CN104209106B - The Fe of 5-sulphosalicylic acid functionalization 3o 4magnetic nano-particle and synthetic method thereof and application - Google Patents
The Fe of 5-sulphosalicylic acid functionalization 3o 4magnetic nano-particle and synthetic method thereof and application Download PDFInfo
- Publication number
- CN104209106B CN104209106B CN201410438856.7A CN201410438856A CN104209106B CN 104209106 B CN104209106 B CN 104209106B CN 201410438856 A CN201410438856 A CN 201410438856A CN 104209106 B CN104209106 B CN 104209106B
- Authority
- CN
- China
- Prior art keywords
- magnetic nanoparticles
- sulfosalicylic acid
- smnps
- sio
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- YCPXWRQRBFJBPZ-UHFFFAOYSA-N 5-sulfosalicylic acid Chemical compound OC(=O)C1=CC(S(O)(=O)=O)=CC=C1O YCPXWRQRBFJBPZ-UHFFFAOYSA-N 0.000 title claims abstract description 23
- 238000007306 functionalization reaction Methods 0.000 title claims description 6
- 238000010189 synthetic method Methods 0.000 title claims 6
- 239000002105 nanoparticle Substances 0.000 title description 3
- 239000002122 magnetic nanoparticle Substances 0.000 claims abstract description 119
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 63
- 229910004298 SiO 2 Inorganic materials 0.000 claims abstract description 24
- 238000006243 chemical reaction Methods 0.000 claims abstract description 21
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims abstract description 20
- 238000001308 synthesis method Methods 0.000 claims abstract description 12
- SOTUUESHGORJBT-UHFFFAOYSA-N 3-carbonochloridoyl-4-hydroxybenzenesulfonic acid Chemical compound S(=O)(=O)(O)C1=CC=C(C(C(=O)Cl)=C1)O SOTUUESHGORJBT-UHFFFAOYSA-N 0.000 claims abstract description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 39
- -1 5-sulfosalicyl chloride Chemical compound 0.000 claims description 25
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 24
- BHDKTFQBRFWJKR-UHFFFAOYSA-N 2-hydroxy-5-sulfobenzoic acid;dihydrate Chemical compound O.O.OC(=O)C1=CC(S(O)(=O)=O)=CC=C1O BHDKTFQBRFWJKR-UHFFFAOYSA-N 0.000 claims description 22
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 19
- SZVJSHCCFOBDDC-UHFFFAOYSA-N ferrosoferric oxide Chemical compound O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 claims description 16
- 238000002360 preparation method Methods 0.000 claims description 16
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 claims description 16
- 239000011541 reaction mixture Substances 0.000 claims description 13
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 12
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 claims description 12
- 239000003054 catalyst Substances 0.000 claims description 10
- 238000003756 stirring Methods 0.000 claims description 9
- 238000001132 ultrasonic dispersion Methods 0.000 claims description 7
- 239000000376 reactant Substances 0.000 claims description 6
- 238000000975 co-precipitation Methods 0.000 claims description 5
- 230000001681 protective effect Effects 0.000 claims description 5
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 claims description 4
- 229910052717 sulfur Inorganic materials 0.000 claims description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 3
- 239000011593 sulfur Substances 0.000 claims description 3
- 238000005406 washing Methods 0.000 claims description 3
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 claims description 2
- 229960004889 salicylic acid Drugs 0.000 claims description 2
- 150000004683 dihydrates Chemical group 0.000 claims 1
- 239000002245 particle Substances 0.000 abstract description 16
- 238000001179 sorption measurement Methods 0.000 abstract description 16
- 125000003748 selenium group Chemical group *[Se]* 0.000 abstract description 7
- 230000000694 effects Effects 0.000 abstract description 5
- 230000007613 environmental effect Effects 0.000 abstract description 2
- 239000011669 selenium Substances 0.000 description 53
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 51
- 238000009835 boiling Methods 0.000 description 25
- 235000013527 bean curd Nutrition 0.000 description 24
- 239000000243 solution Substances 0.000 description 24
- 229910052711 selenium Inorganic materials 0.000 description 22
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 18
- RJFAYQIBOAGBLC-BYPYZUCNSA-N Selenium-L-methionine Chemical compound C[Se]CC[C@H](N)C(O)=O RJFAYQIBOAGBLC-BYPYZUCNSA-N 0.000 description 16
- RJFAYQIBOAGBLC-UHFFFAOYSA-N Selenomethionine Natural products C[Se]CCC(N)C(O)=O RJFAYQIBOAGBLC-UHFFFAOYSA-N 0.000 description 16
- 229960002718 selenomethionine Drugs 0.000 description 16
- 125000003130 L-selenocysteinyl group Chemical group O=C([*])[C@@](N([H])[H])([H])C([H])([H])[Se][H] 0.000 description 15
- JULROCUWKLNBSN-UHFFFAOYSA-N seleno-DL-cystine Natural products OC(=O)C(N)C[Se][Se]CC(N)C(O)=O JULROCUWKLNBSN-UHFFFAOYSA-N 0.000 description 15
- 239000000523 sample Substances 0.000 description 14
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 13
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 description 12
- 238000002474 experimental method Methods 0.000 description 12
- 239000002351 wastewater Substances 0.000 description 12
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 9
- 238000001962 electrophoresis Methods 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 8
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 8
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 235000011114 ammonium hydroxide Nutrition 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 230000005415 magnetization Effects 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 239000000839 emulsion Substances 0.000 description 7
- 238000000702 capillary electrophoresis-electrothermal atomic absorption spectrometry Methods 0.000 description 6
- 238000001514 detection method Methods 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 238000011084 recovery Methods 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 239000010457 zeolite Substances 0.000 description 5
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical class [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 229960000583 acetic acid Drugs 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 229960004756 ethanol Drugs 0.000 description 4
- 239000012362 glacial acetic acid Substances 0.000 description 4
- 150000002505 iron Chemical class 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000012086 standard solution Substances 0.000 description 4
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000007853 buffer solution Substances 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000002329 infrared spectrum Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 238000004627 transmission electron microscopy Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 238000011088 calibration curve Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 239000012154 double-distilled water Substances 0.000 description 2
- 238000000921 elemental analysis Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 239000005350 fused silica glass Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 239000006249 magnetic particle Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000002414 normal-phase solid-phase extraction Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000012488 sample solution Substances 0.000 description 2
- 229940065287 selenium compound Drugs 0.000 description 2
- 150000003343 selenium compounds Chemical class 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 238000001291 vacuum drying Methods 0.000 description 2
- WXHLLJAMBQLULT-UHFFFAOYSA-N 2-[[6-[4-(2-hydroxyethyl)piperazin-1-yl]-2-methylpyrimidin-4-yl]amino]-n-(2-methyl-6-sulfanylphenyl)-1,3-thiazole-5-carboxamide;hydrate Chemical compound O.C=1C(N2CCN(CCO)CC2)=NC(C)=NC=1NC(S1)=NC=C1C(=O)NC1=C(C)C=CC=C1S WXHLLJAMBQLULT-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910017135 Fe—O Inorganic materials 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 238000001157 Fourier transform infrared spectrum Methods 0.000 description 1
- LEVWYRKDKASIDU-IMJSIDKUSA-N L-cystine Chemical compound [O-]C(=O)[C@@H]([NH3+])CSSC[C@H]([NH3+])C([O-])=O LEVWYRKDKASIDU-IMJSIDKUSA-N 0.000 description 1
- 229910018557 Si O Inorganic materials 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 230000000274 adsorptive effect Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000000559 atomic spectroscopy Methods 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000012490 blank solution Substances 0.000 description 1
- 238000005251 capillar electrophoresis Methods 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 229960003067 cystine Drugs 0.000 description 1
- 229960000935 dehydrated alcohol Drugs 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 238000001287 electrothermal atomic absorption spectrometry Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- WTFXARWRTYJXII-UHFFFAOYSA-N iron(2+);iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[Fe+2].[Fe+3].[Fe+3] WTFXARWRTYJXII-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 229940031182 nanoparticles iron oxide Drugs 0.000 description 1
- 239000006199 nebulizer Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- SCPYDCQAZCOKTP-UHFFFAOYSA-N silanol Chemical compound [SiH3]O SCPYDCQAZCOKTP-UHFFFAOYSA-N 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- PXQLVRUNWNTZOS-UHFFFAOYSA-N sulfanyl Chemical class [SH] PXQLVRUNWNTZOS-UHFFFAOYSA-N 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 238000002525 ultrasonication Methods 0.000 description 1
Landscapes
- Soft Magnetic Materials (AREA)
- Compounds Of Iron (AREA)
Abstract
本发明公开了一种5-磺基水杨酸功能化的Fe3O4磁性纳米粒子及其合成方法和应用。所述的5-磺基水杨酸功能化的Fe3O4磁性纳米粒子由正硅酸乙酯对Fe3O4磁性纳米粒子进行包覆,所得Fe3O4/SiO2磁性纳米粒子再与5-磺基水杨酰氯反应得到。本发明所述粒子的合成方法简单,合成得到的粒子呈球形,尺寸均匀,分散性好,对硒形态具有良好的吸附作用,为研究环境水样中的痕量硒形态提供了可行性依据。
The invention discloses a 5-sulfosalicylic acid functionalized Fe 3 O 4 magnetic nano particle, a synthesis method and an application thereof. The Fe 3 O 4 magnetic nanoparticles functionalized with 5-sulfosalicylic acid are coated with tetraethyl orthosilicate on the Fe 3 O 4 magnetic nanoparticles, and the obtained Fe 3 O 4 /SiO 2 magnetic nanoparticles are then And 5-sulfosalicyloyl chloride reaction. The particle synthesis method of the invention is simple, and the synthesized particles are spherical, uniform in size, good in dispersibility, and have good adsorption effect on selenium form, which provides a feasibility basis for studying trace selenium form in environmental water samples.
Description
技术领域 technical field
本发明涉及一种5-磺基水杨酸功能化的Fe3O4磁性纳米粒子及其合成方法和应用,属于纳米材料技术领域。 The invention relates to Fe3O4 magnetic nanoparticles functionalized with 5 -sulfosalicylic acid, a synthesis method and application thereof, and belongs to the technical field of nanomaterials.
