CN104180708B - A Liquid Circulation Control System Connected to Containers - Google Patents
A Liquid Circulation Control System Connected to Containers Download PDFInfo
- Publication number
- CN104180708B CN104180708B CN201410392569.7A CN201410392569A CN104180708B CN 104180708 B CN104180708 B CN 104180708B CN 201410392569 A CN201410392569 A CN 201410392569A CN 104180708 B CN104180708 B CN 104180708B
- Authority
- CN
- China
- Prior art keywords
- circulation
- fluid
- heat exchanger
- output port
- circulating fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000004087 circulation Effects 0.000 title claims abstract description 70
- 239000007788 liquid Substances 0.000 title claims abstract description 33
- 239000012530 fluid Substances 0.000 claims abstract description 224
- 239000012809 cooling fluid Substances 0.000 claims description 50
- 239000000498 cooling water Substances 0.000 claims description 3
- 239000003507 refrigerant Substances 0.000 claims description 3
- 238000003860 storage Methods 0.000 abstract description 23
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 239000005457 ice water Substances 0.000 abstract description 2
- 238000002955 isolation Methods 0.000 abstract 1
- 238000004891 communication Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
本发明公开了一种相通容器的液体循环控制系统,通过采用两台冰水机循环液压力联动控制,使两种不同温度的循环液体在具有毛细管导通的两个腔体内部具有同等的压力,这个压力平衡状态可使两个循环液处于动态隔离(在毛细管处不流通,或减少流通量),使之既控制两循环液体的温度,又避免了循环流体蓄液罐产生过满溢水或过少停机,节约了生产成本,提高了生产效率。
The invention discloses a liquid circulation control system of interlinked containers. Through the linkage control of the circulating liquid pressure of two ice water machines, the circulating liquids of two different temperatures can have the same pressure inside the two cavities with capillary conduction. , This pressure balance state can make the two circulating fluids in dynamic isolation (no circulation at the capillary, or reduce the flow rate), so that it can not only control the temperature of the two circulating fluids, but also avoid the excessive overflow of the circulating fluid storage tank or Less downtime saves production costs and improves production efficiency.
Description
【技术领域】【Technical field】
本发明涉及热交换领域,尤其涉及一种相通容器的液体循环控制系统。The invention relates to the field of heat exchange, in particular to a liquid circulation control system communicating with containers.
【背景技术】【Background technique】
在工业生产中,以及科学研究过程中,经常会遇到需要用两种不同温度对两个容器或腔体进行温度控制。当两个容器或腔体存在毛细管(细微的)连通状态时,两个容器或腔体中各自循环的循环液体便会互相混合,其最终结果将会导致温度控制效果不好,以及两台循环流体蓄液罐产生过满溢水或过少停机。In industrial production, as well as in the process of scientific research, it is often encountered that it is necessary to control the temperature of two containers or chambers with two different temperatures. When there is a capillary (subtle) communication state between two containers or cavities, the circulating liquids circulating in the two containers or cavities will mix with each other, and the final result will be that the temperature control effect is not good, and the two circulations Fluid reservoir producing too full overflow or too little shutdown.
【发明内容】【Content of invention】
本发明要解决的技术问题是提供一种相通容器的液体循环控制系统,解决两个容器或腔体中液体温度控制效果不好,循环流体蓄液罐容易产生过满溢水或过少停机的问题。The technical problem to be solved by the present invention is to provide a liquid circulation control system connected with containers, which solves the problem that the temperature control effect of the liquid in the two containers or cavities is not good, and the circulating fluid liquid storage tank is prone to overfilling and overflowing or too little shutdown .
为解决上述技术问题,本发明提供一种相通容器的液体循环控制系统,其包括第一循环流体通路、第二循环流体通路、第一腔体和第二腔体,In order to solve the above technical problems, the present invention provides a liquid circulation control system communicating with containers, which includes a first circulating fluid passage, a second circulating fluid passage, a first cavity and a second cavity,
所述第一循环流体通路包括第一热交换器、第一循环流体入口和第一循环流体出口,第一循环流体与第一冷却流体在所述第一热交换器处进行热交换,所述第一热交换器包括第一输入端口、与第一输入端口连通的第一输出端口、第二输入端口和与第二输入端口连通的第二输出端口,The first circulating fluid path includes a first heat exchanger, a first circulating fluid inlet and a first circulating fluid outlet, the first circulating fluid and the first cooling fluid exchange heat at the first heat exchanger, the the first heat exchanger includes a first input port, a first output port in communication with the first input port, a second input port, and a second output port in communication with the second input port,
所述第一热交换器的第一输入端口与所述第一循环流体入口相连通,所述第一热交换器的第一输出端口与所述第一循环流体出口相连通,The first input port of the first heat exchanger communicates with the first circulating fluid inlet, the first output port of the first heat exchanger communicates with the first circulating fluid outlet,
所述第一循环流体从所述第一热交换器的第一输入端口流入,从所述第一热交换器的第一输出端口流出,所述第一冷却流体从所述第一热交换器的第二输入端口流入,从所述第一热交换器的第二输出端口流出,The first circulating fluid flows in from the first input port of the first heat exchanger and flows out from the first output port of the first heat exchanger, and the first cooling fluid flows from the first heat exchanger Inflow from the second input port of the first heat exchanger, flow out from the second output port of the first heat exchanger,
