CN104133954A - Protection logic simulation device and dynamic verification system using protection logic simulation device - Google Patents
Protection logic simulation device and dynamic verification system using protection logic simulation device Download PDFInfo
- Publication number
- CN104133954A CN104133954A CN201410360234.7A CN201410360234A CN104133954A CN 104133954 A CN104133954 A CN 104133954A CN 201410360234 A CN201410360234 A CN 201410360234A CN 104133954 A CN104133954 A CN 104133954A
- Authority
- CN
- China
- Prior art keywords
- signal
- protection
- data
- unit
- input signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004088 simulation Methods 0.000 title claims abstract description 114
- 238000012795 verification Methods 0.000 title abstract description 25
- 238000012544 monitoring process Methods 0.000 claims abstract description 83
- 238000012545 processing Methods 0.000 claims abstract description 59
- 230000009471 action Effects 0.000 claims abstract description 47
- 238000004364 calculation method Methods 0.000 claims abstract description 24
- 238000009826 distribution Methods 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims description 29
- 230000008569 process Effects 0.000 claims description 26
- 238000002955 isolation Methods 0.000 claims description 16
- 238000006243 chemical reaction Methods 0.000 claims description 12
- 238000004891 communication Methods 0.000 claims description 8
- 239000001307 helium Substances 0.000 claims description 7
- 229910052734 helium Inorganic materials 0.000 claims description 7
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 7
- 238000005538 encapsulation Methods 0.000 claims description 4
- 230000001360 synchronised effect Effects 0.000 claims description 4
- 238000009795 derivation Methods 0.000 claims description 2
- 230000000052 comparative effect Effects 0.000 claims 1
- 238000005259 measurement Methods 0.000 description 14
- 238000010586 diagram Methods 0.000 description 5
- 238000004422 calculation algorithm Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000013178 mathematical model Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Landscapes
- Testing And Monitoring For Control Systems (AREA)
Abstract
本发明提供一种保护逻辑仿真装置和使用其的动态验证系统,包括:输入信号管理模块、保护逻辑仿真模块和输出信号管理模块,其中:输入信号管理模块用于采集输入信号数据,并发送至保护逻辑仿真模块;保护逻辑仿真模块用于接收并读取输入信号管理模块所发送的数据,执行信号分配、信号处理、定值比较、逻辑符合、通道监测、事故后监测以及保护动作计算仿真功能,并将计算结果发送至输出信号管理模块;输出信号管理模块用于接收所述保护逻辑仿真模块所发送的信号并作为输出信号数据输出。本发明能模拟高温气冷堆数字化保护逻辑装置功能和/或性能,为高温气冷堆主控室动态验证、保护逻辑装置与其它系统/设备间的接口调试和验证提供可行的技术手段。
The present invention provides a protection logic simulation device and a dynamic verification system using it, including: an input signal management module, a protection logic simulation module and an output signal management module, wherein the input signal management module is used to collect input signal data and send it to Protection logic simulation module; the protection logic simulation module is used to receive and read the data sent by the input signal management module, perform signal distribution, signal processing, fixed value comparison, logical coincidence, channel monitoring, post-accident monitoring and protection action calculation and simulation functions , and send the calculation result to the output signal management module; the output signal management module is used to receive the signal sent by the protection logic simulation module and output it as output signal data. The invention can simulate the function and/or performance of the high-temperature gas-cooled reactor digital protection logic device, and provides feasible technical means for dynamic verification of the high-temperature gas-cooled reactor main control room, interface debugging and verification between the protection logic device and other systems/equipment.
Description
技术领域technical field
本发明涉及核反应堆技术领域,尤其涉及一种保护逻辑仿真装置和使用其的动态验证系统。The invention relates to the technical field of nuclear reactors, in particular to a protection logic simulation device and a dynamic verification system using the same.
背景技术Background technique
高温气冷堆是采用没有金属包壳的涂敷颗粒作燃料,以石墨作慢化剂,氦气作冷却剂的先进反应堆,堆芯出口温度高。高温气冷堆具有固有的安全性、热能利用广、热效率高、运行和管理容易、燃料选择的灵活性大、燃料消耗量少的特点。高温气冷堆在中小型核电站、干旱地区核电站以及核能煤气化和液化、制氢等方面具有良好的应用前景。The high-temperature gas-cooled reactor is an advanced reactor that uses coated particles without a metal cladding as fuel, graphite as a moderator, and helium as a coolant. The core outlet temperature is high. High-temperature gas-cooled reactors have the characteristics of inherent safety, wide utilization of thermal energy, high thermal efficiency, easy operation and management, great flexibility in fuel selection, and low fuel consumption. High-temperature gas-cooled reactors have good application prospects in small and medium-sized nuclear power plants, nuclear power plants in arid regions, nuclear energy coal gasification and liquefaction, and hydrogen production.
高温气冷堆保护系统是高温气冷堆重要的安全系统之一,用于连续监测按事故分析确定的保护变量(如核功率、一回路压力、堆芯进出口温度、一回路湿度等),当所监测的保护变量或导出的计算变量达到或超过整定值时,自动给出保护触发信号,执行相应的保护动作,用来防止高温气冷堆的状态超过规定的安全限值,或在设计基准事故发生时制止事故扩展或缓解由此引起的后果。The high temperature gas-cooled reactor protection system is one of the important safety systems of the high temperature gas-cooled reactor, which is used to continuously monitor the protection variables determined according to the accident analysis (such as nuclear power, primary circuit pressure, core inlet and outlet temperature, primary circuit humidity, etc.), When the monitored protection variable or the derived calculation variable reaches or exceeds the set value, a protection trigger signal is automatically given to perform corresponding protection actions to prevent the state of the high temperature gas-cooled reactor from exceeding the specified safety limit, or within the design basis When an accident occurs, stop the expansion of the accident or mitigate the consequences caused by it.
高温气冷堆保护系统的数字化是信息技术高速发展时代的一种不可逆转的趋势,是计算机技术应用于高温反应堆保护系统的必然。高温气冷堆数字化保护系统可以获得比模拟的保护系统更高的可靠性、准确性和稳定性,同时大幅度地提高反应堆保护系统的功能。The digitalization of the protection system of high temperature gas-cooled reactor is an irreversible trend in the era of rapid development of information technology, and it is inevitable that computer technology is applied to the protection system of high temperature reactor. The high temperature gas-cooled reactor digital protection system can obtain higher reliability, accuracy and stability than the analog protection system, and at the same time greatly improve the function of the reactor protection system.
但是,高温气冷堆数字化保护逻辑装置是一个庞大、复杂的系统,它与过程测量系统、核测量系统、紧急停堆断路器、专设安全设施等设备之间都存在着信号接口关系,并需通过接口与其他结构或设备进行动态信号交换。在实际的高温气冷堆关键技术验证过程中,需要一个或多个高温气冷堆数字化保护系统参与验证各系统之间接口信号的正确性。但是,数字化保护系统结构复杂,占用厂地面积较多,且价格昂贵;因此,在实施过程中需要采用一种仿真装置来模拟数字化保护系统在实际高温气冷堆中所承担的作用。至今,仍缺乏这种能够对高温气冷堆中各主要结构的功能和接口的正确性进行动态验证和实时调试的装置。However, the high-temperature gas-cooled reactor digital protection logic device is a huge and complex system, and there are signal interface relationships between it and the process measurement system, nuclear measurement system, emergency shutdown circuit breaker, and special safety facilities. Dynamic signal exchange with other structures or devices is required through interfaces. In the actual verification process of key technologies of HTGR, one or more HTGR digital protection systems are required to participate in verifying the correctness of the interface signals between systems. However, the digital protection system has a complex structure, takes up a large area of the plant, and is expensive; therefore, a simulation device is needed to simulate the role of the digital protection system in the actual high-temperature gas-cooled reactor during implementation. So far, there is still a lack of such a device capable of dynamically verifying and real-time debugging the correctness of the functions and interfaces of each main structure in a high-temperature gas-cooled reactor.
