φ G (x)·φ G (z) = exp(- ||xz|| 22 ), its Gaussian radius is σ, φ G (x) represents the Gaussian mapping kernel function of the sample x; the penalty factor C of the support vector machine, the variation range of the Gaussian radius σ and d are: {2 0 ,2 1 ,...,2 8 }, {2 -5 ,2 -4 ,...,2 1 } and {2 -2 ,2 -1 ,...,2 4 }; 步骤2.3:在每个参数组合情况下,将训练样本集D分割成K个子集,依次保留一子集用于测试,其余的K-1个子集用于训练SVM分类器模型,交叉验证重复K次,每个子集验证一次,且计算K次分类精度的平均值,当平均精度达到最大值时,该参数组合为最优的。Step 2.3: In the case of each parameter combination, the training sample set D is divided into K subsets, and one subset is reserved for testing in turn, and the remaining K-1 subsets are used for training the SVM classifier model, and the cross-validation is repeated for K times, each subset is verified once, and the average value of classification accuracy is calculated for K times. When the average accuracy reaches the maximum value, the parameter combination is optimal. 3.根据权利要求1或2所述的基于一种复合核函数的高光谱分类方法,其特征是:所述步骤3具体包括:3. the hyperspectral classification method based on a kind of composite kernel function according to claim 1 or 2, is characterized in that: described step 3 specifically comprises: 步骤3.1:通过多次非线性映射得到复合核函数,计算如下:Step 3.1: Obtain the composite kernel function through multiple nonlinear mappings, and the calculation is as follows: K1(x,z)=φ1(x)·φ1(z)K 1 (x, z) = φ 1 (x) · φ 1 (z) K2(x,z)=φ21(x)]·φ21(z)]K 2 (x,z)=φ 21 (x)]·φ 21 (z)] ...... KM(x,z)=φMM-1(x)]·φMM-1(z)]K M (x,z)=φ MM-1 (x)]·φ MM-1 (z)] 其中KM(x,z)表示样本x和z的核函数,φM表示第M次非线性映射函数;φM是高斯映射,多项式映射或是其他非线性映射,且当M=2时,基于该复合核函数分类器的分类性能达到收敛状态;当M=2时,KG(G),KG(P),KP(G)和KP(P)分别为连续高斯映射复合核函数,多项式-高斯映射复合核函数,高斯-多项式映射复合核函数以及连续多项式映射复合核函数;表达式如下:Where K M (x, z) represents the kernel function of samples x and z, φ M represents the Mth nonlinear mapping function; φ M is Gaussian mapping, polynomial mapping or other nonlinear mapping, and when M=2, The classification performance of the classifier based on the compound kernel function reaches a state of convergence; when M=2, K G(G) , K G(P) , K P(G) and K P(P) are continuous Gaussian mapping compound kernels respectively Function, polynomial-Gaussian mapping composite kernel function, Gaussian-polynomial mapping composite kernel function and continuous polynomial mapping composite kernel function; the expressions are as follows: KG(G)(x,z)=φGG(x)]·φGG(z)]=exp[-||φG(x)-φG(z)||22 2]                         (1)=exp[-[φG(x)·φG(x)+φG(z)·φG(z)-2φG(x)·φG(z)]/σ2 2]=exp[-[KG(x,x)+KG(z,z)-2KG(x,z)]/σ2 2]K G(G) (x,z)=φ GG (x)]·φ GG (z)]=exp[-||φ G (x)-φ G (z)|| 22 2 ] (1)=exp[-[φ G (x) φ G (x)+φ G (z) φ G (z)-2φ G (x) φ G (z)]/ σ 2 2 ]=exp[-[K G (x,x)+K G (z,z)-2K G (x,z)]/σ 2 2 ] KG(P)(x,z)=φGP(x)]·φGP(z)]=exp[-||φP(x)-φP(z)||22 2]                         (2)=exp[-[φP(x)·φP(x)+φP(z)·φP(z)-2φP(x)·φP(z)]/σ2 2]=exp[-[KP(x,x)+KP(z,z)-2KP(x,z)]/σ2 2]K G(P) (x,z)=φ GP (x)]·φ GP (z)]=exp[-||φ P (x)-φ P (z)|| 22 2 ] (2)=exp[-[φ P (x) φ P (x)+φ P (z) φ P (z)-2φ P (x) φ P (z)]/ σ 2 2 ]=exp[-[K P (x,x)+K P (z,z)-2K P (x,z)]/σ 2 2 ] KK PP (( GG )) (( xx ,, zz )) == φφ PP [[ φφ GG (( xx )) ]] ·&Center Dot; φφ PP [[ φφ GG (( zz )) ]] == [[ (( φφ GG (( xx )) ·&Center Dot; φφ GG (( zz )) )) ++ 11 ]] dd 22 == [[ KK GG (( xx ,, zz )) ++ 11 ]] dd 22 -- -- -- (( 33 )) KK PP (( PP )) (( xx ,, zz )) == φφ PP [[ φφ PP (( xx )) ]] ·&Center Dot; φφ PP [[ φφ PP (( zz )) ]] == [[ (( φφ PP (( xx )) ·&Center Dot; φφ PP (( zz )) )) ++ 11 ]] dd 22 == [[ KK PP (( xx ,, zz )) ++ 11 ]] dd 22 -- -- -- (( 44 )) 其中x和z表示两个像元,σ2表示第二次高斯映射的高斯半径,d2表示第二次多项式映射的多项式参数;式(1)(3)中第一次高斯映射的高斯半径为σ1,式(2)(4)中第一次多项式映射的多项式参数为d1Where x and z represent two pixels, σ 2 represents the Gaussian radius of the second Gaussian mapping, d 2 represents the polynomial parameter of the second polynomial mapping; the Gaussian radius of the first Gaussian mapping in formula (1)(3) is σ 1 , and the polynomial parameter of the first polynomial mapping in formula (2)(4) is d 1 ; 步骤3.2:对支持向量机进行训练,得到支持向量机决策函数的权重向量和阈值α*和b*Step 3.2: Train the support vector machine to obtain the weight vector and thresholds α * and b * of the decision function of the support vector machine.
CN201410386737.1A 2014-08-07 2014-08-07 Hyperspectrum classification method based on composite kernel function Expired - Fee Related CN104200217B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410386737.1A CN104200217B (en) 2014-08-07 2014-08-07 Hyperspectrum classification method based on composite kernel function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410386737.1A CN104200217B (en) 2014-08-07 2014-08-07 Hyperspectrum classification method based on composite kernel function