背景技术 Background technique
磁性颗粒(MPs)通常由磁性元素如铁、镍、钴及其氧化物组成。超顺磁性氧化铁纳米粒子(Fe3O4,γ-Fe2O3),作为一种新型固相萃取吸附剂,在原子光谱分析领域已经引起广泛关注。磁性纳米粒子具有以下优点:表面容易改性、分析物选择性吸附、具有生物兼容性。裸露的Fe3O4很容易发生聚集,并且对复杂样品中的基质吸附没有选择性,采用SiO2包覆的Fe3O4纳米粒子避免粒子表面被氧化而改变磁性,同时为进一步化学功能化提供了可能。 Magnetic particles (MPs) are usually composed of magnetic elements such as iron, nickel, cobalt and their oxides. Superparamagnetic iron oxide nanoparticles (Fe 3 O 4 , γ-Fe 2 O 3 ), as a new solid-phase extraction adsorbent, have attracted widespread attention in the field of atomic spectroscopy. Magnetic nanoparticles have the following advantages: easy surface modification, selective adsorption of analytes, and biocompatibility. Bare Fe 3 O 4 is easy to aggregate and has no selectivity for matrix adsorption in complex samples. Using SiO 2 -coated Fe 3 O 4 nanoparticles prevents the surface of the particles from being oxidized and changes the magnetic properties, and at the same time provides further chemical functionalization. offers the possibility.
现有技术中对磁性纳米粒子表面进行修饰的常用活性官能团包括:羧基(-COOH)、氨基(-NH2)、羟基(-OH)、巯基(-SH)等,此外,可利用共轭结构(如聚苯胺等)、大的表面积(如C18等)和胶束性能进行吸附作用。目前还尚未见有用5-磺基水杨酸对磁性纳米粒子进行修饰的研究报道,也尚未见有经5-磺基水杨酸修饰后的磁性纳米粒子对硒离子有吸附作用的报道。 In the prior art, commonly used active functional groups for modifying the surface of magnetic nanoparticles include: carboxyl (-COOH), amino (-NH 2 ), hydroxyl (-OH), mercapto (-SH), etc. In addition, conjugated structures can be used (such as polyaniline, etc.), large surface area (such as C18, etc.) and micellar properties for adsorption. At present, there is no report on the modification of magnetic nanoparticles with 5-sulfosalicylic acid, nor is there any report on the adsorption of selenium ions by magnetic nanoparticles modified with 5-sulfosalicylic acid.
发明内容 Contents of the invention
本发明要解决的技术问题是提供一种5-磺基水杨酸功能化的Fe3O4磁性纳米粒子及其合成方法和应用。由本发明所述方法合成得到的5-磺基水杨酸功能化的Fe3O4磁性纳米粒子呈球形,尺寸均匀,分散性好,对硒形态具有较好的吸附作用。 The technical problem to be solved by the present invention is to provide a 5-sulfosalicylic acid functionalized Fe 3 O 4 magnetic nanoparticle and its synthesis method and application. The 5-sulfosalicylic acid functionalized Fe 3 O 4 magnetic nanoparticles synthesized by the method of the invention are spherical, uniform in size, good in dispersibility, and have good adsorption effect on the form of selenium.
本发明所述的5-磺基水杨酸功能化的Fe3O4磁性纳米粒子,其结构式如下: The 5 -sulfosalicylic acid functionalized Fe3O4 magnetic nanoparticles of the present invention have a structural formula as follows:
其中,表示Fe3O4磁性纳米粒子。 in, Indicates Fe 3 O 4 magnetic nanoparticles.
本发明所述的5-磺基水杨酸功能化的Fe3O4磁性纳米粒子的合成方法为:先采用共沉淀法制备得到Fe3O4磁性纳米粒子,然后以正硅酸乙酯对Fe3O4磁性纳米粒子进行包覆,得到Fe3O4/SiO2磁性纳米粒子,所得Fe3O4/SiO2磁性纳米粒子再与5-磺基水杨酰氯反应,即得到5-磺基水杨酸功能化的Fe3O4磁性纳米粒子;所述的5-磺基水杨酰氯由二水合5-磺基水杨酸和过量的氯化亚砜在催化剂甲酰胺存在的条件下反应制得。 The synthesis method of the 5 -sulfosalicylic acid functionalized Fe3O4 magnetic nanoparticles of the present invention is as follows: first adopt the co - precipitation method to prepare Fe3O4 magnetic nanoparticles, and then use ethyl orthosilicate to Fe 3 O 4 magnetic nanoparticles were coated to obtain Fe 3 O 4 /SiO 2 magnetic nanoparticles, and the obtained Fe 3 O 4 /SiO 2 magnetic nanoparticles were reacted with 5-sulfosalicyloyl chloride to obtain 5-sulfo Fe 3 O 4 magnetic nanoparticles functionalized with base salicylic acid; the 5-sulfosalicylic acid chloride is composed of dihydrate 5-sulfosalicylic acid and excess thionyl chloride in the presence of catalyst formamide The reaction is made.
更为具体的5-磺基水杨酸功能化的Fe3O4磁性纳米粒子的合成方法,具体包括以下步骤: A more specific method for synthesizing Fe3O4 magnetic nanoparticles functionalized with 5 -sulfosalicylic acid specifically includes the following steps:
1)Fe3O4磁性纳米粒子的制备 1) Preparation of Fe 3 O 4 magnetic nanoparticles
采用共沉淀法制备得到Fe3O4磁性纳米粒子; Fe 3 O 4 magnetic nanoparticles were prepared by co-precipitation method;
2)Fe3O4/SiO2磁性纳米粒子的制备 2) Preparation of Fe 3 O 4 /SiO 2 magnetic nanoparticles
取Fe3O4磁性纳米粒子置于醇/水溶液中,超声分散后向其中加入正硅酸乙酯,保护气氛下,调节溶液的pH=4~5或者是pH=9~10,并于70~90℃条件下搅拌反应1~16h,反应混合物使用外部磁场分离,洗涤,干燥,得到Fe3O4/SiO2磁性纳米粒子; Take Fe 3 O 4 magnetic nanoparticles and place them in alcohol/water solution, add tetraethyl orthosilicate to it after ultrasonic dispersion, and adjust the pH of the solution to 4~5 or pH=9~10 under a protective atmosphere, and set the temperature at 70 Stirring and reacting at ~90°C for 1-16 hours, separating the reaction mixture using an external magnetic field, washing, and drying to obtain Fe 3 O 4 /SiO 2 magnetic nanoparticles;
3)Fe3O4/SiO2磁性纳米粒子的磺基功能化 3) Sulfur functionalization of Fe 3 O 4 /SiO 2 magnetic nanoparticles
3.1)取二水合5-磺基水杨酸加入过量的氯化亚砜,再加入催化剂甲酰胺,于100~120℃反应5~12h,反应物冷却后蒸除过量的氯化亚砜,得到5-磺基水杨酰氯; 3.1) Take 5-sulfosalicylic acid dihydrate and add excess thionyl chloride, then add catalyst formamide, react at 100-120°C for 5-12h, evaporate the excess thionyl chloride after cooling the reactant, and obtain 5-sulfosalicyl chloride;
3.2)取Fe3O4/SiO2磁性纳米粒子和过量的5-磺基水杨酰氯置于反应容器中,加入催化剂吡啶,于0~10℃搅拌反应12~24h,反应混合物使用外部磁场分离,洗涤,干燥,得到5-磺基水杨酸功能化的Fe3O4磁性纳米粒子。 3.2) Put Fe 3 O 4 /SiO 2 magnetic nanoparticles and excess 5-sulfosalicyl chloride into a reaction vessel, add catalyst pyridine, stir and react at 0-10°C for 12-24 hours, and separate the reaction mixture using an external magnetic field , washed and dried to obtain 5-sulfosalicylic acid functionalized Fe 3 O 4 magnetic nanoparticles.
上述合成方法的步骤1)中,采用共沉淀法制备得到Fe3O4磁性纳米粒子的步骤与现有常规技术相同,优选包括以下步骤:按Fe3+:Fe2+=1.3~2:1的物质的量之比称取FeCl3·6H2O和FeCl2·4H2O置于反应容器中,加入脱氧水使其溶解,保护气氛下,升温至60~90℃,加入氨水调节pH=9~10,保温反应30~120min,反应混合物使用外部磁场分离,洗涤,干燥,得到Fe3O4磁性纳米粒子。上述脱氧水的用量通常按每0.01mol铁盐(包括二价铁盐和三价铁盐)用50~150mL脱氧水计算。 In step 1) of the above synthesis method, the step of preparing Fe 3 O 4 magnetic nanoparticles by co-precipitation method is the same as the existing conventional technology, preferably including the following steps: according to Fe 3+ :Fe 2+ =1.3~2:1 The ratio of the amount of the substance weighs FeCl 3 6H 2 O and FeCl 2 4H 2 O into a reaction vessel, add deoxygenated water to dissolve them, raise the temperature to 60-90°C under a protective atmosphere, add ammonia water to adjust the pH= 9 to 10 minutes, heat preservation reaction for 30 to 120 minutes, the reaction mixture is separated by an external magnetic field, washed and dried to obtain Fe 3 O 4 magnetic nanoparticles. The amount of the above-mentioned deoxygenated water is usually calculated as 50-150 mL of deoxygenated water per 0.01 mol of iron salt (including ferrous iron salt and ferric iron salt).