发明内容Contents of the invention
本发明提供一种保护逻辑仿真装置和使用其的动态验证系统,以解决现有技术中无法对高温气冷堆中各主要结构的功能和接口的正确性进行动态验证和实时调试的技术问题。The invention provides a protection logic simulation device and a dynamic verification system using it to solve the technical problem in the prior art that the correctness of functions and interfaces of each main structure in a high temperature gas-cooled reactor cannot be dynamically verified and debugged in real time.
本发明提供一种保护逻辑仿真装置,包括:输入信号管理模块、保护逻辑仿真模块和输出信号管理模块,其中:The present invention provides a protection logic simulation device, including: an input signal management module, a protection logic simulation module and an output signal management module, wherein:
所述输入信号管理模块用于采集输入信号数据,并发送至所述保护逻辑仿真模块;The input signal management module is used to collect input signal data and send it to the protection logic simulation module;
所述保护逻辑仿真模块用于接收并读取所述输入信号管理模块所发送的数据,执行信号分配、信号处理、定值比较、逻辑符合、通道监测、事故后监测以及保护动作计算仿真功能,并将计算结果发送至输出信号管理模块;The protection logic simulation module is used to receive and read the data sent by the input signal management module, perform signal distribution, signal processing, fixed value comparison, logic coincidence, channel monitoring, post-accident monitoring and protection action calculation and simulation functions, And send the calculation result to the output signal management module;
所述输出信号管理模块用于接收所述保护逻辑仿真模块所发送的信号并作为输出信号数据输出。The output signal management module is used to receive the signal sent by the protection logic simulation module and output it as output signal data.
进一步地,所述装置还包括:Further, the device also includes:
输入信号同步模块,分别与所述输入信号管理模块和所述保护逻辑仿真模块相连,用于将所述输入信号管理模块和所述保护逻辑仿真模块之间的输入信号数据同步。The input signal synchronization module is respectively connected with the input signal management module and the protection logic simulation module, and is used for synchronizing the input signal data between the input signal management module and the protection logic simulation module.
进一步地,所述装置还包括:Further, the device also includes:
输出信号同步模块,分别与所述保护逻辑仿真模块和所述输出信号管理模块相连,用于将所述保护逻辑仿真模块和所述输出信号管理模块之间的输出信号数据同步。The output signal synchronization module is respectively connected with the protection logic simulation module and the output signal management module, and is used for synchronizing the output signal data between the protection logic simulation module and the output signal management module.
进一步地,所述输入信号管理模块还用于:Further, the input signal management module is also used for:
根据用户或系统配置,选择输入信号数据来源,并从所述输入信号数据来源实时动态地采集输入信号数据,对所述输入信号数据进行信号变换和/或通信数据包解析。According to the user or system configuration, select the source of the input signal data, and dynamically collect the input signal data from the input signal data source in real time, and perform signal conversion and/or communication data packet analysis on the input signal data.
进一步地,所述输出信号管理模块还用于:Further, the output signal management module is also used for:
对输出信号数据进行信号变换和/或通信数据包封装,根据用户或系统配置,选择输出信号数据的输出方式进行输出。Carry out signal transformation and/or communication data packet encapsulation on the output signal data, and select the output mode of the output signal data for output according to the user or system configuration.
进一步地,所述保护逻辑仿真模块包括:一个或多个信号隔离单元、信号处理单元、逻辑符合单元、事故后监测单元、通道监测单元和安全驱动单元,其中:Further, the protection logic simulation module includes: one or more signal isolation units, signal processing units, logic coincidence units, post-accident monitoring units, channel monitoring units and safety drive units, wherein:
所述信号隔离单元用于将所述输入信号数据进行分配,将一路输入信号数据变成一路或多路输入信号数据,并将分配后的输入信号数据分别发送至其对应的信号处理单元和事故后监测单元;The signal isolation unit is used to distribute the input signal data, change one input signal data into one or more input signal data, and send the distributed input signal data to its corresponding signal processing unit and accident rear monitoring unit;
所述信号处理单元分为两种类型:一类为信号处理单元X,另一类为信号处理单元Y;The signal processing unit is divided into two types: one is signal processing unit X, and the other is signal processing unit Y;
所述逻辑符合单元分为两种类型:一类为逻辑符合单元X,另一类为逻辑符合单元Y;The logical coincidence unit is divided into two types: one is a logical coincidence unit X, and the other is a logical coincidence unit Y;
所述信号处理单元X用于对输入该单元的信号数据进行量程变换、保护监测变量计算和定值比较信号处理,并将处理结果和经定值比较生成的事故报警变量分别发送至其对应的通道监测单元和逻辑符合单元X;The signal processing unit X is used to perform range conversion, calculation of protection monitoring variables and fixed value comparison signal processing on the signal data input to the unit, and send the processing results and the accident alarm variables generated by the fixed value comparison to its corresponding Channel monitoring unit and logical coincidence unit X;
所述的信号处理单元Y用于对输入该单元的信号数据进行量程变换和保护监测变量计算信号处理,并将处理结果分别发送至其对应的通道监测单元和逻辑符合单元Y;The signal processing unit Y is used to perform range conversion and protection monitoring variable calculation signal processing on the signal data input to the unit, and send the processing results to its corresponding channel monitoring unit and logical coincidence unit Y;
所述逻辑符合单元X用于处理输入该单元的信号数据,按照设定逻辑对来自信号处理单元X的事故报警变量进行第一级四取二表决逻辑符合运算,生成保护动作触发信号,将信号数据的处理结果和保护动作触发信号发送至对应的通道监测单元,并将保护动作触发信号发送至安全驱动单元;The logic coincidence unit X is used to process the signal data input to the unit, and performs the logic coincidence operation of the first-level two-out-of-four voting for the accident alarm variable from the signal processing unit X according to the set logic, generates a protection action trigger signal, and converts the signal The data processing result and the protection action trigger signal are sent to the corresponding channel monitoring unit, and the protection action trigger signal is sent to the safety drive unit;
所述逻辑符合单元Y用于处理输入该单元的信号数据,按照设定逻辑对来自信号处理单元Y的事故报警变量进行第一级四取二表决逻辑符合运算,生成保护动作触发信号,将信号数据的处理结果和保护动作触发信号发送至对应的通道监测单元,并将保护动作触发信号发送至安全驱动单元;The logical coincidence unit Y is used to process the signal data input to the unit, and performs the logical coincidence operation of the first-level two-out-of-four voting on the accident alarm variable from the signal processing unit Y according to the set logic, generates a protection action trigger signal, and converts the signal The data processing result and the protection action trigger signal are sent to the corresponding channel monitoring unit, and the protection action trigger signal is sent to the safety drive unit;
所述事故后监测单元用于接收所述输入信号数据,对所述输入信号数据进行量程变换计算,并将计算结果发送至对应的通道监测单元;The post-accident monitoring unit is used to receive the input signal data, perform range conversion calculation on the input signal data, and send the calculation result to the corresponding channel monitoring unit;
所述通道监测单元用于接收所述输入信号数据、所述信号处理单元的处理结果、所述逻辑符合单元的处理结果和保护动作触发信号,以及所述事故后监测单元的计算结果,执行允许和/或闭锁逻辑运算,对上述数据进行归类封装,并将结果输出至信号隔离单元和外部显示装置;The channel monitoring unit is used to receive the input signal data, the processing result of the signal processing unit, the processing result of the logical coincidence unit, the protection action trigger signal, and the calculation result of the post-accident monitoring unit, and execute the permission and/or block logic operations, classify and package the above data, and output the results to the signal isolation unit and external display device;
所述安全驱动单元用于接收所述输入信号数据和所述逻辑符合单元发送的保护动作触发信号,并按照设定逻辑进行第二级四取二表决逻辑符合运算,生成联锁信号、保护动作触发驱动信号和保护动作指示信号并输出。The safety driving unit is used to receive the input signal data and the protection action trigger signal sent by the logic coincidence unit, and perform the logic coincidence operation of the second-level two-out-of-four voting according to the set logic to generate an interlock signal and a protection action. Trigger drive signal and protection action indication signal and output.