Publications (2)

Publication Number Publication Date
CN104200217A true CN104200217A (en) 2014-12-10
CN104200217B CN104200217B (en) 2017-05-24

Family

ID=52085507

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410386737.1A Expired - Fee Related CN104200217B (en) 2014-08-07 2014-08-07 Hyperspectrum classification method based on composite kernel function

Country Status (1)

Country Link
CN (1) CN104200217B (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104992178A (en) * 2015-06-16 2015-10-21 中国石油化工股份有限公司 Tight sandstone fluid type identification method based on support vector machine simulation cross plot
CN107220677A (en) * 2017-06-28 2017-09-29 深圳源广安智能科技有限公司 The accurate hyperspectral image data categorizing system of one kind classification
CN107563324A (en) * 2017-08-30 2018-01-09 广东工业大学 A kind of hyperspectral image classification method and device of the learning machine that transfinited based on core basis
CN107633268A (en) * 2017-09-22 2018-01-26 重庆交通大学 A kind of high spectrum image combination core minimal noise separation transform characteristics extracting method
CN107976432A (en) * 2017-10-16 2018-05-01 华南理工大学 A kind of heat resisting steel aging level measurement method based on support vector machines
CN109596543A (en) * 2018-11-25 2019-04-09 西安建筑科技大学 The spectral reflectance recovery method of particle group optimizing multicore support vector regression
CN109697465A (en) * 2018-12-18 2019-04-30 辽宁工程技术大学 Hyperspectral Image Classification method based on the Fisher discriminant analysis of Wavelet Kernel part
CN109901204A (en) * 2019-03-27 2019-06-18 北京航空航天大学 A GBAS Integrity Performance Evaluation Method Based on Pseudo-Range Error Distribution Model
CN109961093A (en) * 2019-03-07 2019-07-02 北京工业大学 An image classification method based on crowd intelligence ensemble learning
CN110163101A (en) * 2019-04-17 2019-08-23 湖南省中医药研究院 The difference of Chinese medicine seed and grade quick discrimination method
CN110717528A (en) * 2019-09-25 2020-01-21 中国石油大学(华东) Support vector machine-based sedimentary microfacies identification method using conventional logging information
CN113205143A (en) * 2021-05-10 2021-08-03 郑州轻工业大学 Multi-scale superpixel hyperspectral remote sensing image classification method based on space-spectrum coupling characteristics
CN113779236A (en) * 2021-08-11 2021-12-10 齐维维 Method and device for problem classification based on artificial intelligence
CN115775336A (en) * 2022-12-06 2023-03-10 中国科学院长春光学精密机械与物理研究所 Hyperspectral image classification method based on spatial-spectral feature fusion