所述第一腔体的第五输入端口与所述第一循环流体出口相连通,所述第一腔体的第五输出端口与所述第一循环流体入口相连通,The fifth input port of the first cavity communicates with the first circulating fluid outlet, the fifth output port of the first cavity communicates with the first circulating fluid inlet,
所述第二循环流体通路包括第二热交换器、第二循环流体入口和第二循环流体出口,第二循环流体与第二冷却流体在所述第二热交换器处进行热交换,所述第二热交换器包括第三输入端口、与第三输入端口连通的第三输出端口、第四输入端口和与第四输入端口连通的第四输出端口,The second circulating fluid passage includes a second heat exchanger, a second circulating fluid inlet and a second circulating fluid outlet, the second circulating fluid and the second cooling fluid exchange heat at the second heat exchanger, the the second heat exchanger includes a third input port, a third output port in communication with the third input port, a fourth input port, and a fourth output port in communication with the fourth input port,
所述第二热交换器的第三输入端口与所述第二循环流体入口相连通,所述第二热交换器的第三输出端口与所述第二循环流体出口相连通,所述第一循环流体从所述第二热交换器的第三输入端口流入,从所述第二热交换器的第三输出端口流出,所述第二冷却流体从所述第二热交换器的第四输入端口流入,从所述第二热交换器的第四输出端口流出,The third input port of the second heat exchanger communicates with the second circulating fluid inlet, the third output port of the second heat exchanger communicates with the second circulating fluid outlet, and the first The circulating fluid flows in from the third input port of the second heat exchanger and flows out from the third output port of the second heat exchanger, and the second cooling fluid enters from the fourth input port of the second heat exchanger port inflow, outflow from the fourth output port of the second heat exchanger,
所述第二腔体的第六输入端口与所述第二循环流体出口相连通,所述第二腔体的第六输出端口与所述第二循环流体入口相连通,The sixth input port of the second cavity communicates with the second circulating fluid outlet, and the sixth output port of the second cavity communicates with the second circulating fluid inlet,
所述第一腔体与所述第二腔体通过毛细管连接。The first cavity is connected to the second cavity through a capillary.
进一步的,所述第一循环流体通路还包括用于控制所述第一循环流体流量的第一电动阀门,所述第一电动阀门的输入端口与所述第一热交换器的第一输出端口连通,所述第一电动阀门的输出端口与所述第一循环液体出口连通,Further, the first circulating fluid path also includes a first electric valve for controlling the flow rate of the first circulating fluid, the input port of the first electric valve is connected to the first output port of the first heat exchanger communicated, the output port of the first electric valve is communicated with the outlet of the first circulating liquid,
所述第二循环流体通路还包括用于控制所述第二循环流体流量的第二电动阀门,所述第二电动阀门的输入端口与所述第二热交换器的第三输出端口连通,所述第二电动阀门的输出端口与所述第二循环液体出口连通。The second circulating fluid path further includes a second electric valve for controlling the flow rate of the second circulating fluid, the input port of the second electric valve communicates with the third output port of the second heat exchanger, so The output port of the second electric valve communicates with the second circulating liquid outlet.
进一步的,所述第一循环流体通路还包括用于检测所述第一循环流体温度的第一温度传感器,所述第二循环流体通路还包括用于检测所述第二循环流体温度的第二温度传感器,基于所述第一温度传感器检测到的第一循环流体温度和第二温度传感器检测到的第二循环流体温度来控制第一电动阀门和第二电动阀门的开关比例。Further, the first circulating fluid path also includes a first temperature sensor for detecting the temperature of the first circulating fluid, and the second circulating fluid path also includes a second temperature sensor for detecting the temperature of the second circulating fluid. The temperature sensor controls the switching ratio of the first electric valve and the second electric valve based on the temperature of the first circulating fluid detected by the first temperature sensor and the temperature of the second circulating fluid detected by the second temperature sensor.
进一步的,所述第一电动阀门和第二电动阀门的开关比例是可控的。Further, the opening and closing ratios of the first electric valve and the second electric valve are controllable.
进一步的,所述第一循环流体通路还包括用于储存所述第一循环流体的第一循环流体蓄液罐,所述第一循环流体蓄液罐的输入端口与所述第一热交换器的第一输出端口连通,所述第一循环流体蓄液罐的输出端口与所述第一循环流体出口连通,Further, the first circulating fluid path also includes a first circulating fluid storage tank for storing the first circulating fluid, and the input port of the first circulating fluid storage tank is connected to the first heat exchanger The first output port of the first circulating fluid is connected, and the output port of the first circulating fluid storage tank is connected with the first circulating fluid outlet,
所述第二循环流体通路还包括用于储存所述第二循环流体的第二循环流体蓄液罐,所述第二循环流体蓄液罐的输入端口与所述第二热交换器的第三输出端口连通,所述第二循环流体蓄液罐的输出端口与所述第二循环流体出口连通。The second circulating fluid path further includes a second circulating fluid storage tank for storing the second circulating fluid, and the input port of the second circulating fluid storage tank is connected to the third of the second heat exchanger. The output port communicates with the second circulating fluid outlet, and the output port of the second circulating fluid storage tank communicates with the second circulating fluid outlet.
进一步的,所述第一循环流体通路还包括设置于所述第一循环流体蓄液罐的输出端口处的第一泵、第一马达和第一变频器,以驱动所述第一循环流体的流动,Further, the first circulating fluid path also includes a first pump, a first motor and a first frequency converter arranged at the output port of the first circulating fluid storage tank to drive the first circulating fluid flow,
所述第二循环流体通路还包括设置于所述第二循环流体蓄液罐的输出端口处的第二泵、第二马达和第二变频器,以驱动所述第二循环流体的流动。The second circulating fluid path further includes a second pump, a second motor and a second frequency converter provided at the output port of the second circulating fluid storage tank to drive the flow of the second circulating fluid.