另一方面,本发明还提供一种动态验证系统,包括如上任一项所述的保护逻辑仿真装置。On the other hand, the present invention also provides a dynamic verification system, including the protection logic simulation device described in any one of the above items.
进一步地,所述系统还包括:工艺仿真模型、主控室、备用停堆点、报警系统、网关和反应堆功率控制系统,分别与所述保护逻辑仿真装置相连,其中:Further, the system also includes: a process simulation model, a main control room, a backup shutdown point, an alarm system, a gateway, and a reactor power control system, which are respectively connected to the protection logic simulation device, wherein:
所述工艺仿真模型用于向所述保护逻辑仿真装置提供事故后和保护监测变量作为输入信号数据,并自所述保护逻辑仿真装置接收输出信号数据中的保护动作数据;The process simulation model is used to provide post-accident and protection monitoring variables as input signal data to the protection logic simulation device, and receive protection action data in the output signal data from the protection logic simulation device;
所述主控室用于向所述保护逻辑仿真装置提供保护相关操作按钮信号作为输入信号数据,并自所述保护逻辑仿真装置接收输出信号数据中相应的通道监测信号和保护相关指示信号;The main control room is used to provide protection-related operation button signals as input signal data to the protection logic simulation device, and receive corresponding channel monitoring signals and protection-related indication signals in the output signal data from the protection logic simulation device;
所述备用停堆点用于向所述保护逻辑仿真装置提供保护动作操作按钮作为输入信号数据,并自所述保护逻辑仿真装置接收输出信号数据中相应的通道监测信号;The backup shutdown point is used to provide the protective action operation button as input signal data to the protection logic simulation device, and receive the corresponding channel monitoring signal in the output signal data from the protection logic simulation device;
所述报警系统用于自所述保护逻辑仿真装置接收输出信号数据中的事故报警信号;The alarm system is used to receive the accident alarm signal in the output signal data from the protection logic simulation device;
所述网关用于自所述保护逻辑仿真装置接收输出信号数据中相应的通道监测信号;The gateway is used to receive the corresponding channel monitoring signal in the output signal data from the protection logic simulation device;
所述反应堆功率控制系统用于自所述保护逻辑仿真装置接收输出信号数据中的允许棒控投入信号。The reactor power control system is used for receiving the allowable rod control input signal in the output signal data from the protection logic simulation device.
进一步地,further,
所述保护监测变量包括源量程核功率、中间量程核功率、功率量程核功率、一回路氦气热端温度、一回路氦气冷端温度、一回路压力、二回路压力、一回路流量计压差、二回路流量计压差、一回路湿度中的一个或多个;The protection monitoring variables include source range nuclear power, intermediate range nuclear power, power range nuclear power, temperature at the hot end of helium in the primary circuit, temperature at the cold end of helium in the primary circuit, pressure in the primary circuit, pressure in the secondary circuit, flowmeter pressure in the primary circuit One or more of differential pressure, secondary loop flowmeter differential pressure, and primary loop humidity;
和/或,所述保护相关操作按钮信号包括紧急停堆按钮、一回路隔离按钮、蒸发器事故排放按钮、停堆断路器复位按钮、源量程核功率高闭锁按钮、中间量程核功率高闭锁按钮、功率量程核功率高闭锁按钮中的一个或多个;And/or, the protection-related operation button signals include an emergency shutdown button, a primary circuit isolation button, an evaporator emergency discharge button, a shutdown circuit breaker reset button, a source range nuclear power high lockout button, and an intermediate range nuclear power high lockout button , one or more of the power range and nuclear power high lock buttons;
和/或,所述保护动作数据包括停堆断路器驱动装置驱动信号、一回路隔离驱动信号、蒸发器事故排放启动驱动信号、关闭核测高压信号、打开核测高压信号中的一个或多个;And/or, the protection action data includes one or more of the driving signal of the shutdown circuit breaker driving device, the primary circuit isolation driving signal, the evaporator emergency discharge start driving signal, the closing of the nuclear testing high voltage signal, and the opening of the nuclear testing high voltage signal ;
和/或,所述通道监测信号包括保护监测变量及其推导变量、定值比较结果、逻辑符合结果、事故后监测变量、设备状态信息中的一个或多个。And/or, the channel monitoring signal includes one or more of protection monitoring variables and their derived variables, fixed value comparison results, logical coincidence results, post-accident monitoring variables, and equipment status information.
本发明能够实时动态地与存在接口关系的系统/设备或其仿真模型进行信号交换,并能够完全模拟高温气冷堆数字化保护逻辑装置功能和/或性能的动态验证系统,从而为高温气冷堆主控室动态验证、保护逻辑装置与其它系统/设备间的接口调试和验证提供可行的技术手段。The present invention can perform real-time dynamic signal exchange with the system/equipment with interface relationship or its simulation model, and can fully simulate the dynamic verification system of the function and/or performance of the high temperature gas-cooled reactor digital protection logic device, thereby providing a high-temperature gas-cooled reactor Dynamic verification in the main control room, interface debugging and verification between the protection logic device and other systems/equipment provide feasible technical means.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description These are some embodiments of the present invention. Those skilled in the art can also obtain other drawings based on these drawings without creative work.
图1是高温气冷堆数字化保护系统的结构示意图;Figure 1 is a schematic structural diagram of the digital protection system for a high temperature gas-cooled reactor;
图2是本发明一个实施例中保护逻辑仿真装置的结构示意图;Fig. 2 is a schematic structural diagram of a protection logic simulation device in an embodiment of the present invention;
图3是本发明一个实施例中保护逻辑仿真装置的结构示意图;Fig. 3 is a schematic structural diagram of a protection logic simulation device in an embodiment of the present invention;
图4是本发明一个实施例中保护逻辑仿真模块的结构示意图;Fig. 4 is a schematic structural diagram of a protection logic simulation module in an embodiment of the present invention;
图5是本发明一个实施例中动态验证系统的结构示意图。Fig. 5 is a schematic structural diagram of a dynamic verification system in an embodiment of the present invention.
具体实施方式Detailed ways
为使本实施例的目的、技术方案和优点更加清楚,下面将结合本实施例中的附图,对本实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solution and advantages of this embodiment clearer, the technical solution in this embodiment will be clearly and completely described below in conjunction with the accompanying drawings in this embodiment. Obviously, the described embodiment is the embodiment of the present invention. Some, but not all, embodiments. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention.