上述合成方法的步骤2)中,所述醇/水溶液中的醇为丙三醇或乙醇,醇与水的体积比优选为0.6~1.5:1,醇/水溶液的用量通常按1gFe3O4磁性纳米粒子用50~100mL醇/水溶液计算。该步骤中,超声分散的时间与现有技术相同,通常为10~50min;超声分散后正硅酸乙酯的加入量与现有技术相同,优选是控制Fe3O4磁性纳米粒子与正硅酸乙酯的质量体积比为:1g:2~5ml。在加入正硅酸乙酯后,调节溶液的pH=4~5或者是pH=9~10再进行反应均可以获得Fe3O4/SiO2磁性纳米粒子,且调节溶液的pH=4~5或者是pH=9~10再进行反应获得的Fe3O4/SiO2磁性纳米粒子在性状及性能上几乎没有差异;一般情况下,用弱酸调节溶液的pH=4~5,如冰醋酸或甲酸等;用弱碱调节溶液的pH=9~10,如氨水或碳酸氢钠等。 In step 2) of the above synthesis method, the alcohol in the alcohol/water solution is glycerol or ethanol, the volume ratio of alcohol to water is preferably 0.6 to 1.5:1, and the amount of alcohol/water solution is usually 1gFe 3 O 4 magnetic Nanoparticles are calculated with 50-100mL alcohol/water solution. In this step, the time for ultrasonic dispersion is the same as that of the prior art, usually 10 to 50 min; The mass-volume ratio of ethyl acetate is: 1g: 2-5ml. After adding tetraethyl orthosilicate, adjust the pH of the solution to 4~5 or pH=9 to 10 and then carry out the reaction to obtain Fe 3 O 4 /SiO 2 magnetic nanoparticles, and adjust the pH of the solution to 4~5 Or the Fe 3 O 4 /SiO 2 magnetic nanoparticles obtained by the reaction at pH=9~10 have almost no difference in properties and performance; in general, use a weak acid to adjust the pH=4~5 of the solution, such as glacial acetic acid or Formic acid, etc.; adjust the pH of the solution to 9-10 with a weak base, such as ammonia or sodium bicarbonate.
上述合成方法的步骤3.1)中,通常情况下,二水合5-磺基水杨酸和氯化亚砜的摩尔比通常为1:25~72。所述催化剂甲酰胺的用量通常为二水合5-磺基水杨酸摩尔量的20~55%。反应通常在油浴条件下进行,为了避免反应时产生暴沸现象,优选是在反应体系中加入几粒沸石。 In step 3.1) of the above synthesis method, usually, the molar ratio of 5-sulfosalicylic acid dihydrate and thionyl chloride is usually 1:25-72. The dosage of the catalyst formamide is usually 20-55% of the molar weight of 5-sulfosalicylic acid dihydrate. The reaction is usually carried out under oil bath conditions. In order to avoid bumping during the reaction, it is preferable to add several zeolites to the reaction system.
上述合成方法的步骤3.2)中,Fe3O4/SiO2磁性纳米粒子和5-磺基水杨酰氯的质量比通常为1:3~6。所述的催化剂吡啶为无水吡啶,具体是将吡啶按现有常规方法除去其中的水份即可;所述无水吡啶的用量通常为Fe3O4/SiO2磁性纳米粒子质量的5~10%。反应通常在冰浴条件下进行。 In step 3.2) of the above synthesis method, the mass ratio of Fe 3 O 4 /SiO 2 magnetic nanoparticles to 5-sulfosalicyloyl chloride is usually 1:3-6. The catalyst pyridine is anhydrous pyridine, specifically, the water in the pyridine can be removed according to the existing conventional method; the amount of the anhydrous pyridine is usually 5-5% of the mass of the Fe 3 O 4 /SiO 2 magnetic nanoparticles. 10%. The reaction is usually performed under ice bath conditions.
本发明所述的合成方法中,所用到的水可以是不为反应体系带入其它杂质的水,如亚沸水、双蒸水、去离子水、纯净水等;所述的保护气氛具体可以是氮气、氩气、氦气等其它保护气氛;所述的洗涤通常是用水(如前所述,可以是亚沸水、双蒸水、去离子水、纯净水等)和无水乙醇交替洗涤;所述的干燥通常采用真空干燥。 In the synthesis method of the present invention, the water used can be water that does not bring other impurities into the reaction system, such as sub-boiling water, double distilled water, deionized water, pure water, etc.; the protective atmosphere can be specifically Other protective atmospheres such as nitrogen, argon, helium; Described washing is usually water (as mentioned above, can be sub-boiling water, double distilled water, deionized water, pure water, etc.) and dehydrated alcohol to wash alternately; The drying described above usually adopts vacuum drying.
由上述方法合成得到的5-磺基水杨酸功能化的Fe3O4磁性纳米粒子的粒径在10~15nm,呈球形,尺寸均匀,分散性好。 The 5-sulfosalicylic acid functionalized Fe 3 O 4 magnetic nanoparticles synthesized by the above method have a particle diameter of 10-15 nm, are spherical, uniform in size and good in dispersibility.
本发明还包括上述磺基功能化的Fe3O4磁性纳米粒子在吸附分离硒形态中的应用,具体对Se(VI)、Se(IV)、SeMet(硒代蛋氨酸)和SeCys2(硒代胱氨酸)四种硒形态的吸附效果较好,其中以对Se(IV)的吸附最好。在吸附时,调节含有硒离子或含硒化合的液体样品的pH=1~5(优选pH=3~5,更优选pH=4),然后加入磺基功能化的Fe3O4磁性纳米粒子进行吸附,吸附的时间≥4min时吸附即可达到较好的效果,优选控制为5min。当含有硒离子或含硒化合的液体样品中硒离子的总浓度≤20ng·mL-1时,在上述条件下(待测液体样品的pH=4、吸附时间为5min),磺基功能化的Fe3O4磁性纳米粒子的加入量为10mg时,可对上述样品中的硒离子吸附完全。如果需要对吸附的硒离子进行解析以对样品中硒离子浓度的测定,具体在解析时,将吸附了硒离子磺基功能化的Fe3O4磁性纳米粒子置于容器中,加入Na2CO3溶液进行超声洗脱,超声的时间≥3min,优选为4min,然后收集上清液进行硒含量的检测;所述Na2CO3溶液的浓度优选为0.1~2.0mol/L。 The present invention also includes the application of the above-mentioned sulfo-functionalized Fe 3 O 4 magnetic nanoparticles in the adsorption and separation of selenium forms, specifically for Se(VI), Se(IV), SeMet (selenomethionine) and SeCys 2 (selenomethionine). Cystine) had better adsorption effects on the four forms of selenium, among which Se(IV) was the best. During adsorption, adjust the pH=1~5 (preferably pH=3~5, more preferably pH=4) of the liquid sample containing selenium ions or selenium compounds, and then add sulfo-functionalized Fe 3 O 4 magnetic nanoparticles Adsorption is carried out, and the adsorption can achieve a better effect when the adsorption time is ≥ 4 minutes, and it is preferably controlled to 5 minutes. When the total concentration of selenium ions in the liquid sample containing selenium ions or selenium compounds is ≤20ng·mL -1 , under the above conditions (pH of the liquid sample to be tested=4, adsorption time is 5min), the sulfo-functionalized When the added amount of Fe 3 O 4 magnetic nanoparticles is 10 mg, the selenium ions in the above samples can be completely adsorbed. If it is necessary to analyze the adsorbed selenium ions to determine the concentration of selenium ions in the sample, specifically during the analysis, place the Fe 3 O 4 magnetic nanoparticles adsorbed on the sulfo-functionalized selenium ions in a container, add Na 2 CO 3 The solution is ultrasonically eluted, and the ultrasonic time is ≥ 3 min, preferably 4 min, and then the supernatant is collected for detection of selenium content; the concentration of the Na 2 CO 3 solution is preferably 0.1-2.0 mol/L.
更进一步地,本发明提供磺基功能化的Fe3O4磁性纳米粒子在液体样品中硒形态分析及痕量硒检测中的应用。所述液体样品中痕量硒的检测限为0.17~0.54ng/mL。 Furthermore, the present invention provides the application of sulfo-functionalized Fe 3 O 4 magnetic nanoparticles in the speciation analysis of selenium in liquid samples and the detection of trace selenium. The detection limit of trace selenium in the liquid sample is 0.17-0.54 ng/mL.
与现有技术相比,本发明提供了一种经5-磺基水杨酰氯修饰的磺基功能化的Fe3O4磁性纳米粒子,所述粒子的合成方法简单,合成得到的粒子呈球形,尺寸均匀,分散性好,对硒形态具有良好的吸附作用。 Compared with the prior art, the present invention provides a sulfo-functionalized Fe3O4 magnetic nanoparticle modified by 5 -sulfosalicyloyl chloride, the synthesis method of the particle is simple, and the synthesized particle is spherical , uniform in size, good dispersion, and good adsorption to selenium species.
附图说明 Description of drawings
图1为本发明实施例1制得的MNPs、SMNPs和SSA-SMNPs磁性纳米粒子的红外表征谱图,其中,a为MNPs磁性纳米粒子的红外光谱,b为SMNPs磁性纳米粒子的红外光谱,c为SSA-SMNPs磁性纳米粒子的红外光谱; Fig. 1 is the infrared characterization spectrogram of MNPs, SMNPs and SSA-SMNPs magnetic nanoparticle that the embodiment of the present invention 1 makes, wherein, a is the infrared spectrum of MNPs magnetic nanoparticle, b is the infrared spectrum of SMNPs magnetic nanoparticle, c is the infrared spectrum of SSA-SMNPs magnetic nanoparticles;
图2为本发明实施例1制得的SSA-SMNPs磁性纳米粒子的XRD图; Fig. 2 is the XRD figure of the SSA-SMNPs magnetic nanoparticle that the embodiment of the present invention 1 makes;
图3为本发明实施例1制得的SSA-SMNPs磁性纳米粒子的TEM图; Fig. 3 is the TEM figure of the SSA-SMNPs magnetic nanoparticle that the embodiment of the present invention 1 makes;
图4为本发明实施例1制得的SSA-SMNPs磁性纳米粒子的磁滞回线; Fig. 4 is the hysteresis loop of the SSA-SMNPs magnetic nanoparticle that the embodiment of the present invention 1 makes;
图5为本发明实施例1制得的SSA-SMNPs磁性纳米粒子在无磁场和有磁场条件下的状态,其中a图表示SSA-SMNPs磁纳米粒子在无磁场条件下的状态,b图表示SSA-SMNPs磁纳米粒子在有磁场条件下的状态; Figure 5 is the state of the SSA-SMNPs magnetic nanoparticles prepared in Example 1 of the present invention under the conditions of no magnetic field and a magnetic field, wherein a figure represents the state of the SSA-SMNPs magnetic nanoparticles under the condition of no magnetic field, and figure b represents the state of SSA -The state of SMNPs magnetic nanoparticles under the condition of magnetic field;
图6~9分别为混合标准溶液(Se(VI)、Se(IV)SeMet和SeCys2的浓度均为5ng·mL-1)中Se(VI)、Se(IV)、SeMet和SeCys2的工作曲线; Figures 6 to 9 are the work of Se(VI), Se(IV), SeMet and SeCys 2 in the mixed standard solution (the concentrations of Se(VI), Se(IV)SeMet and SeCys 2 are all 5ng·mL -1 ) curve;
图10为CE-ETAAS测定混合标准溶液及腐乳液和腐乳废水样品中硒形态的电泳图,其中A为浓度均为5ng·mL-1的Se(VI)、Se(IV)SeMet和SeCys2的混合标准溶液的电泳图;B为腐乳废水样品的电泳图;C为4ng·mL-1Se(VI)、3ng·mL-1Se(IV)、2ng·mL-1SeMet、2ng·mL-1SeCys2和腐乳废水样品的混合液的电泳图;D为腐乳液的电泳图;E为6ng·mL-1Se(VI)、4ng·mL-1Se(IV)、3ng·mL-1SeMet、4ng·mL-1SeCys2和腐乳液样品的混合液的电泳图。 Fig. 10 is the electrophoresis figure of CE-ETAAS determination mixed standard solution and the selenium form in the fermented bean curd and fermented bean curd wastewater samples, wherein A is Se(VI), Se(IV)SeMet and SeCys that concentration is 5ng mL - 1 Electrophoresis of mixed standard solution; B is the electrophoresis of fermented bean curd wastewater sample; C is 4ng·mL -1 Se(VI), 3ng·mL -1 Se(IV), 2ng·mL -1 SeMet, 2ng·mL -1 Electrophoresis of the mixture of SeCys 2 and bean curd wastewater samples; D is the electrophoresis of the bean curd emulsion; E is 6ng mL -1 Se(VI), 4ng mL -1 Se(IV), 3ng mL -1 SeMet , 4ng·mL -1 SeCys 2 and the electrophoresis of the mixture of saprophyllum samples.