进一步的,所述第一循环流体通路还包括用于测量第一循环流体通路压力的第一压力传感器,所述第二循环流体通路还包括用于测量第二循环流体通路压力的第二压力传感器,基于所述第一压力传感器检测到的第一循环流体通路压力来控制第一变频器的运转频率,或控制第一电动阀门的开度比例,基于所述第二压力传感器检测到的第二循环流体通路压力来控制第二变频器的运转频率,或控制第二电动阀门的开度比例。Further, the first circulating fluid passage also includes a first pressure sensor for measuring the pressure of the first circulating fluid passage, and the second circulating fluid passage further includes a second pressure sensor for measuring the pressure of the second circulating fluid passage , controlling the operating frequency of the first frequency converter based on the first circulating fluid channel pressure detected by the first pressure sensor, or controlling the opening ratio of the first electric valve, based on the second pressure detected by the second pressure sensor Circulating the pressure of the fluid passage to control the operating frequency of the second frequency converter, or to control the opening ratio of the second electric valve.
进一步的,所述第一冷却流体和第二冷却流体为氟利昂制冷剂或冷却水。Further, the first cooling fluid and the second cooling fluid are Freon refrigerant or cooling water.
更进一步的,所述毛细管的条数为复数条。Furthermore, the number of capillaries is plural.
与现有技术相比,本发明通过采用两台冰水机循环液压力联动控制,使两种不同温度的循环液体在具有毛细管导通的两个腔体内部具有同等的压力,这个压力平衡状态可使两个循环液处于动态隔离(在毛细管处不流通,或减少流通量),使之既控制两循环液体的温度,又避免了循环流体蓄液罐产生过满溢水或过少停机,节约了生产成本,提高了生产效率。Compared with the prior art, the present invention adopts the linkage control of the circulating hydraulic pressure of two ice water machines, so that the circulating liquids of two different temperatures have the same pressure inside the two cavities with capillary conduction. This pressure balance state The two circulating fluids can be dynamically isolated (no circulation at the capillary, or the flow rate is reduced), so that it can not only control the temperature of the two circulating fluids, but also avoid the excessive water overflow or too little shutdown of the circulating fluid storage tank, saving Reduce production costs and improve production efficiency.
【附图说明】【Description of drawings】
图1为本发明中的相通容器的液体循环控制系统在一个实施例中的结构示意图。Fig. 1 is a structural schematic diagram of an embodiment of a liquid circulation control system for intercommunicating containers in the present invention.
其中:100为相通容器的液体循环控制系统,110为第一循环流体通路,111为第一循环流体入口,112为第一热交换器,113为第一循环流体出口,114为第一循环流体蓄液罐,115为第一温度传感器,116为第一电动阀门,117为第一压力传感器,118为第一泵和第一马达,119为第一变频器,120为第二循环流体通路,121为第二循环流体入口,122为第二热交换器,123为第二循环流体出口,124为第二循环流体蓄液罐,125为第二温度传感器,126为第二电动阀门,127为第二压力传感器,128为第二泵和第二马达,129为第二变频器,130为第一冷却流体通路,140为第二冷却流体通路,150为第一腔体,151为第五输出端口,152为第五输入端口,160为第二腔体,161为第六输出端口,162为第六输入端口、170为毛细管。Among them: 100 is the liquid circulation control system connected to the container, 110 is the first circulating fluid passage, 111 is the first circulating fluid inlet, 112 is the first heat exchanger, 113 is the first circulating fluid outlet, 114 is the first circulating fluid Liquid storage tank, 115 is the first temperature sensor, 116 is the first electric valve, 117 is the first pressure sensor, 118 is the first pump and the first motor, 119 is the first frequency converter, 120 is the second circulating fluid passage, 121 is the second circulating fluid inlet, 122 is the second heat exchanger, 123 is the second circulating fluid outlet, 124 is the second circulating fluid storage tank, 125 is the second temperature sensor, 126 is the second electric valve, 127 is The second pressure sensor, 128 is the second pump and the second motor, 129 is the second frequency converter, 130 is the first cooling fluid passage, 140 is the second cooling fluid passage, 150 is the first cavity, 151 is the fifth output 152 is the fifth input port, 160 is the second cavity, 161 is the sixth output port, 162 is the sixth input port, and 170 is the capillary.
【具体实施方式】【detailed description】
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合具体实施方式对本发明作进一步详细的说明。In order to make the above objects, features and advantages of the present invention more comprehensible, the present invention will be further described in detail below in conjunction with specific embodiments.
此处所称的“一个实施例”或“实施例”是指与所述实施例相关的特定特征、结构或特性至少可包含于本发明至少一个实现方式中。在本说明书中不同地方出现的“在一个实施例中”并非必须都指同一个实施例,也不必须是与其他实施例互相排斥的单独或选择实施例。此外,表示一个或多个实施例的方法、流程图或功能框图中的模块顺序并非固定的指代任何特定顺序,也不构成对本发明的限制。The term "one embodiment" or "embodiment" here refers to that specific features, structures or characteristics related to the embodiment can be included in at least one implementation of the present invention. The appearances of "in one embodiment" in various places in this specification do not necessarily all refer to the same embodiment, nor do they necessarily refer to a separate or selected embodiment that is mutually exclusive of other embodiments. Furthermore, the order of blocks in a method, flowchart, or functional block diagram representing one or more embodiments does not necessarily refer to any particular order nor constitute a limitation on the invention.