高温气冷堆数字化保护系统通常采用四通道冗余和两级“四取二”表决的结构,并采用局部符合(即对同一个保护变量四个冗余监测信号进行“四取二”表决)逻辑,以降低误动作概率并提高其可维护性。高温气冷堆数字化保护系统的结构参见图1。The high-temperature gas-cooled reactor digital protection system usually adopts a four-channel redundancy and two-level "out of four" voting structure, and adopts local coincidence (that is, "out of four" voting for four redundant monitoring signals of the same protection variable) logic to reduce the probability of misoperation and improve its maintainability. The structure of digital protection system for HTGR is shown in Fig. 1.
为了实现保护功能的多样性,首先可以将每个假设始发事件的冗余保护变量通过信号隔离装置分成x、y两组,设置x、y两组独立的信号处理装置和逻辑符合装置,分别对x、y两组保护变量进行处理,逻辑符合结果分别输出独立的紧急停堆触发信号和专设触发信号。这两部分电路构成了彼此独立的x、y两个子系统,x、y子系统具有相同的硬件设计但运行不同的软件,它们分别处理不同的保护变量、应用不同的信号处理算法、独立地执行保护功能,以减小共因失效的潜在危险。In order to achieve the diversity of protection functions, firstly, the redundant protection variables of each hypothetical initiating event can be divided into two groups x and y through the signal isolation device, and two independent signal processing devices and logical coincidence devices are set up for x and y, respectively. The two groups of protection variables x and y are processed, and the logical coincidence results output independent emergency shutdown trigger signals and special trigger signals respectively. These two parts of the circuit constitute two subsystems x and y that are independent of each other. The x and y subsystems have the same hardware design but run different software. They process different protection variables, apply different signal processing algorithms, and execute independently Protection function to reduce the potential danger of common cause failure.
图1中的高温气冷堆数字化保护系统由A、B、C、D四个冗余通道(或列)组成,每个通道的信号处理装置和每个逻辑列的逻辑符合装置又分成x和y两部分,保护系统的信号处理装置包括Ax、Ay、Bx、By、Cx、Cy、Dx、Dy八个部分,逻辑符合装置也包括Ax、Ay、Bx、By、Cx、Cy、Dx、Dy八个部分。每个逻辑符合装置接收本子系统四个冗余通道的信号处理装置的输出结果,对每个保护变量分别进行“四取二”逻辑运算,再对各个保护变量的“四取二”结果进行“或”运算,以产生逻辑符合装置的紧急停堆触发信号或专设安全设施驱动信号。The high temperature gas-cooled reactor digital protection system in Figure 1 is composed of four redundant channels (or columns) A, B, C, and D, and the signal processing device of each channel and the logical coincidence device of each logical column are further divided into x and y two parts, the signal processing device of the protection system includes eight parts Ax, Ay, Bx, By, Cx, Cy, Dx, Dy, and the logical coincidence device also includes Ax, Ay, Bx, By, Cx, Cy, Dx, Dy eight parts. Each logical coincidence device receives the output results of the signal processing device of the four redundant channels of the subsystem, respectively performs "two out of four" logic operations on each protection variable, and then performs "two out of four" results for each protection variable OR" operation to generate the emergency shutdown trigger signal of the logical coincidence device or the driving signal of the special safety device.
高温气冷堆数字化保护系统每个冗余列的逻辑符合装置x和逻辑符合装置y输出的紧急停堆触发信号经过“或”运算后形成“列”的停堆驱动信号,均会触发2个停堆断路器脱扣(例如图1中A“列”逻辑符合装置触发停堆断路器A1和A2脱扣,B“列”逻辑符合装置触发停堆断路器B1和B2脱扣,依次类推)。8个停堆断路器的触点按图1中所示连接,以实现高温气冷堆数字化保护系统的第二级“四取二”逻辑符合运算。The emergency shutdown trigger signal output by the logical coincidence device x and logical coincidence device y of each redundant column of the high temperature gas-cooled reactor digital protection system is "OR"ed to form a "column" shutdown driving signal, which will trigger two Tripping of the shutdown circuit breaker (for example, in Figure 1, the "column" logical coincidence device triggers the tripping of the shutdown circuit breakers A1 and A2, and the logical coincidence device of "column B" triggers the tripping of the shutdown circuit breakers B1 and B2, and so on) . The contacts of the eight shutdown circuit breakers are connected as shown in Figure 1 to realize the second-level "two out of four" logical coincidence operation of the digital protection system of the high temperature gas-cooled reactor.
高温气冷堆数字化保护系统中的保护逻辑装置共由18个机柜组成,分别为包含信号隔离装置的信号隔离柜A、B、C、D,保护逻辑柜Ax、Bx、Cx、Dx,保护逻辑柜Ay、By、Cy、Dy,通道监测柜A、B、C、D,安全触发柜A、B。其中每个保护逻辑柜x中又包括信号处理装置x和逻辑符合装置x,每个保护逻辑柜y中又包括信号处理装置y和逻辑符合装置y。The protection logic device in the high temperature gas-cooled reactor digital protection system consists of 18 cabinets, which are signal isolation cabinets A, B, C, and D containing signal isolation devices, protection logic cabinets Ax, Bx, Cx, Dx, protection logic cabinets Cabinets Ay, By, Cy, Dy, channel monitoring cabinets A, B, C, D, safety trigger cabinets A, B. Each protection logic cabinet x further includes a signal processing device x and a logic coincidence device x, and each protection logic cabinet y further includes a signal processing device y and a logic coincidence device y.
上述高温气冷堆数字化保护逻辑装置是一个庞大、复杂的系统,它与高温气冷堆中的过程测量系统、核测量系统、紧急停堆断路器、专设安全设施、分布式控制(Distributed Control System,DCS)报警系统、主控室、备用停堆点、DCS网关、反应堆功率控制设备等都存在着信号接口关系,并需通过接口与其他系统/设备进行动态信号交换。The above-mentioned high temperature gas-cooled reactor digital protection logic device is a huge and complex system, which is related to the process measurement system, nuclear measurement system, emergency shutdown circuit breaker, special safety facilities, distributed control (Distributed Control) in the high temperature gas-cooled reactor. System, DCS) alarm system, main control room, standby shutdown point, DCS gateway, reactor power control equipment, etc., all have signal interface relationships, and need to exchange dynamic signals with other systems/equipment through interfaces.
为了验证高温气冷堆中各主要结构的功能、接口的正确性,本实施例首先提供一种保护逻辑仿真装置,参见图2,包括:输入信号管理模块201、保护逻辑仿真模块202和输出信号管理模块203,其中:In order to verify the correctness of the functions and interfaces of the main structures in the high-temperature gas-cooled reactor, this embodiment first provides a protection logic simulation device, see Figure 2, including: input signal management module 201, protection logic simulation module 202 and output signal Management module 203, wherein:
输入信号管理模块201用于采集输入信号数据,并发送至保护逻辑仿真模块202;The input signal management module 201 is used to collect input signal data and send it to the protection logic simulation module 202;
保护逻辑仿真模块202用于接收并读取输入信号管理模块201所发送的数据,执行信号分配、定值比较、逻辑符合、通道监测、事故后监测以及保护动作计算仿真功能,并将计算结果发送至输出信号管理模块203;The protection logic simulation module 202 is used to receive and read the data sent by the input signal management module 201, perform signal distribution, fixed value comparison, logic coincidence, channel monitoring, post-accident monitoring and protection action calculation and simulation functions, and send the calculation results to to the output signal management module 203;
输出信号管理模块203用于接收保护逻辑仿真模块202所发送的信号并作为输出信号数据输出。The output signal management module 203 is used to receive the signal sent by the protection logic simulation module 202 and output it as output signal data.