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100142805A1 (en) * 2008-12-05 2010-06-10 Tandent Vision Science, Inc. Constraint generation for use in image segregation
CN101807254A (en) * 2009-02-13 2010-08-18 烟台海岸带可持续发展研究所 Implementation method for data characteristic-oriented synthetic kernel support vector machine
CN101976361A (en) * 2010-11-23 2011-02-16 中国矿业大学 Multi-kernel support vector machine classification method for remote sensing images

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100142805A1 (en) * 2008-12-05 2010-06-10 Tandent Vision Science, Inc. Constraint generation for use in image segregation
CN101807254A (en) * 2009-02-13 2010-08-18 烟台海岸带可持续发展研究所 Implementation method for data characteristic-oriented synthetic kernel support vector machine
CN101976361A (en) * 2010-11-23 2011-02-16 中国矿业大学 Multi-kernel support vector machine classification method for remote sensing images

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
张朝福,等: ""基于复合核函数KPCA的红外人脸识别"", 《计算机仿真》 *
曲昆鹏: ""基于支持向量机的杂草识别研究"", 《中国优秀硕士学位论文全文数据库(信息科技辑)》 *
谭熊,等: ""高光谱影像的多核SVM分类"", 《仪器仪表学》 *
高恒振: ""高光谱遥感图像分类技术研究"", 《中国博士学位论文全文数据库(信息科技辑)》 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104992178A (en) * 2015-06-16 2015-10-21 中国石油化工股份有限公司 Tight sandstone fluid type identification method based on support vector machine simulation cross plot
CN107220677A (en) * 2017-06-28 2017-09-29 深圳源广安智能科技有限公司 The accurate hyperspectral image data categorizing system of one kind classification
CN107563324A (en) * 2017-08-30 2018-01-09 广东工业大学 A kind of hyperspectral image classification method and device of the learning machine that transfinited based on core basis
CN107633268A (en) * 2017-09-22 2018-01-26 重庆交通大学 A kind of high spectrum image combination core minimal noise separation transform characteristics extracting method
CN107976432B (en) * 2017-10-16 2020-12-22 华南理工大学 A method for measuring aging grade of heat-resistant steel based on support vector machine
CN107976432A (en) * 2017-10-16 2018-05-01 华南理工大学 A kind of heat resisting steel aging level measurement method based on support vector machines
CN109596543A (en) * 2018-11-25 2019-04-09 西安建筑科技大学 The spectral reflectance recovery method of particle group optimizing multicore support vector regression
CN109596543B (en) * 2018-11-25 2021-09-10 西安建筑科技大学 Spectral reflectivity reconstruction method for particle swarm optimization multi-core support vector regression
CN109697465A (en) * 2018-12-18 2019-04-30 辽宁工程技术大学 Hyperspectral Image Classification method based on the Fisher discriminant analysis of Wavelet Kernel part
CN109697465B (en) * 2018-12-18 2022-11-25 辽宁工程技术大学 Hyperspectral image classification method based on wavelet kernel local Fisher discriminant analysis
CN109961093B (en) * 2019-03-07 2021-10-15 北京工业大学 An image classification method based on crowd intelligence ensemble learning
CN109961093A (en) * 2019-03-07 2019-07-02 北京工业大学 An image classification method based on crowd intelligence ensemble learning
CN109901204B (en) * 2019-03-27 2020-12-04 北京航空航天大学 A GBAS Integrity Performance Evaluation Method Based on Pseudo-Range Error Distribution Model
CN109901204A (en) * 2019-03-27 2019-06-18 北京航空航天大学 A GBAS Integrity Performance Evaluation Method Based on Pseudo-Range Error Distribution Model
CN110163101A (en) * 2019-04-17 2019-08-23 湖南省中医药研究院 The difference of Chinese medicine seed and grade quick discrimination method
CN110163101B (en) * 2019-04-17 2022-09-23 湖南省中医药研究院 Method for rapidly distinguishing seeds of traditional Chinese medicinal materials and rapidly judging grades of seeds
CN110717528A (en) * 2019-09-25 2020-01-21 中国石油大学(华东) Support vector machine-based sedimentary microfacies identification method using conventional logging information
CN113205143A (en) * 2021-05-10 2021-08-03 郑州轻工业大学 Multi-scale superpixel hyperspectral remote sensing image classification method based on space-spectrum coupling characteristics
CN113779236A (en) * 2021-08-11 2021-12-10 齐维维 Method and device for problem classification based on artificial intelligence
CN115775336A (en) * 2022-12-06 2023-03-10 中国科学院长春光学精密机械与物理研究所 Hyperspectral image classification method based on spatial-spectral feature fusion