具体实施方式 detailed description
下面以具体实施例对本发明作进一步说明,但本发明并不局限于这些实施例。 The present invention will be further described below with specific examples, but the present invention is not limited to these examples.
以下各实施例中,所述的MNPs表示Fe3O4磁性纳米粒子,所述的SMNPs表示Fe3O4/SiO2磁性纳米粒子,所述的SSA-SMNPs表示5-磺基水杨酸功能化的Fe3O4磁性纳米粒子。 In the following examples, the MNPs represent Fe 3 O 4 magnetic nanoparticles, the SMNPs represent Fe 3 O 4 /SiO 2 magnetic nanoparticles, and the SSA-SMNPs represent 5-sulfosalicylic acid functional Fe 3 O 4 magnetic nanoparticles.
实施例1 Example 1
1)Fe3O4磁性纳米粒子(MNPs)的制备 1) Preparation of Fe 3 O 4 magnetic nanoparticles (MNPs)
准确称取4.7300gFeCl3·6H2O和1.9881gFeCl2·4H2O(Fe3+:Fe2+=1.75:1,n/n),溶入200mL脱氧水(除氧的亚沸水)中,超声10min,然后转入500mL三颈烧瓶中,在氮气保护下85℃以800rpm搅拌30min,迅速加入20mL浓度为25%~28%的氨水,溶液颜色立即变黑(此时溶液的pH为9.5),熟化30min。反应混合物冷却至室温,通过外部磁场分离,使用亚沸水和无水乙醇交替洗涤3次,真空70℃干燥,冷却,得到MNPs。 Accurately weigh 4.7300g FeCl 3 6H 2 O and 1.9881g FeCl 2 4H 2 O (Fe 3+ :Fe 2+ =1.75:1, n/n), dissolve them in 200mL deoxygenated water (deoxygenated sub-boiling water), Sonicate for 10 minutes, then transfer to a 500mL three-neck flask, stir at 85°C and 800rpm for 30min under nitrogen protection, and quickly add 20mL of ammonia water with a concentration of 25% to 28%, and the color of the solution turns black immediately (the pH of the solution at this time is 9.5) , matured for 30 minutes. The reaction mixture was cooled to room temperature, separated by an external magnetic field, washed three times alternately with sub-boiling water and absolute ethanol, dried under vacuum at 70 °C, and cooled to obtain MNPs.
2)Fe3O4/SiO2磁性纳米粒子(SMNPs)的制备 2) Preparation of Fe 3 O 4 /SiO 2 Magnetic Nanoparticles (SMNPs)
将上述制得的MNPs2g溶于200mL丙三醇和亚沸水(1:1,v/v)中超声分散30min,加入10mLTEOS(正硅酸乙酯,TEOS的加入量按1gMNPs加入5mLTEOS计算),转入500mL三颈烧瓶中,氮气保护,用冰醋酸调pH至4.5,在90℃条件下以800rpm搅拌反应2h,反应混合物冷却至室温,外部磁场分离,使用亚沸水和无水乙醇交替洗涤3次,真空70℃干燥,冷却,得到SMNPs。 Dissolve 2 g of the above-prepared MNPs in 200 mL of glycerol and sub-boiling water (1:1, v/v) for ultrasonic dispersion for 30 min, add 10 mL of TEOS (tetraethyl orthosilicate, the amount of TEOS is calculated as 1 g of MNPs by adding 5 mL of TEOS), and transfer to In a 500mL three-neck flask, under nitrogen protection, adjust the pH to 4.5 with glacial acetic acid, stir the reaction at 800rpm at 90°C for 2h, cool the reaction mixture to room temperature, separate it with an external magnetic field, and wash it three times alternately with sub-boiling water and absolute ethanol. Vacuum drying at 70°C and cooling to obtain SMNPs.
3)5-磺基水杨酸功能化的Fe3O4磁性纳米粒子(SSA-SMNPs)的制备 3) Preparation of 5-sulfosalicylic acid functionalized Fe 3 O 4 magnetic nanoparticles (SSA-SMNPs)
3.1)称取2.5gSSA(二水合5-磺基水杨酸)于100mL三颈烧瓶中,放入3粒沸石,加入40mLSOCl2和占SSA摩尔用量24%的甲酰胺,在油浴110℃反应7h,反应物冷却至室温后,用旋转蒸发仪55℃蒸除过量的SOCl2,得到浅棕色油状物,即为5-磺基水杨酰氯。经过结果表征,确定5-磺基水杨酰氯的结构式如下: 3.1) Weigh 2.5g of SSA (5-sulfosalicylic acid dihydrate) in a 100mL three-necked flask, put 3 zeolites, add 40mL of SOCl 2 and formamide accounting for 24% of the molar amount of SSA, and react in an oil bath at 110°C After 7 hours, the reactant was cooled to room temperature, and excess SOCl 2 was evaporated at 55° C. with a rotary evaporator to obtain a light brown oily substance, which was 5-sulfosalicylic acid chloride. Through result characterization, it is determined that the structural formula of 5-sulfosalicyl chloride is as follows:
3.2)取上述制得的SMNPs与过量的5-磺基水杨酰氯(SMNPs和5-磺基水杨酰氯的质量比为1:3)置于反应溶容器中,加入相当于SMNPs5%质量的无水吡啶,在5~10℃的条件下搅拌反应24h,然后通过外部磁场分离,用亚沸水和无水乙醇交替洗涤3次,真空70℃干燥,冷却,得到SSA-SMNPs。所述SSA-SMNPs的合成路线如下: 3.2) Put the above-prepared SMNPs and excess 5-sulfosalicylic acid chloride (the mass ratio of SMNPs and 5-sulfosalicylic acid chloride is 1:3) into a reaction solution container, and add 5% of the mass of SMNPs Anhydrous pyridine, stirred and reacted at 5-10°C for 24h, then separated by an external magnetic field, washed alternately with sub-boiling water and absolute ethanol three times, dried in vacuum at 70°C, and cooled to obtain SSA-SMNPs. The synthetic route of described SSA-SMNPs is as follows:
对上述制得的SSA-SMNPs进行表征: Characterize the SSA-SMNPs prepared above:
1、FT-IR光谱 1. FT-IR spectrum
采用FT-IR光谱对SSA-SMNPs进行表征,确定硅羟基和磺基键合到Fe3O4磁性纳米粒子表面。对MNPs、SMNPs和SSA-SMNPs的红外表征图如图1所示。MNPs中,586cm-1处的峰为Fe-O的特征吸收峰。Fe3O4粒子表面的-OH可与SiO2进行键合,防止Fe3O4被氧化并为下一步接官能团提供一个平台。SMNPs中,1080.12cm-1处的峰为Si-O的伸缩振动,说明SiO2成功键合到Fe3O4表面。SSA-SMNPs中,1670cm-1处为C=O伸缩振动,羰基与苯环共轭,吸收移向低频率。1431.54cm-1处为苯环骨架振动[27],说明有苯环的存在。1160cm-1处峰为-SO3H伸缩振动吸收峰。说明SSA成功键合到SMNPs磁性纳米粒子表面。 The SSA-SMNPs were characterized by FT-IR spectroscopy, which confirmed that the silanol and sulfo groups were bonded to the surface of Fe3O4 magnetic nanoparticles. The infrared characterization images of MNPs, SMNPs and SSA-SMNPs are shown in Fig. 1 . In MNPs, the peak at 586cm -1 is the characteristic absorption peak of Fe-O. The -OH on the surface of Fe 3 O 4 particles can bond with SiO 2 to prevent Fe 3 O 4 from being oxidized and provide a platform for the next step of attaching functional groups. In SMNPs, the peak at 1080.12 cm -1 is the stretching vibration of Si-O, indicating that SiO 2 is successfully bonded to the surface of Fe 3 O 4 . In SSA-SMNPs, C=O stretching vibration occurs at 1670cm -1 , the carbonyl is conjugated with the benzene ring, and the absorption shifts to low frequencies. At 1431.54cm -1 is the vibration of the benzene ring skeleton [27] , indicating the existence of the benzene ring. The peak at 1160cm -1 is -SO 3 H stretching vibration absorption peak. It shows that SSA is successfully bonded to the surface of SMNPs magnetic nanoparticles.