图1为本发明中的相通容器的液体循环控制系统在一个实施例中的结构示意图。如图1所示,所述相通容器的液体循环控制系统100包括第一循环流体通路110、第二循环流体通路120、第一冷却流体通路130、第二冷却流体通路140、第一腔体150和第二腔体160。Fig. 1 is a structural schematic diagram of an embodiment of a liquid circulation control system for intercommunicating containers in the present invention. As shown in FIG. 1 , the liquid circulation control system 100 of the communicating container includes a first circulating fluid passage 110 , a second circulating fluid passage 120 , a first cooling fluid passage 130 , a second cooling fluid passage 140 , and a first cavity 150 and the second cavity 160 .
所述第一循环流体通路110包括第一热交换器112、第一循环流体入口111和第一循环流体出口113。所述第一冷却流体通路130包括第一热交换器112、第一冷却流体入口(未图示)和第一冷却流体出口(未图示)。第一循环流体与第一冷却流体在所述第一热交换器112处进行热交换。The first circulating fluid passage 110 includes a first heat exchanger 112 , a first circulating fluid inlet 111 and a first circulating fluid outlet 113 . The first cooling fluid passage 130 includes the first heat exchanger 112 , a first cooling fluid inlet (not shown) and a first cooling fluid outlet (not shown). The first circulating fluid and the first cooling fluid exchange heat at the first heat exchanger 112 .
所述第一热交换器112包括第一输入端口(未图示)、与第一输入端口连通的第一输出端口(未图示)、第二输入端口(未图示)和与第二输入端口连通的第二输出端口(未图示)。The first heat exchanger 112 includes a first input port (not shown), a first output port (not shown) communicated with the first input port, a second input port (not shown) and a second input port (not shown) The port communicates with a second output port (not shown).
所述第一循环流体从第一腔体150的第五输出端口151流出后,经所述第一循环流体入口111由所述第一热交换器112的第一输入端口流入第一热交换器112,第一循环流体从第一热交换器112的第一输出端口流出,并通过所述第一循环流体出口113流出,最终流向第一腔体150的第五输入端口152。After the first circulating fluid flows out from the fifth output port 151 of the first cavity 150, it flows into the first heat exchanger through the first circulating fluid inlet 111 from the first input port of the first heat exchanger 112 112 , the first circulating fluid flows out from the first output port of the first heat exchanger 112 , flows out through the first circulating fluid outlet 113 , and finally flows to the fifth input port 152 of the first cavity 150 .
所述第一冷却流体从所述第一冷却流体入口流出后,经所述第一热交换器112的第二输入端口流入第一热交换器112,第一冷却流体从第一热交换器112的第二输出端口流出,并通过所述第一冷却流体出口流出。After the first cooling fluid flows out from the first cooling fluid inlet, it flows into the first heat exchanger 112 through the second input port of the first heat exchanger 112, and the first cooling fluid flows from the first heat exchanger 112 flows out of the second output port and out through the first cooling fluid outlet.
所述第二循环流体通路120包括第二热交换器122、第二循环流体入口121和第二循环流体出口123。所述第二冷却流体通路140包括第二热交换器122、第二冷却流体入口(未图示)和第二冷却流体出口(未图示)。第二循环流体与第二冷却流体在所述第二热交换器122处进行热交换。The second circulating fluid passage 120 includes a second heat exchanger 122 , a second circulating fluid inlet 121 and a second circulating fluid outlet 123 . The second cooling fluid passage 140 includes the second heat exchanger 122 , a second cooling fluid inlet (not shown) and a second cooling fluid outlet (not shown). The second circulating fluid exchanges heat with the second cooling fluid at the second heat exchanger 122 .
所述第二热交换器122包括第三输入端口(未图示)、与第三输入端口连通的第三输出端口(未图示)、第四输入端口(未图示)和与第四输入端口连通的第四输出端口(未图示)。The second heat exchanger 122 includes a third input port (not shown), a third output port (not shown) communicated with the third input port, a fourth input port (not shown) and a fourth input port (not shown). A fourth output port (not shown) to which the port is connected.
所述第二循环流体从第二腔体160的第六输出端口161流出后,经所述第二循环流体入口121由所述第二热交换器122的第三输入端口流入第二热交换器122,流体从第二热交换器122的第三输出端口流出,并通过所述第二循环流体出口123流出,最终流向第二腔体160的第五输出端口162。After the second circulating fluid flows out from the sixth output port 161 of the second cavity 160, it flows into the second heat exchanger through the second circulating fluid inlet 121 from the third input port of the second heat exchanger 122 122 , the fluid flows out from the third output port of the second heat exchanger 122 , flows out through the second circulating fluid outlet 123 , and finally flows to the fifth output port 162 of the second cavity 160 .
所述第二冷却流体从所述第二冷却流体入口流出后,经所述第二热交换器122的第四输入端口流入第二热交换器122,第二冷却流体从第二热交换器122的第四输出端口流出,并通过所述第二冷却流体出口流出。After the second cooling fluid flows out from the second cooling fluid inlet, it flows into the second heat exchanger 122 through the fourth input port of the second heat exchanger 122, and the second cooling fluid flows from the second heat exchanger 122 flows out of the fourth output port and out through the second cooling fluid outlet.
所述第一腔体150与所述第二腔体160通过毛细管170连接。毛细管170的条数可以为多条。The first cavity 150 is connected to the second cavity 160 through a capillary 170 . The number of capillary tubes 170 may be plural.