其中,本实施例装置还可以包括:输入信号同步模块301,见图3,分别与输入信号管理模块201和保护逻辑仿真模块202相连,用于将输入信号管理模块201和保护逻辑仿真模块202之间的输入信号数据同步,维持输入信号管理模块201和保护逻辑仿真模块202之间数据的完整性。Wherein, the device of this embodiment may also include: an input signal synchronization module 301, as shown in FIG. The data synchronization of the input signal among them maintains the integrity of the data between the input signal management module 201 and the protection logic simulation module 202 .
另外,装置还可以包括:输出信号同步模块302,分别与保护逻辑仿真模块202和输出信号管理模块203相连,用于将保护逻辑仿真模块202和输出信号管理模块203之间的输出信号数据同步,维持保护逻辑仿真模块202和输出信号管理模块203之间的数据的完整性。In addition, the device may further include: an output signal synchronization module 302, which is respectively connected to the protection logic simulation module 202 and the output signal management module 203, for synchronizing the output signal data between the protection logic simulation module 202 and the output signal management module 203, Data integrity between the protection logic simulation module 202 and the output signal management module 203 is maintained.
可选地,输入信号管理模块201还可以用于:根据用户或系统配置,选择输入信号数据来源,并从所述输入信号数据来源实时动态地采集输入信号数据,对所述输入信号数据进行信号变换和/或通信数据包解析。输入信号管理模块201负责管理保护逻辑仿真装置所需的来自接口系统/设备或其仿真模型(接口系统/设备包括过程测量系统、核测量系统、主控室、备用停堆点)的信号,为保护逻辑仿真装置202提供必要的输入信号数据。其中输入信号数据来源包括三种可选途径:一是通过通信数据包(如通过以太网、串口等)的形式获取数据;二是通过模拟量和/或数字量采集板卡获取数据;三是通过仿真系统软件人机界面获取数据。Optionally, the input signal management module 201 may also be configured to: select an input signal data source according to user or system configuration, and dynamically collect input signal data from the input signal data source in real time, and perform signal processing on the input signal data. Transformation and/or communication packet parsing. The input signal management module 201 is responsible for managing the signal from the interface system/equipment or its simulation model (interface system/equipment includes process measurement system, nuclear measurement system, main control room, standby shutdown point) required by the protection logic simulation device, for The protection logic simulator 202 provides the necessary input signal data. The source of input signal data includes three optional ways: one is to obtain data in the form of communication data packets (such as through Ethernet, serial port, etc.); the other is to obtain data through analog and/or digital acquisition boards; the third is The data is obtained through the man-machine interface of the simulation system software.
可选地,输出信号管理模块203还可以用于:对输出信号数据进行信号变换和/或通信数据包封装,根据用户或系统配置,选择输出信号数据的输出方式进行输出。输出信号管理模块203负责管理保护逻辑仿真装置202产生的发往接口系统/设备或其仿真模型(接口系统/设备包括停堆断路器、专设安全设施、DCS报警系统、主控室、备用停堆点、DCS网关、核测量系统)的信号,并实时动态地将处理后的数据输出到与其他系统相连接的输出信号接口。输出信号的输出方式包括三种可选途径:一个是采用通信数据包(如通过以太网、串口等)传输方式;另一个是采用数字量输出板卡的方式;三是通过仿真系统软件人机界面的方式。Optionally, the output signal management module 203 can also be used for: performing signal transformation and/or communication data packet encapsulation on the output signal data, and selecting an output mode of the output signal data for output according to user or system configuration. The output signal management module 203 is responsible for managing the output signal generated by the protection logic simulation device 202 and sent to the interface system/equipment or its simulation model (the interface system/equipment includes shutdown circuit breakers, special safety facilities, DCS alarm system, main control room, standby shutdown stack point, DCS gateway, nuclear measurement system), and dynamically output the processed data to the output signal interface connected with other systems in real time. There are three optional ways to output the output signal: one is to use the communication data packet (such as through Ethernet, serial port, etc.) transmission mode; the other is to use the digital output board; way of the interface.
可选地,保护逻辑仿真模块202可以包括:一个或多个信号隔离单元、信号处理单元、逻辑符合单元、事故后监测单元、通道监测单元和安全驱动单元,其中:Optionally, the protection logic simulation module 202 may include: one or more signal isolation units, signal processing units, logic coincidence units, post-accident monitoring units, channel monitoring units and safety drive units, wherein:
所述信号隔离单元用于将所述输入信号数据进行分配,将一路输入信号数据变成一路或多路输入信号数据,并将分配后的输入信号数据分别发送至其对应的信号处理单元和事故后监测单元;The signal isolation unit is used to distribute the input signal data, change one input signal data into one or more input signal data, and send the distributed input signal data to its corresponding signal processing unit and accident rear monitoring unit;
所述信号处理单元分为两种类型:一类为信号处理单元X,另一类为信号处理单元Y;The signal processing unit is divided into two types: one is signal processing unit X, and the other is signal processing unit Y;
所述逻辑符合单元分为两种类型:一类为逻辑符合单元X,另一类为逻辑符合单元Y;The logical coincidence unit is divided into two types: one is a logical coincidence unit X, and the other is a logical coincidence unit Y;
所述信号处理单元X用于对输入该单元的信号数据进行量程变换、保护监测变量计算和定值比较信号处理,并将处理结果和经定值比较生成的事故报警变量分别发送至其对应的通道监测单元和逻辑符合单元X;The signal processing unit X is used to perform range conversion, calculation of protection monitoring variables and fixed value comparison signal processing on the signal data input to the unit, and send the processing results and the accident alarm variables generated by the fixed value comparison to its corresponding Channel monitoring unit and logical coincidence unit X;
所述的信号处理单元Y用于对输入该单元的信号数据进行量程变换和保护监测变量计算信号处理,并将处理结果分别发送至其对应的通道监测单元和逻辑符合单元Y;The signal processing unit Y is used to perform range conversion and protection monitoring variable calculation signal processing on the signal data input to the unit, and send the processing results to its corresponding channel monitoring unit and logical coincidence unit Y;
所述逻辑符合单元X用于处理输入该单元的信号数据,按照设定逻辑对来自信号处理单元X的事故报警变量进行第一级四取二表决逻辑符合运算,生成保护动作触发信号,将信号数据的处理结果和保护动作触发信号发送至对应的通道监测单元,并将保护动作触发信号发送至安全驱动单元;The logic coincidence unit X is used to process the signal data input to the unit, and performs the logic coincidence operation of the first-level two-out-of-four voting for the accident alarm variable from the signal processing unit X according to the set logic, generates a protection action trigger signal, and converts the signal The data processing result and the protection action trigger signal are sent to the corresponding channel monitoring unit, and the protection action trigger signal is sent to the safety drive unit;
所述逻辑符合单元Y用于处理输入该单元的信号数据,按照设定逻辑对来自信号处理单元Y的事故报警变量进行第一级四取二表决逻辑符合运算,生成保护动作触发信号,将信号数据的处理结果和保护动作触发信号发送至对应的通道监测单元,并将保护动作触发信号发送至安全驱动单元;The logical coincidence unit Y is used to process the signal data input to the unit, and performs the logical coincidence operation of the first-level two-out-of-four voting on the accident alarm variable from the signal processing unit Y according to the set logic, generates a protection action trigger signal, and converts the signal The data processing result and the protection action trigger signal are sent to the corresponding channel monitoring unit, and the protection action trigger signal is sent to the safety drive unit;
所述事故后监测单元用于接收所述输入信号数据,对所述输入信号数据进行量程变换计算,并将计算结果发送至对应的通道监测单元;The post-accident monitoring unit is used to receive the input signal data, perform range conversion calculation on the input signal data, and send the calculation result to the corresponding channel monitoring unit;
所述通道监测单元用于接收所述输入信号数据、所述信号处理单元的处理结果、所述逻辑符合单元的处理结果和保护动作触发信号,以及所述事故后监测单元的计算结果,执行允许和/或闭锁逻辑运算,对上述数据进行归类封装,并将结果输出至信号隔离单元和外部显示装置;The channel monitoring unit is used to receive the input signal data, the processing result of the signal processing unit, the processing result of the logical coincidence unit, the protection action trigger signal, and the calculation result of the post-accident monitoring unit, and execute the permission and/or block logic operations, classify and package the above data, and output the results to the signal isolation unit and external display device;
所述安全驱动单元用于接收所述输入信号数据和所述逻辑符合单元发送的保护动作触发信号,并按照设定逻辑进行第二级四取二表决逻辑符合运算,生成联锁信号、保护动作触发驱动信号和保护动作指示信号并输出。The safety driving unit is used to receive the input signal data and the protection action trigger signal sent by the logic coincidence unit, and perform the logic coincidence operation of the second-level two-out-of-four voting according to the set logic to generate an interlock signal and a protection action. Trigger drive signal and protection action indication signal and output.