2、元素分析 2. Elemental analysis
元素分析是鉴定化合物中存在的元素及其含量的分析。被测物质中的碳、氢、氮、硫经过催化氧化-还原后分别转化为二氧化碳、水蒸气、氮气、二氧化硫。被测物质中的氧经过高温裂解得到一氧化碳。在载气的推动下,此混合气体经过色谱柱后被有效分离,各组分被元素分析仪TCD检测器依次测定。实验中对SSA-SMNPs粒子中的C、S、H元素进行元素分析,得到C含量为6.86%,S含量为2.618%。通过计算得到C与S的摩尔比为7:1,说明磺基水杨酸成功接枝到SiO2包覆的MNPs上,合成了磺基功能化的SSA-SMNPs磁性纳米粒子。 Elemental analysis is the analysis that identifies the elements present in compounds and their amounts. The carbon, hydrogen, nitrogen, and sulfur in the measured substance are converted into carbon dioxide, water vapor, nitrogen, and sulfur dioxide respectively after catalytic oxidation-reduction. The oxygen in the substance to be tested is pyrolyzed to obtain carbon monoxide. Driven by the carrier gas, the mixed gas is effectively separated after passing through the chromatographic column, and each component is sequentially measured by the TCD detector of the elemental analyzer. In the experiment, the elements of C, S, and H in the SSA-SMNPs particles were analyzed, and the C content was 6.86%, and the S content was 2.618%. The calculated molar ratio of C to S was 7:1, which indicated that sulfosalicylic acid was successfully grafted onto SiO2 -coated MNPs, and sulfo-functionalized SSA-SMNPs magnetic nanoparticles were synthesized.
3、XRD分析 3. XRD analysis
X射线衍射(XRD)是研究晶体物质和某些非晶体物质微观结构的有效方法。上述实施例制得的SSA-SMNPs磁性纳米粒子的XRD图如图2所示。从图中可知,SSA-SMNPs在2θ为30.38°,35.70°,43.28°,53.86°,57.36°和62.86°处出现衍射峰,分别对应立方相Fe3O4的(220)、(311)、(400)、(422)、(511)和(440)晶面。与标准Fe3O4晶体数据相一致(JCPDSNo.65-3107)。各衍射峰的峰位基本未发生变化,说明表面包覆SiO2和磺酸基功能化过程中没有改变Fe3O4纳米粒子的尖晶石结构。通过软件Jade5.0分析SSA-SMNPs磁纳米粒子图谱,估算SSA-SMNPs平均粒径为10.9nm。 X-ray diffraction (XRD) is an effective method for studying the microstructure of crystalline substances and some amorphous substances. The XRD patterns of the SSA-SMNPs magnetic nanoparticles prepared in the above examples are shown in FIG. 2 . It can be seen from the figure that the diffraction peaks of SSA- SMNPs appear at 2θ of 30.38°, 35.70°, 43.28°, 53.86 °, 57.36° and 62.86°, corresponding to (220), (311), (400), (422), (511) and (440) crystal planes. It is consistent with the standard Fe 3 O 4 crystal data (JCPDS No.65-3107). The peak position of each diffraction peak basically did not change, indicating that the spinel structure of Fe 3 O 4 nanoparticles was not changed during the process of surface coating SiO 2 and sulfonic acid group functionalization. The magnetic nanoparticle spectrum of SSA-SMNPs was analyzed by software Jade5.0, and the average particle size of SSA-SMNPs was estimated to be 10.9nm.
4、TEM分析 4. TEM analysis
透射电镜(TEM)可直接得到粒子的大小及形态。上述实施例制得的SSA-SMNPs磁性纳米粒子的TEM图如图3所示。由图可知,由该方法制得的SSA-SMNPs平均粒径约为10.9nm,尺寸均匀,为球形,分散性好。通过包覆SiO2和磺基功能化,使得磁纳米粒子之间的团聚得到改善,提高了磁纳米粒子的分散性,增强了磁纳米粒子的化学稳定性。 Transmission electron microscopy (TEM) can directly obtain the size and shape of particles. The TEM image of the SSA-SMNPs magnetic nanoparticles prepared in the above embodiment is shown in FIG. 3 . It can be seen from the figure that the average particle size of SSA-SMNPs prepared by this method is about 10.9nm, the size is uniform, spherical, and the dispersion is good. By coating SiO2 and sulfo functionalization, the agglomeration between the magnetic nanoparticles is improved, the dispersion of the magnetic nanoparticles is improved, and the chemical stability of the magnetic nanoparticles is enhanced.
5、VSM分析 5. VSM analysis
磁滞回线反应了磁性材料对磁场变化的响应能力,是表征磁性材料特性的一个重要曲线。利用振动样品磁强计(VSM)对上述实施例制得的SSA-SMNPs磁性能进行研究,其磁滞回线如图4所示。图中为SSA-SMNPs的在300K下测定的磁滞回线,SSA-SMNPs的饱和磁化强度为69.4emu·g-1。在磁化过程中,SSA-SMNPs磁化强度随着外磁场强度的增加而迅速增加,快速达到饱和,当外磁场强度减弱时,SSA-SMNPs的磁化强度沿原磁化路径返回,呈现可逆的“S”型,没有任何磁滞环,表明SSA-SMNPs在300K下没有剩磁现象和矫顽力,具有良好的超顺磁性。图5为上述实施例制得的SSA-SMNPs磁性纳米粒子在无磁场和有磁场条件下的状态,其中a图表示SSA-SMNPs磁纳米粒子在无磁场条件下的状态,b图表示SSA-SMNPs磁纳米粒子在有磁场条件下的状态。在有外磁场的作用下,SSA-SMNPs吸附在瓶壁磁场一侧,也说明SSA-SMNPs具有良好的磁性。 The hysteresis loop reflects the response ability of magnetic materials to changes in magnetic field, and is an important curve to characterize the characteristics of magnetic materials. The magnetic properties of the SSA-SMNPs prepared in the above embodiment were studied by using a vibrating sample magnetometer (VSM), and the hysteresis loop is shown in FIG. 4 . The figure shows the hysteresis loop of SSA-SMNPs measured at 300K, and the saturation magnetization of SSA-SMNPs is 69.4emu·g -1 . During the magnetization process, the magnetization of SSA-SMNPs increases rapidly with the increase of the external magnetic field intensity, and quickly reaches saturation. When the external magnetic field intensity weakens, the magnetization intensity of SSA-SMNPs returns along the original magnetization path, presenting a reversible "S" type, without any hysteresis loop, indicating that SSA-SMNPs have no remanence and coercive force at 300K, and have good superparamagnetism. Fig. 5 is the state of the SSA-SMNPs magnetic nanoparticle that above-mentioned embodiment makes under the condition of no magnetic field and magnetic field, wherein a figure represents the state of SSA-SMNPs magnetic nanoparticle under the condition of no magnetic field, b figure represents SSA-SMNPs The state of magnetic nanoparticles in the presence of a magnetic field. Under the action of an external magnetic field, SSA-SMNPs adsorbed on the magnetic field side of the bottle wall, which also indicated that SSA-SMNPs had good magnetic properties.
实施例2 Example 2
1)MNPs的制备 1) Preparation of MNPs
按Fe3+:Fe2+=2:1的物质的量之比准确称取FeCl3·6H2O和FeCl2·4H2O,加入脱氧水(脱氧水为除氧的亚沸水,脱氧水的用量按每0.01mol铁盐(包括二价铁盐和三价铁盐)用100mL脱氧水计算),超声5min,然后转入500mL三颈烧瓶中,在氮气保护下70℃以1000rpm搅拌10min,迅速加入氨水(浓度为25%)调节溶液的pH为10,熟化60min。反应混合物冷却至室温,通过外部磁场分离,使用亚沸水和无水乙醇交替洗涤3次,真空60℃干燥,冷却,得到MNPs; Accurately weigh FeCl 3 6H 2 O and FeCl 2 4H 2 O according to the amount ratio of Fe 3+ : Fe 2+ = 2:1, add deoxygenated water (deoxygenated water is deoxygenated sub-boiling water, deoxygenated water The dosage is calculated by using 100mL of deoxygenated water per 0.01mol of iron salt (including ferrous and ferric salts), ultrasonication for 5min, and then transferred to a 500mL three-necked flask, stirred at 1000rpm at 70°C for 10min under nitrogen protection, Quickly add ammonia water (concentration: 25%) to adjust the pH of the solution to 10, and ripen for 60 minutes. The reaction mixture was cooled to room temperature, separated by an external magnetic field, washed three times alternately with sub-boiling water and absolute ethanol, dried under vacuum at 60°C, and cooled to obtain MNPs;
2)SMNPs的制备 2) Preparation of SMNPs
将上述制得的MNPs2g溶于200mL乙醇和亚沸水(0.6:1,v/v)中超声分散10min,加入TEOS(TEOS的加入量按1gMNPs加入2mLTEOS计算),转入500mL三颈烧瓶中,氮气保护,用冰醋酸调pH至5,在80℃条件下以800rpm搅拌反应10h,反应混合物冷却至室温,外部磁场分离,使用亚沸水和无水乙醇交替洗涤3次,真空70℃干燥,冷却,得到SMNPs; Dissolve 2 g of the above-prepared MNPs in 200 mL of ethanol and sub-boiling water (0.6:1, v/v) for ultrasonic dispersion for 10 min, add TEOS (the amount of TEOS is calculated by adding 2 mL of TEOS to 1 g of MNPs), transfer to a 500 mL three-necked flask, and nitrogen Protected, adjust the pH to 5 with glacial acetic acid, stir the reaction at 800rpm at 80°C for 10h, cool the reaction mixture to room temperature, separate with an external magnetic field, wash 3 times alternately with sub-boiling water and absolute ethanol, dry in vacuum at 70°C, and cool. Get SMNPs;
3)SSA-SMNPs的制备 3) Preparation of SSA-SMNPs
3.1)称取2.5gSSA(二水合5-磺基水杨酸)于100mL三颈烧瓶中,放入2粒沸石,加入50mLSOCl2和占SSA摩尔用量40%的甲酰胺,在油浴110℃反应10h,反应物冷却至室温后,用旋转蒸发仪70℃蒸除过量的SOCl2,得到5-磺基水杨酰氯; 3.1) Weigh 2.5g of SSA (5-sulfosalicylic acid dihydrate) in a 100mL three-neck flask, put 2 zeolites, add 50mL of SOCl 2 and formamide accounting for 40% of the molar amount of SSA, and react in an oil bath at 110°C After 10 hours, the reactant was cooled to room temperature, and the excess SOCl 2 was evaporated at 70°C with a rotary evaporator to obtain 5-sulfosalicyl chloride;
3.2)取上述制得的SMNPs与过量的5-磺基水杨酰氯(SMNPs和5-磺基水杨酰氯的质量比为1:5)置于反应溶容器中,加入相当于SMNPs10%质量的无水吡啶,在0~4℃的条件下搅拌反应18h,然后通过外部磁场分离,用亚沸水和无水乙醇交替洗涤3次,真空70℃干燥,冷却,得到SSA-SMNPs。 3.2) Put the above-prepared SMNPs and excess 5-sulfosalicyl chloride (the mass ratio of SMNPs and 5-sulfosalicyl chloride is 1:5) into a reaction solution container, and add 10% of the mass of SMNPs Anhydrous pyridine, stirred and reacted at 0-4°C for 18h, then separated by an external magnetic field, washed alternately with sub-boiling water and absolute ethanol three times, dried in vacuum at 70°C, and cooled to obtain SSA-SMNPs.