所述第一循环流体通路110还包括用于控制所述第一循环流体流量的第一电动阀门116,所述第一电动阀门116的输入端口与所述第一热交换器112的第一输出端口连通,所述第一电动阀门116的输出端口与所述第一循环液体出口连通,所述第二循环流体通路120还包括用于控制所述第二循环流体流量的第二电动阀门126,所述第二电动阀门126的输入端口与所述第二热交换器122的第三输出端口连通,所述第二电动阀门126的输出端口与所述第二循环液体出口连通。The first circulating fluid path 110 also includes a first electric valve 116 for controlling the flow rate of the first circulating fluid, the input port of the first electric valve 116 is connected to the first output port of the first heat exchanger 112 Port communication, the output port of the first electric valve 116 is in communication with the outlet of the first circulating liquid, and the second circulating fluid passage 120 also includes a second electric valve 126 for controlling the flow rate of the second circulating fluid, The input port of the second electric valve 126 communicates with the third output port of the second heat exchanger 122 , and the output port of the second electric valve 126 communicates with the second circulating liquid outlet.
其中第一电动阀门116和第二电动阀门126的开关比例是可调的,比如100%开启至0%开启,每5%一个调整等级,那么则有0%,5%,10%,…——95%,100%这么多的开关比例等级,这样相对于整体控制系统流量口径来讲,可以非常精确的调整流量,从而可以精确的控制热交换的功率,进而精确的控制循环流体的温度。每个电动阀门带有控制开关比例的步进电机或直流电机,通过控制所述步进电机或直流电机来控制所述电动阀门的开关比例。高温时,如第一循环流体或第二循环流体80摄氏度,需降至20摄氏度,则让第一电动阀门116或第二电动阀门126开启调大,增加第一冷却流体与第一循环流体,或第二冷却流体与第二循环流体的热交换量,以达到高幅度降低第一循环流体和第二循环流体温度的目的;低温时,如第一循环流体或第二循环流体25摄氏度,需降至20摄氏度,则让第一电动阀门116或第二电动阀门126开启调小,减小第一冷却流体与第一循环流体,或第二冷却流体与第二循环流体的热交换量,以达到低幅度降低循环流体温度的目的。The switching ratio of the first electric valve 116 and the second electric valve 126 is adjustable, for example, 100% open to 0% open, every 5% of an adjustment level, then there are 0%, 5%, 10%, ... - - 95%, 100% and so many switch proportional grades, so compared to the flow diameter of the overall control system, the flow can be adjusted very accurately, so that the power of heat exchange can be precisely controlled, and then the temperature of the circulating fluid can be precisely controlled. Each electric valve is equipped with a stepping motor or a DC motor controlling the switching ratio, and the switching ratio of the electric valve is controlled by controlling the stepping motor or the DC motor. At high temperature, if the first circulating fluid or the second circulating fluid is 80 degrees Celsius and needs to be lowered to 20 degrees Celsius, then the first electric valve 116 or the second electric valve 126 is opened and adjusted to increase the first cooling fluid and the first circulating fluid. Or the amount of heat exchange between the second cooling fluid and the second circulating fluid, so as to achieve the purpose of reducing the temperature of the first circulating fluid and the second circulating fluid at a high rate; When it drops to 20 degrees Celsius, the first electric valve 116 or the second electric valve 126 is opened and turned down to reduce the heat exchange between the first cooling fluid and the first circulating fluid, or the second cooling fluid and the second circulating fluid, so as to The purpose of reducing the temperature of the circulating fluid in a low range is achieved.
可以看出,本系统具备两条回路、两条通路:It can be seen that the system has two loops and two paths:
第一条回路是:所述第一腔体150的第五输出端口151、第一循环流体入口111、第一热交换器112、第一电动阀门116、第一循环流体出口113和第一腔体150的第五输入端口152形成的回路,具体的,所述第一循环流体从所述第一腔体150的第五输出端口151流入第一循环流体入口111,流经所述第一热交换器112,在所述第一热交换器112处进行热交换,随后经第一电动阀门116从所述第一循环流体出口113流出,流至第一腔体150的第五输入端口152,完成回流至第一腔体150。The first circuit is: the fifth output port 151 of the first cavity 150, the first circulating fluid inlet 111, the first heat exchanger 112, the first electric valve 116, the first circulating fluid outlet 113 and the first cavity The loop formed by the fifth input port 152 of the body 150, specifically, the first circulating fluid flows into the first circulating fluid inlet 111 from the fifth output port 151 of the first cavity 150, and flows through the first heat The heat exchanger 112 performs heat exchange at the first heat exchanger 112, then flows out from the first circulating fluid outlet 113 through the first electric valve 116, and flows to the fifth input port 152 of the first cavity 150, The flow back to the first cavity 150 is completed.
第二条回路是:所述第二腔体160的第六输出端口161、第二循环流体入口121、第二热交换器122、第二电动阀门126、第二循环流体出口123和第二腔体160的第六输入端口162形成的回路,具体的,所述第二循环流体从所述第二腔体160的第六输出端口161流入第二循环流体入口121,流经所述第二热交换器122,在所述第二热交换器122处进行热交换,随后经第二电动阀门126从所述第二循环流体出口123流出,流至第二腔体160的第六输入端口162,完成回流至第二腔体160。The second circuit is: the sixth output port 161 of the second cavity 160, the second circulating fluid inlet 121, the second heat exchanger 122, the second electric valve 126, the second circulating fluid outlet 123 and the second cavity The loop formed by the sixth input port 162 of the body 160, specifically, the second circulating fluid flows into the second circulating fluid inlet 121 from the sixth output port 161 of the second cavity 160, and flows through the second heat The heat exchanger 122 performs heat exchange at the second heat exchanger 122, then flows out from the second circulating fluid outlet 123 through the second electric valve 126, and flows to the sixth input port 162 of the second cavity 160, The flow back to the second cavity 160 is completed.