Also Published As

Publication number Publication date
CN104200217B (en) 2017-05-24

Similar Documents

Publication Publication Date Title
CN104200217B (en) Hyperspectrum classification method based on composite kernel function
Lin et al. Spectral-spatial classification of hyperspectral image using autoencoders
Sameen et al. Classification of very high resolution aerial photos using spectral‐spatial convolutional neural networks
Zhao et al. Spectral-spatial classification of hyperspectral imagery based on stacked sparse autoencoder and random forest
Bandos et al. Classification of hyperspectral images with regularized linear discriminant analysis
CN106023065A (en) Tensor hyperspectral image spectrum-space dimensionality reduction method based on deep convolutional neural network
Dou et al. Band selection of hyperspectral images using attention-based autoencoders
CN107590515B (en) Hyperspectral image classification method of self-encoder based on entropy rate superpixel segmentation
CN102819745B (en) Hyper-spectral remote sensing image classifying method based on AdaBoost
EP3029606A2 (en) Method and apparatus for image classification with joint feature adaptation and classifier learning
Du et al. A novel binary tree support vector machine for hyperspectral remote sensing image classification
CN107563355A (en) Hyperspectral abnormity detection method based on generation confrontation network
CN104392251B (en) Hyperspectral image classification method based on semi-supervised dictionary learning
CN107316013A (en) Hyperspectral image classification method with DCNN is converted based on NSCT
CN102750551A (en) Hyperspectral remote sensing classification method based on support vector machine under particle optimization
CN105243398A (en) Method of improving performance of convolutional neural network based on linear discriminant analysis criterion
CN103903007A (en) Hyperspectral semi-supervised classification method based on space-spectral information
CN105574548A (en) Hyperspectral data dimensionality-reduction method based on sparse and low-rank representation graph
CN103258214A (en) Remote sensing image classification method based on image block active learning
CN104978573A (en) Non-negative matrix factorization method applied to hyperspectral image processing
CN105956612A (en) Hyperspectral image classification method based on active learning and semi-supervised learning
CN103971123A (en) Hyperspectral image classification method based on linear regression Fisher discrimination dictionary learning (LRFDDL)
CN108830243A (en) Hyperspectral image classification method based on capsule network
CN105261000A (en) Hyperspectral image fusion method based on end member extraction and spectrum unmixing
CN104182767B (en) The hyperspectral image classification method that Active Learning and neighborhood information are combined

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170524