本实施例所制得的SSA-SMNPs的平均粒径为12.4nm,在300K下其饱和磁化强度为70.1emu·g-1。 The average particle size of the SSA-SMNPs prepared in this example is 12.4 nm, and the saturation magnetization at 300K is 70.1 emu·g -1 .
实施例3 Example 3
1)MNPs的制备 1) Preparation of MNPs
按Fe3+:Fe2+=1.3:1的物质的量之比准确称取FeCl3·6H2O和FeCl2·4H2O,加入脱氧水(脱氧水为除氧的亚沸水,脱氧水的用量按每0.01mol铁盐(包括二价铁盐和三价铁盐)用50mL脱氧水计算),超声30min,然后转入500mL三颈烧瓶中,在氮气保护下90℃以1000rpm搅拌20min,迅速加入氨水(浓度为28%)调节溶液的pH为9,熟化120min。反应混合物冷却至室温,通过外部磁场分离,使用亚沸水和无水乙醇交替洗涤3次,真空60℃干燥,冷却,得到MNPs; Accurately weigh FeCl 3 6H 2 O and FeCl 2 4H 2 O according to the amount ratio of Fe 3+ : Fe 2+ = 1.3:1, add deoxygenated water (deoxygenated water is deoxygenated sub-boiling water, deoxygenated water The dosage is calculated by using 50mL deoxygenated water per 0.01mol iron salt (including ferrous iron salt and ferric iron salt), ultrasonic for 30min, then transferred to a 500mL three-necked flask, stirred at 1000rpm at 90°C for 20min under nitrogen protection, Quickly add ammonia water (concentration: 28%) to adjust the pH of the solution to 9, and ripen for 120 minutes. The reaction mixture was cooled to room temperature, separated by an external magnetic field, washed three times alternately with sub-boiling water and absolute ethanol, dried under vacuum at 60°C, and cooled to obtain MNPs;
2)SMNPs的制备 2) Preparation of SMNPs
将上述制得的MNPs3g溶于200mL乙醇和亚沸水(1.5:1,v/v)中超声分散50min,加入TEOS(TEOS的加入量按1gMNPs加入3mLTEOS计算),转入500mL三颈烧瓶中,氮气保护,用氨水调pH至9,在70℃条件下以1000rpm搅拌反应1h,反应混合物冷却至室温,外部磁场分离,使用亚沸水和无水乙醇交替洗涤3次,真空60℃干燥,冷却,得到SMNPs; Dissolve 3 g of the above-prepared MNPs in 200 mL of ethanol and sub-boiling water (1.5:1, v/v) for ultrasonic dispersion for 50 min, add TEOS (the amount of TEOS added is calculated by adding 3 mL TEOS to 1 g of MNPs), transfer it to a 500 mL three-necked flask, and nitrogen protection, adjust the pH to 9 with ammonia water, stir the reaction at 1000rpm at 70°C for 1h, cool the reaction mixture to room temperature, separate with an external magnetic field, alternately wash 3 times with sub-boiling water and absolute ethanol, dry at 60°C in vacuum, and cool to obtain SMNPs;
3)SSA-SMNPs的制备 3) Preparation of SSA-SMNPs
3.1)称取2.5gSSA(二水合5-磺基水杨酸)于100mL三颈烧瓶中,放入2粒沸石,加入50mLSOCl2和占SSA摩尔用量55%的甲酰胺,在油浴100℃反应10h,反应物冷却至室温后,用旋转蒸发仪55℃蒸除过量的SOCl2,得到5-磺基水杨酰氯; 3.1) Weigh 2.5g of SSA (5-sulfosalicylic acid dihydrate) in a 100mL three-necked flask, put 2 zeolites into it, add 50mL of SOCl 2 and formamide accounting for 55% of the molar amount of SSA, and react in an oil bath at 100°C After 10 h, the reactant was cooled to room temperature, and the excess SOCl 2 was evaporated with a rotary evaporator at 55°C to obtain 5-sulfosalicyl chloride;
3.2)取上述制得的SMNPs与过量的5-磺基水杨酰氯(SMNPs和5-磺基水杨酰氯的质量比为1:6)置于反应溶容器中,加入相当于SMNPs8%质量的无水吡啶,在0℃的条件下搅拌反应12h,然后通过外部磁场分离,用亚沸水和无水乙醇交替洗涤3次,真空60℃干燥,冷却,得到SSA-SMNPs。 3.2) Put the above-prepared SMNPs and excess 5-sulfosalicylic acid chloride (the mass ratio of SMNPs and 5-sulfosalicylic acid chloride is 1:6) into a reaction solution container, and add 8% of the mass of SMNPs Anhydrous pyridine, stirred and reacted at 0°C for 12h, then separated by an external magnetic field, washed alternately with sub-boiling water and absolute ethanol three times, dried in vacuum at 60°C, and cooled to obtain SSA-SMNPs.
本实施例所制得的SSA-SMNPs的平均粒径为11.5nm,在300K下其饱和磁化强度为71.2emu·g-1。 The average particle size of the SSA-SMNPs prepared in this example is 11.5 nm, and its saturation magnetization is 71.2 emu·g -1 at 300K.
实施例4 Example 4
1)MNPs的制备 1) Preparation of MNPs
按Fe3+:Fe2+=1:1的物质的量之比准确称取FeCl3·6H2O和FeCl2·4H2O,加入150mL脱氧水(脱氧水为除氧的亚沸水,脱氧水的用量按每0.01mol铁盐(包括二价铁盐和三价铁盐)用150mL脱氧水计算),超声30min,然后转入500mL三颈烧瓶中,在氩气保护下65℃以1000rpm搅拌30min,迅速加入氨水调节溶液的pH为10,熟化90min。反应混合物冷却至室温,通过外部磁场分离,使用亚沸水和无水乙醇交替洗涤3次,真空80℃干燥,冷却,得到MNPs; Accurately weigh FeCl 3 6H 2 O and FeCl 2 4H 2 O according to the ratio of Fe 3+ : Fe 2+ = 1:1, and add 150 mL of deoxygenated water (deoxygenated water is deoxygenated sub-boiling water, deoxygenated The amount of water used is calculated by using 150mL of deoxygenated water per 0.01mol of iron salt (including ferrous and ferric salts), sonicated for 30min, then transferred to a 500mL three-necked flask, stirred at 1000rpm at 65°C under argon protection After 30 minutes, quickly add ammonia water to adjust the pH of the solution to 10, and ripen for 90 minutes. The reaction mixture was cooled to room temperature, separated by an external magnetic field, washed three times alternately with sub-boiling water and absolute ethanol, dried under vacuum at 80°C, and cooled to obtain MNPs;
2)SMNPs的制备 2) Preparation of SMNPs
将上述制得的MNPs4g溶于200mL乙醇和亚沸水(0.8:1,v/v)中超声分散10min,加入TEOS(TEOS的加入量按1gMNPs加入5mLTEOS计算),转入500mL三颈烧瓶中,氩气保护,用氨水调pH至10,在70℃条件下以1000rpm搅拌反应16h,反应混合物冷却至室温,外部磁场分离,使用亚沸水和无水乙醇交替洗涤3次,真空80℃干燥,冷却,得到SMNPs; Dissolve 4 g of the above-prepared MNPs in 200 mL of ethanol and sub-boiling water (0.8:1, v/v) for ultrasonic dispersion for 10 min, add TEOS (the amount of TEOS added is calculated as 1 g of MNPs added to 5 mL TEOS), transfer to a 500 mL three-necked flask, and argon Gas protection, adjust the pH to 10 with ammonia water, stir the reaction at 1000rpm at 70°C for 16h, cool the reaction mixture to room temperature, separate with an external magnetic field, wash 3 times alternately with sub-boiling water and absolute ethanol, dry at 80°C in vacuum, and cool. Get SMNPs;
3)SSA-SMNPs的制备 3) Preparation of SSA-SMNPs
3.1)称取2.5gSSA(二水合5-磺基水杨酸)于100mL三颈烧瓶中,放入2粒沸石,加入30mLSOCl2和占SSA摩尔用量30%的甲酰胺,在油浴120℃反应5h,反应物冷却至室温后,用旋转蒸发仪55℃蒸除过量的SOCl2,得到5-磺基水杨酰氯; 3.1) Weigh 2.5g of SSA (5-sulfosalicylic acid dihydrate) in a 100mL three-necked flask, put 2 zeolites, add 30mL of SOCl 2 and formamide accounting for 30% of the molar amount of SSA, and react in an oil bath at 120°C After 5h, the reactant was cooled to room temperature, and the excess SOCl 2 was evaporated with a rotary evaporator at 55°C to obtain 5-sulfosalicyl chloride;
3.2)取上述制得的SMNPs与过量的5-磺基水杨酰氯(SMNPs和5-磺基水杨酰氯的质量比为1:4)置于反应溶容器中,加入相当于SMNPs6%质量的无水吡啶,在5℃的条件下搅拌反应20h,然后通过外部磁场分离,用亚沸水和无水乙醇交替洗涤3次,真空50℃干燥,冷却,得到SSA-SMNPs。 3.2) Put the above-prepared SMNPs and excess 5-sulfosalicyl chloride (the mass ratio of SMNPs and 5-sulfosalicyl chloride is 1:4) into a reaction solution container, and add 6% of the mass of SMNPs Anhydrous pyridine, stirred and reacted at 5°C for 20h, then separated by an external magnetic field, washed alternately with sub-boiling water and absolute ethanol three times, dried in vacuum at 50°C, and cooled to obtain SSA-SMNPs.