第一条通路是:所述第一冷却流体入口、第一热交换器112、第一冷却流体出口形成的通路,具体的,所述第一冷却流体从所述第一冷却流体入口流入所述第一热交换器112的第二输入端口,在第一热交换器112内与第一循环流体进行热交换后,从所述第一热交换器112的第二输出端口流出,再从第一冷却流体出口流出。The first passage is: the passage formed by the first cooling fluid inlet, the first heat exchanger 112, and the first cooling fluid outlet. Specifically, the first cooling fluid flows into the first cooling fluid inlet from the first cooling fluid inlet. The second input port of the first heat exchanger 112, after heat exchange with the first circulating fluid in the first heat exchanger 112, flows out from the second output port of the first heat exchanger 112, and then flows out from the first heat exchanger 112. Cooling fluid exits the outlet.
第二条通路是:所述第二冷却流体入口、第二热交换器122、第二冷却流体出口形成的通路,具体的,所述第二冷却流体从所述第二冷却流体入口流入所述第二热交换器122的第四输入端口,在第二热交换器122内与第二循环流体进行热交换后,从所述第二热交换器122的第四输出端口流出,再从第二冷却流体出口流出。The second passage is: the passage formed by the second cooling fluid inlet, the second heat exchanger 122, and the second cooling fluid outlet. Specifically, the second cooling fluid flows into the second cooling fluid inlet from the second cooling fluid inlet. The fourth input port of the second heat exchanger 122, after heat exchange with the second circulating fluid in the second heat exchanger 122, flows out from the fourth output port of the second heat exchanger 122, and then from the second Cooling fluid exits the outlet.
在本实施例中,所述第一循环流体通路110还包括用于储存所述第一循环流体的第一循环流体蓄液罐114,所述第一循环流体蓄液罐114的输入端口与所述第一热交换器112的第一输出端口连通,所述第一循环流体蓄液罐114的输出端口与所述第一循环流体出口113连通。所述第二循环流体通路120还包括用于储存所述第二循环流体的第二循环流体蓄液罐124,所述第二循环流体蓄液罐124的输入端口与所述第二热交换器122的第三输出端口连通,所述第二循环流体蓄液罐124的输出端口与所述第二循环流体出口123连通。In this embodiment, the first circulating fluid path 110 further includes a first circulating fluid storage tank 114 for storing the first circulating fluid, the input port of the first circulating fluid storage tank 114 is connected to the The first output port of the first heat exchanger 112 is connected, and the output port of the first circulating fluid storage tank 114 is connected with the first circulating fluid outlet 113 . The second circulating fluid path 120 also includes a second circulating fluid storage tank 124 for storing the second circulating fluid, the input port of the second circulating fluid storage tank 124 is connected to the second heat exchanger 122 communicates with the third output port, and the output port of the second circulating fluid storage tank 124 communicates with the second circulating fluid outlet 123 .
所述第一循环流体通路110还包括用于增加所述第一循环流体循环动力的第一泵和第一马达118,所述第一泵和第一马达118的输入端口与所述第一热交换器112的第一输出端口连通,所述第一泵和第一马达118的输出端口与所述第一循环流体出口113连通。所述第二循环流体通路120还包括用于增加所述第二循环流体循环动力的第二泵和第二马达128,所述第二泵和第二马达128的输入端口与所述第二热交换器122的第三输出端口连通,所述第二泵和第二马达128的输出端口与所述第二循环流体出口123连通。The first circulating fluid path 110 also includes a first pump and a first motor 118 for increasing the circulation power of the first circulating fluid, and the input ports of the first pump and the first motor 118 are connected to the first heat source. The first output port of the exchanger 112 communicates with the output port of the first pump and the first motor 118 communicates with the first circulating fluid outlet 113 . The second circulating fluid path 120 also includes a second pump and a second motor 128 for increasing the circulation power of the second circulating fluid, and the input ports of the second pump and the second motor 128 are connected to the second heat source. The third output port of the exchanger 122 communicates with the output port of the second pump and the second motor 128 communicates with the second circulating fluid outlet 123 .
在所述第一循环流体通路110上还包括第一温度传感器115,其用于检测所述第一循环流体的温度。所述第一温度传感器115的输入端口与所述第一泵和第一马达118的输出端口连通,所述第一温度传感器115的输出端口与所述第一电动阀门116相连通。所述第二循环流体从所述第一换热器112的第一输出端口流出,经第一循环流体蓄液罐114、第一泵和第一马达118、第一温度传感器115、第一电动阀门116,到达第一循环流体出口113。在所述第二循环流体通路120上还包括第二温度传感器125,其用于检测所述第二循环流体的温度。所述第二温度传感器125的输入端口与所述第二泵和第二马达128的输出端口连通,所述第二温度传感器125的输出端口与所述第二电动阀门126相连通。所述第二循环流体从所述第二换热器122的第三输出端口流出,经第二循环流体蓄液罐124、第二泵和第二马达128、第二温度传感器125、第二电动阀门126,到达第二循环流体出口123。基于所述第一温度传感器115检测到的第一循环流体温度和第二温度传感器125检测到的第二循环流体温度来控制第一电动阀门116和第二电动阀门126的开关比例。The first circulating fluid path 110 also includes a first temperature sensor 115 for detecting the temperature of the first circulating fluid. The input port of the first temperature sensor 115 communicates with the output ports of the first pump and the first motor 118 , and the output port of the first temperature sensor 115 communicates with the first electric valve 116 . The second circulating fluid flows out from the first output port of the first heat exchanger 112, passes through the first circulating fluid liquid storage tank 114, the first pump and the first motor 118, the first temperature sensor 115, the first motor The valve 116 reaches the first circulating fluid outlet 113 . The second circulating fluid passage 120 also includes a second temperature sensor 125 for detecting the temperature of the second circulating fluid. The input port of the second temperature sensor 125 communicates with the output ports of the second pump and the second motor 128 , and the output port of the second temperature sensor 125 communicates with the second electric valve 126 . The second circulating fluid flows out from the third output port of the second heat exchanger 122, passes through the second circulating fluid liquid storage tank 124, the second pump and the second motor 128, the second temperature sensor 125, the second motor The valve 126 reaches the second circulating fluid outlet 123 . The opening and closing ratios of the first electric valve 116 and the second electric valve 126 are controlled based on the temperature of the first circulating fluid detected by the first temperature sensor 115 and the temperature of the second circulating fluid detected by the second temperature sensor 125 .