其中,当保护逻辑仿真模块202采用四通道冗余和两级四取二表决对输入信号数据进行逻辑符合运算时,可以采用如图4所示的包括4个保护通道、2个逻辑列的结构来实现。具体地,包括信号隔离单元A、B、C、D;信号处理单元XA、XB、XC、XD、YA、YB、YC、YD;逻辑符合单元XA、XB、XC、XD、YA、YB、YC、YD;事故后监测单元A、B;通道监测单元A、B、C、D和安全驱动单元A、B。保护逻辑仿真模块202周期性(如每20ms执行一次)地从输入信号管理模块201读取输入参数,执行信号分配、定值比较、逻辑符合等保护逻辑、通道监测、事故后监测以及保护动作计算仿真功能,并将计算结果数据发送到输出信号管理模块203。在执行定值比较、逻辑符合和通道监测的算法中,考虑了数据质量位对逻辑结果的影响。当输入信号中的模拟量信号数据在4~20mA范围内时,数据质量为“好”;不在4~20mA范围内时,数据质量为“坏”。数据质量为“坏”时将直接导致该保护变量或其导出保护变量处于触发状态。信号的质量位随数据流向传递,并直接影响后续计算或者信息显示。Wherein, when the protection logic simulation module 202 adopts four-channel redundancy and two-stage two-out-of-four voting to perform logical coincidence operation on the input signal data, a structure including four protection channels and two logic columns as shown in FIG. 4 can be adopted to fulfill. Specifically, it includes signal isolation units A, B, C, D; signal processing units XA, XB, XC, XD, YA, YB, YC, YD; logical coincidence units XA, XB, XC, XD, YA, YB, YC , YD; post-accident monitoring units A, B; channel monitoring units A, B, C, D and safety drive units A, B. The protection logic simulation module 202 reads input parameters from the input signal management module 201 periodically (for example, once every 20 ms), and executes protection logic such as signal distribution, fixed value comparison, logical coincidence, channel monitoring, post-accident monitoring, and protection action calculation Simulation function, and send the calculation result data to the output signal management module 203. In the algorithms that perform fixed value comparison, logic coincidence, and channel monitoring, the influence of data quality bits on logic results is considered. When the analog signal data in the input signal is within the range of 4-20mA, the data quality is "good"; when it is not within the range of 4-20mA, the data quality is "bad". When the data quality is "bad", it will directly cause the protection variable or its derived protection variable to be in the triggered state. The quality bit of the signal is transmitted along with the data flow, and directly affects the subsequent calculation or information display.
本实施例还提供一种动态验证系统,包括如上任一项所述的保护逻辑仿真装置。This embodiment also provides a dynamic verification system, including the protection logic simulation device described in any one of the above items.
可选地,动态验证系统还可以包括:工艺仿真模型、主控室、备用停堆点、报警系统、网关和反应堆功率控制系统等,分别与保护逻辑仿真装置相连,其中:Optionally, the dynamic verification system may also include: a process simulation model, a main control room, an alternate shutdown point, an alarm system, a gateway, and a reactor power control system, etc., which are respectively connected to the protection logic simulation device, wherein:
工艺仿真模型用于向保护逻辑仿真装置提供事故后和保护监测变量作为输入信号数据,并自保护逻辑仿真装置接收输出信号数据中的保护动作数据;The process simulation model is used to provide post-accident and protection monitoring variables as input signal data to the protection logic simulation device, and receive protection action data in the output signal data from the protection logic simulation device;
主控室用于向保护逻辑仿真装置提供保护相关操作按钮信号作为输入信号数据,并自保护逻辑仿真装置接收输出信号数据中相应的通道监测信号和保护相关指示信号;The main control room is used to provide protection-related operation button signals as input signal data to the protection logic simulation device, and receive corresponding channel monitoring signals and protection-related indication signals in the output signal data from the protection logic simulation device;
备用停堆点用于向所述保护逻辑仿真装置提供保护动作操作按钮作为输入信号数据,并自保护逻辑仿真装置接收输出信号数据中相应的通道监测信号;The backup shutdown point is used to provide the protection action operation button as input signal data to the protection logic simulation device, and receive the corresponding channel monitoring signal in the output signal data from the protection logic simulation device;
报警系统用于自保护逻辑仿真装置接收输出信号数据中的事故报警信号;The alarm system is used for the self-protection logic simulation device to receive the accident alarm signal in the output signal data;
网关用于自保护逻辑仿真装置接收输出信号数据中相应的通道监测信号;The gateway is used for the self-protection logic simulation device to receive the corresponding channel monitoring signal in the output signal data;
反应堆功率控制系统用于自保护逻辑仿真装置接收输出信号数据中的允许棒控投入信号。The reactor power control system is used for the self-protection logic simulation device to receive the allowable rod control input signal in the output signal data.
其中工艺仿真模型是指高温气冷堆主要工艺系统的全工况实时动态模型的总称,保护逻辑仿真装置分别与工艺仿真模型、主控室、备用停堆点、报警系统和网关和反应堆功率控制系统存在接口关系,需要进行信号交换。Among them, the process simulation model refers to the general name of the real-time dynamic model of the main process system of the high temperature gas-cooled reactor under full working conditions. The protection logic simulation device is respectively connected with the process simulation model, the main control room, the backup shutdown point, the alarm system and the gateway, and the reactor power control There is an interface relationship in the system, and signal exchange is required.