本实施例所制得的SSA-SMNPs的平均粒径为10.2nm,在300K下其饱和磁化强度为75.1emu·g-1。 The average particle diameter of the SSA-SMNPs prepared in this example is 10.2nm, and the saturation magnetization at 300K is 75.1emu·g -1 .
实验例:采用实施例1制得的SSA-SMNPs磁性纳米粒子对含硒液体样品的吸附、采用CE-ETAAS联用技术测定 Experimental example: the adsorption of the SSA-SMNPs magnetic nanoparticles prepared in Example 1 to a selenium-containing liquid sample was measured by CE-ETAAS coupling technology
1、仪器及工作条件 1. Instruments and working conditions
TAS-986原子吸收分光光度计(北京普析通用仪器有限责任公司),硒空心阴极灯(北京曙光明电子光源仪器有限公司),SpectrumTwoFT-IR红外光谱仪(PerkinElmer),RigakuD/max2500/pc型X射线粉末衍射仪(日本理学);MPMS-XL-7超导量子干涉磁测量系统(美国QuantumDesign公司);JEM-2100透射电子显微镜(日本);PE2400II元素分析仪(PerkinElmer);喷雾器装置(见邓必阳等.Talanta109(2013)128~132);转子流量器(江阴市科达仪表厂),HV-303P1高压电泳电源(天津圣火科技有限公司),熔融硅石英毛细管(河北永年锐沣色谱公司),DW-3数显无极恒速搅拌器(巩义市英峪予华仪器厂),SYZ-550石英高纯水蒸馏器(江苏勤华玻璃仪器厂)。 TAS-986 Atomic Absorption Spectrophotometer (Beijing General Instrument Co., Ltd.), Selenium Hollow Cathode Lamp (Beijing Shuguang Electronic Light Source Instrument Co., Ltd.), SpectrumTwoFT-IR Infrared Spectrometer (PerkinElmer), RigakuD/max2500/pc Type X X-ray powder diffractometer (Japan Rigaku); MPMS-XL-7 superconducting quantum interference magnetic measurement system (U.S. QuantumDesign Company); JEM-2100 transmission electron microscope (Japan); PE2400II elemental analyzer (PerkinElmer); nebulizer device (see Deng Biyang etc. Talanta109 (2013) 128~132); rotameter (Jiangyin Keda Instrument Factory), HV-303P1 high-voltage electrophoresis power supply (Tianjin Shenghuo Technology Co., Ltd.), fused silica capillary (Hebei Yongnian Ruifeng Chromatography Company), DW-3 digital display stepless constant speed stirrer (Gongyi Yingyu Yuhua Instrument Factory), SYZ-550 quartz high-purity water distiller (Jiangsu Qinhua Glass Instrument Factory).
2、试剂 2. Reagents
FeCl2·4H2O、FeCl3·6H2O、正硅酸乙酯(Tetraethylsilicate,TEOS)、氨水、二水合5-磺基水杨酸(SSA)、NaOH、盐酸、磷酸钠(Na3PO4·12H2O)及磷酸氢二钠(Na2HPO4·12H2O)(西陇化工有限公司),无水乙醇、冰醋酸(广东光华科技股份有限公司),丙三醇、Na2CO3(汕头市光华化学厂),氯化亚砜(SOCl2,天津市致远化学有限公司),甲醇(上海试剂公司),十六烷基三甲基溴化铵(CTAB,湖南湘中化学试剂开发中心)。 FeCl 2 4H 2 O, FeCl 3 6H 2 O, tetraethylsilicate (TEOS), ammonia water, 5-sulfosalicylic acid dihydrate (SSA), NaOH, hydrochloric acid, sodium phosphate (Na 3 PO 4 12H 2 O) and disodium hydrogen phosphate (Na 2 HPO 4 12H 2 O) (Xilong Chemical Co., Ltd.), absolute ethanol, glacial acetic acid (Guangdong Guanghua Technology Co., Ltd.), glycerol, Na 2 CO 3 (Shantou Guanghua Chemical Factory), thionyl chloride (SOCl 2 , Tianjin Zhiyuan Chemical Co., Ltd.), methanol (Shanghai Reagent Company), cetyltrimethylammonium bromide (CTAB, Hunan Xiangzhong Chemical Reagent Development Center).
实验所用试剂均为分析纯;实验用水为亚沸水。 The reagents used in the experiment were of analytical grade; the water used in the experiment was sub-boiling water.
3、样品的引入 3. Introduction of samples
注入样品的体积受到进样时间、进样压力、试样性质及毛细管长度等影响,实验使用0.04MPa的氩气压力将样品溶液引入毛细管,进样时间10s,进样体积约0.5μL。新熔融硅毛细管预处理:用CH3OH冲洗30min,然后用0.1mol·L-1NaOH冲洗40min,最后用亚沸水冲洗10min。每次实验前,用缓冲溶液冲洗8min。实验完毕后用0.1mol·L-1NaOH冲洗10min,用亚沸水冲洗15min。在实验前,所有样品均超声处理10min除去气泡,防止电泳过程产生断流现象。实验时,先用缓冲溶液充满整段毛细管,然后压力进样,进样完毕后换上缓冲溶液,按下述表1和表2的工作条件使用ETAAS检测。 The volume of the injected sample is affected by the injection time, injection pressure, sample properties and capillary length, etc. The experiment uses 0.04MPa argon pressure to introduce the sample solution into the capillary, the injection time is 10s, and the injection volume is about 0.5μL. Pretreatment of new fused silica capillary: rinse with CH 3 OH for 30 min, then rinse with 0.1mol·L -1 NaOH for 40 min, and finally rinse with sub-boiling water for 10 min. Before each experiment, rinse with buffer solution for 8 minutes. After the experiment, rinse with 0.1mol·L -1 NaOH for 10 minutes and sub-boiling water for 15 minutes. Before the experiment, all samples were ultrasonically treated for 10 min to remove air bubbles and prevent flow break during the electrophoresis process. During the experiment, first fill the entire capillary with the buffer solution, then inject the sample under pressure, replace the buffer solution after the sample injection, and use ETAAS to detect according to the working conditions in Table 1 and Table 2 below.
表1毛细管电泳与原子吸收光谱法工作参数 Table 1 Working parameters of capillary electrophoresis and atomic absorption spectrometry
表2电热原子吸收升温程序 Table 2 Electrothermal atomic absorption heating program
4、样品预处理 4. Sample pretreatment
实验中所测水样取自桂林同一家腐乳厂的腐乳液和腐乳废水。采集好后先静置一天,然后用滤纸过滤,再用砂芯漏斗过滤,最后用0.45μm滤膜过滤。过滤后的溶液保存备用。 The water samples measured in the experiment were taken from the fermented bean curd and fermented bean curd wastewater from the same fermented bean curd factory in Guilin. After collection, let it stand for one day, then filter with filter paper, then filter with a sand core funnel, and finally filter with a 0.45 μm filter membrane. The filtered solution was stored for future use.
5、固相萃取过程 5. Solid phase extraction process
取10mL样品溶液(即上述第4点过滤后所得的溶液)至烧杯中,用0.1mol·L-1HCl溶液调节pH至4,加入10mg实施例1制得的SSA-SMNPs磁性纳米粒子。混合液超声吸附5min,通过外部磁场分离。然后加入0.5mLNa2CO3溶液(0.5mol·L-1)进行洗脱,将新的混合溶液超声4min,通过外部磁场分离,用PTEF管收集上清液,采用CE-ETAAS进行测定,重复三次。空白溶液如上方法制备。 Take 10 mL of the sample solution (that is, the solution obtained after filtering at point 4 above) into a beaker, adjust the pH to 4 with 0.1 mol L- 1 HCl solution, and add 10 mg of the SSA-SMNPs magnetic nanoparticles prepared in Example 1. The mixture was ultrasonically adsorbed for 5 minutes and separated by an external magnetic field. Then add 0.5mL Na 2 CO 3 solution (0.5mol·L -1 ) for elution, sonicate the new mixed solution for 4min, separate it by an external magnetic field, collect the supernatant with a PTEF tube, measure it with CE-ETAAS, repeat three times . Blank solutions were prepared as above.
6、工作曲线、检测限和重复性 6. Working curve, detection limit and repeatability
在上述表1和表2实验条件下,对浓度均为5ng·mL-1的Se(VI)、Se(IV)、SeMet和SeCys2的混合标准溶液连续6次测定,其相对标准偏差(RSD,n=6)分别为2.2%、0.7%、2.5%和2.9%。Se(VI)、Se(IV)、SeMet和SeCys2的检出限(3σ,n=11)分别为0.18、0.17、0.54和0.49ng·mL-1。线性范围、富集因子EF(EF=富集后校正曲线斜率/富集前校正曲线斜率)及线性相关系数见表3,工作曲线如图6~10所示。重复利用是评估吸附性材料的重要因素之一,实验得到SSA-SMNPs粒子可重复利用3次进行定量回收实验。 Under the above-mentioned experimental conditions of Table 1 and Table 2, the mixed standard solution of Se(VI), Se(IV), SeMet and SeCys 2 with a concentration of 5ng mL -1 was continuously measured for 6 times, and the relative standard deviation (RSD , n=6) were 2.2%, 0.7%, 2.5% and 2.9%, respectively. The detection limits (3σ, n=11) of Se(VI), Se(IV), SeMet and SeCys 2 were 0.18, 0.17, 0.54 and 0.49 ng·mL -1 , respectively. The linear range, enrichment factor EF (EF=slope of calibration curve after enrichment/slope of calibration curve before enrichment) and linear correlation coefficient are shown in Table 3, and the working curves are shown in Figures 6-10. Reuse is one of the important factors to evaluate the adsorptive materials, and the experiments show that the SSA-SMNPs particles can be reused 3 times for quantitative recovery experiments.