由此可知,所述第一循环流体蓄液罐114和第二循环流体蓄液罐124具有两大作用:第一,其具有为第一循环流体通路110和第二循环流体通路120微调温度的作用;第二,其在保证第一循环流体通路110和第二循环流体通路120所需换热温度的前题下,为第一泵和第一马达118、第二泵和第二马达128提供了压力来源。It can be seen that the first circulating fluid storage tank 114 and the second circulating fluid storage tank 124 have two major functions: first, they have the ability to fine-tune the temperature of the first circulating fluid passage 110 and the second circulating fluid passage 120 Function; Second, it provides the first pump and the first motor 118, the second pump and the second motor 128 under the premise of ensuring the required heat exchange temperature of the first circulating fluid passage 110 and the second circulating fluid passage 120 source of stress.
在另一个实施例中,所述第一循环流体通路110还包括用于测量第一循环流体通路110压力的第一压力传感器117,所述第二循环流体通路120还包括用于测量第二循环流体通路120压力的第二压力传感器127,基于所述第一压力传感器117检测到的第一循环流体通路110压力来控制第一变频器119的运转频率,或控制第一电动阀门116的开度比例,基于所述第二压力传感器127检测到的第二循环流体通路120压力来控制第二变频器129的运转频率,或控制第二电动阀门126的开度比例。所述第一变频器119与所述第一泵和第一马达118电性连接,所述第二变频器129与所述第二泵和第二马达128电性连接。In another embodiment, the first circulating fluid passage 110 further includes a first pressure sensor 117 for measuring the pressure of the first circulating fluid passage 110, and the second circulating fluid passage 120 further includes a first pressure sensor 117 for measuring the pressure of the second circulating fluid passage 117. The second pressure sensor 127 for the pressure of the fluid passage 120 controls the operating frequency of the first frequency converter 119 or controls the opening of the first electric valve 116 based on the pressure of the first circulating fluid passage 110 detected by the first pressure sensor 117 The ratio is to control the operating frequency of the second frequency converter 129 based on the pressure of the second circulating fluid passage 120 detected by the second pressure sensor 127 , or to control the opening ratio of the second electric valve 126 . The first frequency converter 119 is electrically connected to the first pump and the first motor 118 , and the second frequency converter 129 is electrically connected to the second pump and the second motor 128 .
在本实施例中,所述第一循环流体和第二循环流体为液体或气体,所述第一冷却流体和第一冷却流体为氟利昂制冷剂或冷却水。In this embodiment, the first circulating fluid and the second circulating fluid are liquid or gas, and the first cooling fluid and the first cooling fluid are Freon refrigerant or cooling water.
综上所述,本发明的相通容器的液体循环控制系统100,其具体工作原理为:1:所述第一循环流体经第一换热器112后,由第一变频器119控制第一泵和第一马达118,以达到设定第一循环流体110在某一压力下;所述第二循环流体经第二换热器122后,由第二变频器129控制第二泵和第二马达128,以达到设定第二循环流体120在与第一循环流体110的压力值相同或相近似。2:直接通过调节第一电动阀门116和第二电动阀门126控制第一循环流体110和第二循环流体120的压力值。通过上述两种方法使得流入第一腔体150和第二腔体160的压力值达到平衡,以达到两个循环液体处于动态隔离,即在毛细管170处不流通,或极少流通。In summary, the specific working principles of the liquid circulation control system 100 of the present invention are as follows: 1: After the first circulating fluid passes through the first heat exchanger 112, the first pump is controlled by the first frequency converter 119 and the first motor 118, so as to set the first circulating fluid 110 at a certain pressure; after the second circulating fluid passes through the second heat exchanger 122, the second pump and the second motor are controlled by the second frequency converter 129 128 , so as to set the pressure of the second circulating fluid 120 to be the same or similar to that of the first circulating fluid 110 . 2: Control the pressure values of the first circulating fluid 110 and the second circulating fluid 120 directly by adjusting the first electric valve 116 and the second electric valve 126 . Through the above two methods, the pressure values flowing into the first chamber 150 and the second chamber 160 are balanced, so that the two circulating liquids are dynamically isolated, that is, there is no or very little circulation at the capillary 170 .