本实施例动态验证系统的一个具体实现方式参见图5。本实施例的保护逻辑仿真装置利用输入信号管理模块根据系统配置,实时动态地通过以太网TCP/IP协议从工艺仿真模型中的过程测量系统模型和核测量系统模型中获取事故后和保护监测变量数据,如源量程核功率、中间量程核功率、功率量程核功率、一回路氦气热端温度、一回路氦气冷端温度、一回路压力、二回路压力、一回路流量计压差、二回路流量计压差、一回路湿度等;通过数字量采集板卡从主控室的主控台获取保护相关操作按钮信号,如紧急停堆按钮、一回路隔离按钮、蒸发器事故排放按钮、停堆断路器复位按钮、源量程核功率高闭锁按钮、中间量程核功率高闭锁按钮、功率量程核功率高1闭锁按钮等;通过数字量采集板卡从备用停堆点的操作台获取保护动作操作按钮,如紧急停堆按钮;并将获取的输入信号经处理后发送到输入信号同步模块。A specific implementation manner of the dynamic verification system in this embodiment is shown in FIG. 5 . The protection logic simulation device of this embodiment uses the input signal management module to obtain post-accident and protection monitoring variables from the process measurement system model and the nuclear measurement system model in the process simulation model in real time and dynamically through the Ethernet TCP/IP protocol according to the system configuration Data, such as source range nuclear power, intermediate range nuclear power, power range nuclear power, primary loop helium hot end temperature, primary loop helium cold end temperature, primary loop pressure, secondary loop pressure, primary loop flowmeter differential pressure, secondary Differential pressure of the loop flow meter, humidity of the primary loop, etc.; through the digital quantity acquisition board, the signals related to the protection operation buttons are obtained from the main console of the main control room, such as emergency shutdown button, primary loop isolation button, evaporator emergency discharge button, stop Stack circuit breaker reset button, source range nuclear power high lock button, intermediate range nuclear power high lock button, power range nuclear power high 1 lock button, etc.; obtain protection action operations from the operation console of the standby shutdown point through the digital quantity acquisition board button, such as an emergency shutdown button; and the acquired input signal is sent to the input signal synchronization module after processing.
本实施例的保护逻辑仿真装置中的保护逻辑仿真模块周期性地以同步方式从输入信号同步模块获得最新保护监测变量数据后,仿真执行信号分配、定值比较、逻辑符合、通道监测、事故后监测以及保护动作逻辑运算算法,并将保护逻辑计算结果数据和通道监测结果数据以同步方式发送到输出信号同步模块。After the protection logic simulation module in the protection logic simulation device of this embodiment obtains the latest protection monitoring variable data from the input signal synchronization module in a synchronous manner periodically, the simulation performs signal distribution, fixed value comparison, logic coincidence, channel monitoring, and post-accident Monitoring and protection action logic operation algorithm, and the protection logic calculation result data and channel monitoring result data are sent to the output signal synchronization module in a synchronous manner.
本发明的保护逻辑仿真装置中的输出信号同步模块对输出数据进行处理后,根据系统配置,实时动态地通过以太网TCP/IP协议将保护动作数据发送到工艺仿真模型中的过程测量系统模型和核测量系统模型,如停堆断路器驱动装置驱动信号、一回路隔离驱动信号、蒸发器事故排放启动驱动信号、关闭核测高压信号、打开核测高压信号等;通过继电器板卡将保护相关指示信号、事故报警信号、允许棒控投入信号分别发送到主控室、DCS报警系统、反应堆功率控制系统;通过以太网协议将通道监测信号分别发送到主控室安全显示器、备用停堆点安全显示器、保护逻辑装置与DCS间的网关,监测信号主要包括各通道采集到的保护监测变量及其推导变量、各通道定值比较结果、各通道逻辑符合结果、各通道事故后监测变量、设备状态等信息。After the output signal synchronization module in the protection logic simulation device of the present invention processes the output data, according to the system configuration, the protection action data is dynamically sent to the process measurement system model and process measurement system model in the process simulation model through the Ethernet TCP/IP protocol in real time. The nuclear measurement system model, such as the driving signal of the shutdown circuit breaker driving device, the primary circuit isolation driving signal, the evaporator accident discharge start driving signal, the nuclear measurement high voltage signal is closed, the nuclear measurement high voltage signal is turned on, etc.; Signals, accident alarm signals, and allowable rod control input signals are sent to the main control room, DCS alarm system, and reactor power control system respectively; channel monitoring signals are sent to the safety display in the main control room and the safety display at the backup shutdown point through the Ethernet protocol , the gateway between the protection logic device and the DCS, the monitoring signals mainly include the protection monitoring variables collected by each channel and their derivation variables, the comparison results of the setting values of each channel, the logical coincidence results of each channel, the monitoring variables of each channel after accidents, equipment status, etc. information.
本实施例的保护逻辑仿真装置为与所有接口系统/设备或其仿真模型的信号交换提供了调试手段,通过系统配置可以选择信号来源为仿真系统软件的人机界面,为验证接口信号的正确性提供方便的技术手段。The protection logic simulation device of this embodiment provides a debugging means for the signal exchange with all interface systems/equipment or its simulation models, and the signal source can be selected as the human-machine interface of the simulation system software through system configuration, so as to verify the correctness of the interface signals Provide convenient technical means.
本实施例提供一种在高温气冷堆主控室动态验证过程中能够实时动态地与存在接口关系的系统/设备或其仿真模型进行信号交换,并能够完全模拟高温气冷堆数字化保护逻辑装置功能和/或性能的动态验证系统,从而为高温气冷堆主控室动态验证、保护逻辑装置与其它系统/设备间的接口调试和验证提供可行的技术手段。本实施例系统从设备布置及操作、验证效果来说,可以与核电厂高温气冷堆主控室基本一致。它是建立在高温气冷堆主控室1:1验证平台和高温气冷堆全厂动态仿真数学模型的基础上,配置微型计算机等软、硬件及接口设备,在解决计算机系统集成和各部分之间的接口后形成的。本实施例系统具有十分重要的工程价值,可以有效地解决主控室、备用停堆点保护动作相关操作和指示按钮的动态验证;可以为主控室、备用停堆点安全显示装置提供动态的安全相关的参数;可以为DCS报警装置提供报警相关参数,以实现主控室模拟显示屏的报警信号的动态显示;可以为验证全厂协调控制方法提供运行条件;可以为运行规程的验证提供辅助手段;可以为电厂操纵员或其他运行相关人员的部分培训提供平台;可以展示高温气冷堆主控室及运行状况;可以验证主控室人机界面及人因特性;可以验证全厂协调控制方法及性能等。This embodiment provides a digital protection logic device that can dynamically exchange signals with the system/equipment or its simulation model that has an interface relationship in real time during the dynamic verification process of the high-temperature gas-cooled reactor main control room, and can completely simulate the high-temperature gas-cooled reactor digital protection logic device A dynamic verification system of function and/or performance, so as to provide feasible technical means for the dynamic verification of the main control room of the high temperature gas-cooled reactor, the interface debugging and verification between the protection logic device and other systems/equipment. The system of this embodiment can be basically consistent with the main control room of the high temperature gas-cooled reactor of the nuclear power plant in terms of equipment layout, operation and verification effect. It is based on the 1:1 verification platform of the main control room of the high temperature gas-cooled reactor and the dynamic simulation mathematical model of the whole plant of the high temperature gas-cooled reactor. The interface between them is formed. The system of this embodiment has very important engineering value, and can effectively solve the dynamic verification of the main control room and the backup shutdown point protection action related operations and indication buttons; it can provide dynamic information for the main control room and backup shutdown point safety display devices. Safety-related parameters; it can provide alarm-related parameters for the DCS alarm device to realize the dynamic display of the alarm signal on the analog display screen in the main control room; it can provide operating conditions for verifying the coordinated control method of the whole plant; it can provide assistance for the verification of operating procedures means; can provide a platform for partial training of power plant operators or other operation-related personnel; can display the main control room and operating status of the high temperature gas-cooled reactor; can verify the man-machine interface and human factors characteristics of the main control room; can verify the coordinated control of the whole plant method and performance etc.