表3线性范围及相关系数(n=6) Table 3 Linear range and correlation coefficient (n=6)
7、样品分析 7. Sample Analysis
在上述表1和表2的实验条件下,用CE-ETAAS对腐乳厂排放的废水及腐乳液中的Se(VI)、Se(IV)、SeMet和SeCys2硒形态进行了测定,如图10所示。对比混合标准电泳(图10中曲线A)可知,腐乳废水中存在Se(VI)和Se(IV)两种硒形态,其含量分别为3.83ng·mL-1和2.62ng·mL-1。腐乳液中存在Se(VI)、Se(IV)、SeMet和SeCys2四种硒形态,其含量分别为6.39ng·mL-1、4.08ng·mL-1、2.77ng·mL-1和4ng·mL-1。无论是腐乳废水还是腐乳液中无机硒形态的含量高于有机硒形态含量。 Under the experimental conditions of the above-mentioned Table 1 and Table 2, Se(VI), Se(IV), SeMet and SeCys in the wastewater discharged from the fermented bean curd factory and the SeCys 2 selenium form were measured with CE-ETAAS, as shown in Figure 10 shown. Compared with the mixed standard electrophoresis (curve A in Figure 10), it can be seen that there are two forms of selenium, Se(VI) and Se(IV), in the fermented bean curd wastewater, and their contents are 3.83ng·mL -1 and 2.62ng·mL -1 , respectively. There are four kinds of selenium forms Se(VI), Se(IV), SeMet and SeCys 2 in the putrefaction emulsion, the contents of which are 6.39ng·mL -1 , 4.08ng·mL -1 , 2.77ng·mL -1 and 4ng·mL -1 respectively mL -1 . The content of inorganic selenium species in fermented bean curd wastewater or bean curd emulsion was higher than that of organic selenium species.
在上述表1和表2的实验条件下,,采用CE–ETAAS法对腐乳废水和腐乳液中的Se(VI)、Se(IV)、SeMet和SeCys2进行加标回收实验,得到其回收率范围为99.14%~104.5%,RSD范围为0.82%~3.5%。结果见表4和表5。 Under the experimental conditions of the above Table 1 and Table 2, the CE-ETAAS method was used to carry out the recovery experiment of Se(VI), Se(IV), SeMet and SeCys 2 in the fermented bean curd wastewater and fermented bean curd, and the recovery rate was obtained The range was 99.14% to 104.5%, and the RSD range was 0.82% to 3.5%. The results are shown in Table 4 and Table 5.
表4腐乳废水及腐乳液中Se(IV)和Se(VI)分析结果及回收率(n=6) Table 4 Se (IV) and Se (VI) analysis results and recovery rate in fermented bean curd wastewater and bean curd emulsion (n=6)
Water1为腐乳厂废水;Water2为腐乳液。 Water1 is the waste water of the fermented bean curd factory; Water2 is the fermented bean curd emulsion.
表5腐乳废水及腐乳液中SeMet和SeCys2分析结果及回收率(n=6) Table 5 SeMet and SeCys 2 analysis results and recoveries in fermented bean curd wastewater and fermented bean curd emulsion (n=6)
Water1为腐乳厂废水;Water2为腐乳液。 Water1 is the waste water of the fermented bean curd factory; Water2 is the fermented bean curd emulsion.
8、结论 8. Conclusion
由发明所述方法制得的SSA-SMNPs磁性纳米粒子对硒离子有良好的吸附作用,并建立了CE-ETAAS联用分析硒形态的方法。制得的SSA-SMNPs磁性纳米粒子对Se(VI)、Se(IV)、SeMet和SeCys2的富集因子分别为12、18、21和29,检出限为0.17~0.54ng·mL-1。把制得的SSA-SMNPs磁性纳米粒子应用于腐乳废液和腐乳液中的Se(VI)、Se(IV)、SeMet和SeCys2分析,具有较好的效果。本发明所述的SSA-SMNPs磁性纳米粒子及方法为研究环境水样中的痕量硒形态提供了新的分析手段。 The SSA-SMNPs magnetic nanoparticles prepared by the method described in the invention have a good adsorption effect on selenium ions, and a method for analyzing the form of selenium by CE-ETAAS is established. The enrichment factors of the prepared SSA-SMNPs magnetic nanoparticles to Se(VI), Se(IV), SeMet and SeCys 2 were 12, 18, 21 and 29, respectively, and the detection limit was 0.17-0.54 ng·mL -1 . The obtained SSA-SMNPs magnetic nanoparticles were applied to the analysis of Se(VI), Se(IV), SeMet and SeCys 2 in fermented bean curd liquid and fermented bean curd liquid, and the results were good. The SSA-SMNPs magnetic nanometer particle and method described in the invention provide a new analytical means for studying trace selenium forms in environmental water samples.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410438856.7A CN104209106B (en) | 2014-08-29 | 2014-08-29 | The Fe of 5-sulphosalicylic acid functionalization 3o 4magnetic nano-particle and synthetic method thereof and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410438856.7A CN104209106B (en) | 2014-08-29 | 2014-08-29 | The Fe of 5-sulphosalicylic acid functionalization 3o 4magnetic nano-particle and synthetic method thereof and application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104209106A CN104209106A (en) | 2014-12-17 |
CN104209106B true CN104209106B (en) | 2016-04-20 |
Family
ID=52091249
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410438856.7A Expired - Fee Related CN104209106B (en) | 2014-08-29 | 2014-08-29 | The Fe of 5-sulphosalicylic acid functionalization 3o 4magnetic nano-particle and synthetic method thereof and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104209106B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106861638A (en) * | 2017-04-10 | 2017-06-20 | 成都优科玛环保技术有限公司 | A kind of porous nano silicate granules adsorbent, its preparation method and application |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102360659A (en) * | 2011-06-24 | 2012-02-22 | 中国科学院宁波材料技术与工程研究所 | Magnetic submicron composite core-shell particles, and preparation method and application thereof |
CN103065754A (en) * | 2012-12-04 | 2013-04-24 | 天津大学 | Magnetic material for surface finish benzene sulfonic acid, and preparation method and application thereof |
CN103349972A (en) * | 2013-07-22 | 2013-10-16 | 温州医学院 | Magnetic nano adsorbent and preparation method thereof |
-
2014
- 2014-08-29 CN CN201410438856.7A patent/CN104209106B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102360659A (en) * | 2011-06-24 | 2012-02-22 | 中国科学院宁波材料技术与工程研究所 | Magnetic submicron composite core-shell particles, and preparation method and application thereof |
CN103065754A (en) * | 2012-12-04 | 2013-04-24 | 天津大学 | Magnetic material for surface finish benzene sulfonic acid, and preparation method and application thereof |
CN103349972A (en) * | 2013-07-22 | 2013-10-16 | 温州医学院 | Magnetic nano adsorbent and preparation method thereof |
Non-Patent Citations (1)
Title |
---|
水杨酸型螯合吸附材料对重金属离子的吸附性能;安富强等;《化学通报》;20121231;第75卷(第5期);第447页第1节以及摘要 * |
Also Published As
Publication number | Publication date |
---|---|
CN104209106A (en) | 2014-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104258807B (en) | Magnetic nano material solid phase extracting agent as well as preparation method and application thereof | |
Ren et al. | Magnetic covalent triazine-based frameworks as magnetic solid-phase extraction adsorbents for sensitive determination of perfluorinated compounds in environmental water samples | |
Tarigh et al. | Magnetic multi-wall carbon nanotube nanocomposite as an adsorbent for preconcentration and determination of lead (II) and manganese (II) in various matrices | |
CN102974314B (en) | Magnetic gold nanoparticle composite material, and preparation method and application thereof | |
Jiang et al. | Zincon-immobilized silica-coated magnetic Fe3O4 nanoparticles for solid-phase extraction and determination of trace lead in natural and drinking waters by graphite furnace atomic absorption spectrometry | |
CN105148852B (en) | A kind of sulfhydryl modified magnetic MOFs adsorbents and its preparation method and application | |
CN105664861B (en) | A kind of magnetism covalent organic framework nanocomposite and preparation method and application | |
CN109201019B (en) | Magnetic polyimide composite material and preparation method and application thereof | |
CN106582543B (en) | Chiral MOF- magnetic graphenes functional material and its preparation method and application | |
CN103551150B (en) | A kind of preparation method of the magnetic composite photocatalyst based on carbonaceous material | |
Hao et al. | Metal-organic framework derived magnetic nanoporous carbon as an adsorbent for the magnetic solid-phase extraction of chlorophenols from mushroom sample | |
Wang et al. | Determination of trace amounts of Se (IV) by hydride generation atomic fluorescence spectrometry after solid-phase extraction using magnetic multi-walled carbon nanotubes | |
CN105879842A (en) | Magnetic PAFs solid-phase extracting agent and preparation method and application thereof | |
Yang et al. | Synthesis of surface imprinted polymers based on wrinkled flower-like magnetic graphene microspheres with favorable recognition ability for BSA | |
Yan et al. | Selenium speciation using capillary electrophoresis coupled with modified electrothermal atomic absorption spectrometry after selective extraction with 5-sulfosalicylic acid functionalized magnetic nanoparticles | |
Zhang et al. | Colorimetric magnetic microspheres as chemosensor for Cu2+ prepared from adamantane-modified rhodamine and β-cyclodextrin-modified Fe3O4@ SiO2 via host–guest interaction | |
Jamshidi et al. | Adsorption and desorption of Pb2+ on magnetic Mn2O3 as highly efficient adsorbent: isotherm, kinetic and thermodynamic studies | |
CN110193345A (en) | A kind of preparation method of magnetic nanometer composite material | |
CN109351335B (en) | A kind of magnetic trisine-triazine covalent skeleton solid phase extraction agent and preparation method and application thereof | |
CN111896608B (en) | Concentration column and application thereof in analysis of trace elements in seawater | |
CN111437797B (en) | Preparation of an ionic liquid-coated aminosilanized magnetic graphene oxide composite and its application in heavy metals | |
CN105498728A (en) | Preparation and application of di(2-ethyl hexyl) phthalate surface molecular imprinting magnetic nanometer material | |
CN104209106B (en) | The Fe of 5-sulphosalicylic acid functionalization 3o 4magnetic nano-particle and synthetic method thereof and application | |
CN113976082B (en) | Magnetic nanoparticle as well as preparation method and application thereof | |
Yang et al. | Mesoporous yolk–shell structure molecularly imprinted magnetic polymers for the extraction and detection of 17β-estradiol |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160420 Termination date: 20190829 |
|
CF01 | Termination of patent right due to non-payment of annual fee |