应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。It should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention without limitation, although the present invention has been described in detail with reference to the preferred embodiments, those of ordinary skill in the art should understand that the technical solutions of the present invention can be carried out Modifications or equivalent replacements without departing from the spirit and scope of the technical solutions of the present invention shall be covered by the claims of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410392569.7A CN104180708B (en) | 2014-08-11 | 2014-08-11 | A Liquid Circulation Control System Connected to Containers |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410392569.7A CN104180708B (en) | 2014-08-11 | 2014-08-11 | A Liquid Circulation Control System Connected to Containers |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104180708A CN104180708A (en) | 2014-12-03 |
CN104180708B true CN104180708B (en) | 2016-03-30 |
Family
ID=51961924
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410392569.7A Active CN104180708B (en) | 2014-08-11 | 2014-08-11 | A Liquid Circulation Control System Connected to Containers |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104180708B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106482392A (en) * | 2016-12-01 | 2017-03-08 | 无锡溥汇机械科技有限公司 | A kind of two temperature one frozen water machine precision heat-exchange system |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5213152A (en) * | 1991-11-05 | 1993-05-25 | Abb Air Preheater, Inc. | Temperature control system for a heat detector on a heat exchanger |
WO1999035698A2 (en) * | 1997-10-29 | 1999-07-15 | Blacklight Power, Inc. | Hydrogen catalysis power cell for energy conversion systems |
CN2716693Y (en) * | 2004-07-09 | 2005-08-10 | 上海实翔机电设备工程成套有限公司 | Normal pressure electric heat storage water supply system |
CN200941032Y (en) * | 2006-06-23 | 2007-08-29 | 株洲时代新材料科技股份有限公司 | Circulation water coolant apparatus |
CN103217058A (en) * | 2013-04-19 | 2013-07-24 | 无锡溥汇机械科技有限公司 | Chiller heat exchanging amount control system |
CN204064096U (en) * | 2014-08-11 | 2014-12-31 | 无锡溥汇机械科技有限公司 | A kind of liquid-circulating control system of the container that communicates |
-
2014
- 2014-08-11 CN CN201410392569.7A patent/CN104180708B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5213152A (en) * | 1991-11-05 | 1993-05-25 | Abb Air Preheater, Inc. | Temperature control system for a heat detector on a heat exchanger |
WO1999035698A2 (en) * | 1997-10-29 | 1999-07-15 | Blacklight Power, Inc. | Hydrogen catalysis power cell for energy conversion systems |
CN2716693Y (en) * | 2004-07-09 | 2005-08-10 | 上海实翔机电设备工程成套有限公司 | Normal pressure electric heat storage water supply system |
CN200941032Y (en) * | 2006-06-23 | 2007-08-29 | 株洲时代新材料科技股份有限公司 | Circulation water coolant apparatus |
CN103217058A (en) * | 2013-04-19 | 2013-07-24 | 无锡溥汇机械科技有限公司 | Chiller heat exchanging amount control system |
CN204064096U (en) * | 2014-08-11 | 2014-12-31 | 无锡溥汇机械科技有限公司 | A kind of liquid-circulating control system of the container that communicates |
Also Published As
Publication number | Publication date |
---|---|
CN104180708A (en) | 2014-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104180708B (en) | A Liquid Circulation Control System Connected to Containers | |
CN206874599U (en) | A kind of fluid torque-converter working oil liquid temperature-adjusting device | |
CN103574954B (en) | A kind of energy feedback type heat exchange system | |
CN201059781Y (en) | Constant temperature controller for heat pump water heater | |
CN103217058A (en) | Chiller heat exchanging amount control system | |
CN209564007U (en) | water dispenser | |
CN116928947B (en) | Electric vibrating table moving coil cooling system and method based on multi-sensor fusion | |
CN106440595A (en) | Fluid pressure control system of two-temperature integral water chiller | |
CN203274224U (en) | Inside-and-outside convection type aluminum oxide ceramic heating tube assembly | |
CN104180709B (en) | A kind of liquid-circulating Stress control water tank of the container that communicates | |
CN206787334U (en) | Water dissolving type temperature control device | |
CN201583556U (en) | Closed constant flow water supply circulating cooling system with adjustable flow | |
CN203755383U (en) | Pressure-stable water supply device for crystallizer of continuous casting machine | |
CN109945588A (en) | A kind of coolant circulation system and control method applied on coating machine | |
CN207163056U (en) | Water loop temperature control machine | |
CN203758137U (en) | Negative pressure water warming machine | |
CN204064097U (en) | A kind of liquid-circulating Stress control water tank of the container that communicates | |
CN203240954U (en) | Heat exchange amount control system of ice-water machine | |
CN206251537U (en) | The cooling back installation of controllable circulating water temperature | |
CN213207287U (en) | Mould cooling water flow controlling means that becomes more meticulous | |
CN204064096U (en) | A kind of liquid-circulating control system of the container that communicates | |
CN204151122U (en) | Washing kettle heating system | |
CN207453004U (en) | A kind of constant pressure tank, cooling water replenishment system and evaporative condenser | |
CN103968441B (en) | A kind of multimode positive displacement heat-exchange system and heat exchange processing method thereof | |
CN204346211U (en) | A kind of vertical array tubular cooler for the cooling of sulphur gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Zhu Tieming Inventor before: Zhang Xiang Inventor before: Zhu Tieming |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20180510 Address after: 730000 Nanchang Road, Chengguan District, Lanzhou City, Gansu Province, No. 509 Patentee after: INSTITUTE OF MODERN PHYSICS, CHINESE ACADEMY OF SCIENCES Address before: 214192 Xiangyun four, 312, Furong three road, Xishan Economic Development Zone, Wuxi, Jiangsu, 312 Patentee before: PHST Corp. |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240902 Address after: 516300 Daling Twelve Tuo, Huidong County, Huizhou City, Guangdong Province (Huidong Industrial Transfer Industrial Park) Patentee after: Huizhou Kejin Taiji New Technology Co.,Ltd. Country or region after: China Address before: 730000 No. 509, Nanchang Road, Chengguan District, Gansu, Lanzhou Patentee before: INSTITUTE OF MODERN PHYSICS, CHINESE ACADEMY OF SCIENCES Country or region before: China |