此外,本实施例根据实际的输入输出信号的类型适当地调整信号接口模块,还可以用于高温气冷堆数字化保护系统集成测试装置的开发、调试和功能性能验证;根据实际的输入输出信号的多少及其信号的类型适当地调整系统的配置,根据实际的反应堆类型修改保护逻辑数学模型,该仿真系统还可以用于其他类型反应堆的主控室动态验证。In addition, this embodiment properly adjusts the signal interface module according to the type of the actual input and output signals, and can also be used for the development, debugging and functional performance verification of the integrated test device of the high temperature gas-cooled reactor digital protection system; How much and the type of the signal adjust the configuration of the system appropriately, and modify the mathematical model of the protection logic according to the actual reactor type. This simulation system can also be used for the dynamic verification of the main control room of other types of reactors.
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present invention, rather than to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: it can still be Modifications are made to the technical solutions described in the foregoing embodiments, or equivalent replacements are made to some of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions of the various embodiments of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410360234.7A CN104133954B (en) | 2014-07-25 | 2014-07-25 | Protection logic simulation device and dynamic verification system using protection logic simulation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410360234.7A CN104133954B (en) | 2014-07-25 | 2014-07-25 | Protection logic simulation device and dynamic verification system using protection logic simulation device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104133954A true CN104133954A (en) | 2014-11-05 |
CN104133954B CN104133954B (en) | 2017-04-19 |
Family
ID=51806630
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410360234.7A Active CN104133954B (en) | 2014-07-25 | 2014-07-25 | Protection logic simulation device and dynamic verification system using protection logic simulation device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104133954B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107506297A (en) * | 2017-07-27 | 2017-12-22 | 北京广利核系统工程有限公司 | Reactor protection system function test method and device based on emulation platform |
CN107544282A (en) * | 2016-06-27 | 2018-01-05 | 发那科株式会社 | Analogue system |
CN109448874A (en) * | 2018-09-29 | 2019-03-08 | 国核自仪系统工程有限公司 | Power producer protects the test device and method of the shutdown function of system |
CN116066248A (en) * | 2022-10-11 | 2023-05-05 | 中国核动力研究设计院 | Nuclear power plant diesel generator set unloading instruction generation device and method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100026325A1 (en) * | 2006-10-13 | 2010-02-04 | Areva Np | Method and device for detecting structural abnormalities in a spherical particle, particularly in a nuclear fuel particle for high temperature or very high temperature reactors |
CN102280148A (en) * | 2011-04-29 | 2011-12-14 | 清华大学 | Integration testing method and system for digital protection system of high temperature gas cooled reactor |
-
2014
- 2014-07-25 CN CN201410360234.7A patent/CN104133954B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100026325A1 (en) * | 2006-10-13 | 2010-02-04 | Areva Np | Method and device for detecting structural abnormalities in a spherical particle, particularly in a nuclear fuel particle for high temperature or very high temperature reactors |
CN102280148A (en) * | 2011-04-29 | 2011-12-14 | 清华大学 | Integration testing method and system for digital protection system of high temperature gas cooled reactor |
Non-Patent Citations (6)
Title |
---|
LI DUO等: "Design and Development of HTR-PM Reactor Protection System", 《PROCEEDINGS OF THE 2013 21ST INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING》 * |
ZHE DONG等: "Real-Time Simulation Platform for the Design and Verification of the Operation Strategy of the HTR-PM", 《PROCEEDINGS OF THE 2013 21ST INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING》 * |
叶奇蓁: "《中国电气工程大典 第6卷 核能发电工程》", 31 July 2009 * |
张海仑: "保护系统集成测试平台实时控制软件设计与实现", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 * |
李铎等: "HTR-PM反应堆保护系统工程样机的研制", 《仪器仪表用户》 * |
郭超等: "高温气冷堆示范工程反应堆保护系统故障树模型的建立和分析", 《原子能科学技术》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107544282A (en) * | 2016-06-27 | 2018-01-05 | 发那科株式会社 | Analogue system |
CN107506297A (en) * | 2017-07-27 | 2017-12-22 | 北京广利核系统工程有限公司 | Reactor protection system function test method and device based on emulation platform |
CN109448874A (en) * | 2018-09-29 | 2019-03-08 | 国核自仪系统工程有限公司 | Power producer protects the test device and method of the shutdown function of system |
CN109448874B (en) * | 2018-09-29 | 2020-11-20 | 国核自仪系统工程有限公司 | Device and method for testing shutdown function of nuclear power reactor protection system |
CN116066248A (en) * | 2022-10-11 | 2023-05-05 | 中国核动力研究设计院 | Nuclear power plant diesel generator set unloading instruction generation device and method |
CN116066248B (en) * | 2022-10-11 | 2024-07-16 | 中国核动力研究设计院 | Nuclear power plant diesel generator set unloading instruction generation device and method |
Also Published As
Publication number | Publication date |
---|---|
CN104133954B (en) | 2017-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102280148B (en) | Integration testing method and system for digital protection system of high temperature gas cooled reactor | |
CN107609725A (en) | A kind of power transmission network methods of risk assessment for considering transformer station and influenceing | |
Zhao et al. | Review and prospect of hidden failure: protection system and security and stability control system | |
CN104124757B (en) | Background operation monitoring system for power grid fault simulation detection device of high-altitude photovoltaic power station | |
CN204740870U (en) | A digital variety drive appearance accuse device for PWR | |
CN104133954B (en) | Protection logic simulation device and dynamic verification system using protection logic simulation device | |
CN106340332A (en) | Nuclear power station digital protection control system | |
CN104240781A (en) | Signal distribution method and signal distribution system of digital instrument control system (DCS) of nuclear power plant | |
Zhang et al. | Assessing the robustness of cyber-physical power systems by considering wide-area protection functions | |
CN111292862A (en) | Emergency reactor shutdown method based on signal state of safety important instrument of nuclear power plant | |
CN104408312B (en) | A kind of nuclear power plant system malfunction rate computational methods | |
Billinton et al. | Generalized n+ 2 state system Markov model for station-oriented reliability evaluation | |
CN104166386B (en) | High aititude photovoltaic plant grid disturbance simulation detection equipment consistency operation monitoring system | |
Xiao et al. | Reliability evaluation of protection system in smart substation based on process layer network | |
CN107069805A (en) | Wind power plant black starting-up system | |
Lu et al. | System assessment of an FPGA-based RPS for ABWR nuclear power plant | |
CN203773305U (en) | Alarm system for plant flooding of hydropower station | |
Jinsong et al. | Secondary system reliability assessment of intelligent substation based on fault tree analysis and effect assessment method | |
CN112164289A (en) | A portable device for virtual simulation of a typical power system | |
Shi et al. | The design of ACPR1000 nuclear reactor protection system based on FirmSys | |
Feng et al. | Probabilistic Safety Analysis for Loss of Offsite Power Accident in Dual-units Nuclear Power Plant | |
Ibrahim et al. | Instrumentation and controls architectures in new NPPs | |
Peng et al. | Application Analysis for “Bypass Function” of Digital Reactor Protection System in Zhangzhou Nuclear Power Plant | |
Meng et al. | Overview of development of npp advanced main control room console | |
Zhang et al. | Research on operation mechanism, information collection and compliance model of hydropower monitoring system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20210115 Address after: 100193 building 26, Zhongguancun Software Park, 8 Dongbeiwang West Road, Haidian District, Beijing Patentee after: CHINERGY Co.,Ltd. Address before: 100084 mailbox, 100084-82 Tsinghua Yuan, Beijing, Haidian District, Beijing Patentee before: TSINGHUA University |
|
TR01 | Transfer of patent right |