CN104091922B - Mo0.5W0.5S2Nanometer watt/Graphene electrochemistry storage sodium combination electrode and preparation method - Google Patents
Mo0.5W0.5S2Nanometer watt/Graphene electrochemistry storage sodium combination electrode and preparation method Download PDFInfo
- Publication number
- CN104091922B CN104091922B CN201410339877.3A CN201410339877A CN104091922B CN 104091922 B CN104091922 B CN 104091922B CN 201410339877 A CN201410339877 A CN 201410339877A CN 104091922 B CN104091922 B CN 104091922B
- Authority
- CN
- China
- Prior art keywords
- graphene
- ammonium
- nanometer watt
- watt
- nano materials
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 79
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 71
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 title claims abstract description 47
- 230000005518 electrochemistry Effects 0.000 title claims abstract description 47
- 229910052708 sodium Inorganic materials 0.000 title claims abstract description 47
- 239000011734 sodium Substances 0.000 title claims abstract description 47
- 238000002360 preparation method Methods 0.000 title claims abstract description 17
- 239000002086 nanomaterial Substances 0.000 claims abstract description 38
- 239000002131 composite material Substances 0.000 claims abstract description 35
- 239000000126 substance Substances 0.000 claims abstract description 14
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims abstract description 7
- 239000001768 carboxy methyl cellulose Substances 0.000 claims abstract description 7
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims abstract description 7
- 239000008112 carboxymethyl-cellulose Substances 0.000 claims abstract description 7
- 239000002002 slurry Substances 0.000 claims abstract description 7
- 239000011149 active material Substances 0.000 claims abstract description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000006230 acetylene black Substances 0.000 claims abstract description 4
- 238000001125 extrusion Methods 0.000 claims abstract description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 12
- 238000003756 stirring Methods 0.000 claims description 12
- 239000004094 surface-active agent Substances 0.000 claims description 12
- SWLVFNYSXGMGBS-UHFFFAOYSA-N ammonium bromide Chemical class [NH4+].[Br-] SWLVFNYSXGMGBS-UHFFFAOYSA-N 0.000 claims description 11
- 239000008367 deionised water Substances 0.000 claims description 11
- 229910021641 deionized water Inorganic materials 0.000 claims description 11
- ZKKLPDLKUGTPME-UHFFFAOYSA-N diazanium;bis(sulfanylidene)molybdenum;sulfanide Chemical compound [NH4+].[NH4+].[SH-].[SH-].S=[Mo]=S ZKKLPDLKUGTPME-UHFFFAOYSA-N 0.000 claims description 11
- IIACRCGMVDHOTQ-UHFFFAOYSA-N sulfamic acid Chemical compound NS(O)(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-N 0.000 claims description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 8
- 239000001257 hydrogen Substances 0.000 claims description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims description 8
- 239000012265 solid product Substances 0.000 claims description 8
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 claims description 7
- XMMDVXFQGOEOKH-UHFFFAOYSA-N n'-dodecylpropane-1,3-diamine Chemical compound CCCCCCCCCCCCNCCCN XMMDVXFQGOEOKH-UHFFFAOYSA-N 0.000 claims description 6
- 238000005119 centrifugation Methods 0.000 claims description 5
- 239000007789 gas Substances 0.000 claims description 5
- 238000001291 vacuum drying Methods 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 3
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 3
- 239000011889 copper foil Substances 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 239000003595 mist Substances 0.000 claims description 3
- 238000013019 agitation Methods 0.000 claims description 2
- 239000006185 dispersion Substances 0.000 claims description 2
- 150000001412 amines Chemical class 0.000 claims 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 abstract description 5
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 abstract description 5
- 239000010410 layer Substances 0.000 description 24
- 239000000463 material Substances 0.000 description 17
- 229910052961 molybdenite Inorganic materials 0.000 description 16
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 16
- 238000000034 method Methods 0.000 description 10
- 238000007599 discharging Methods 0.000 description 6
- 238000011160 research Methods 0.000 description 6
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 229910001416 lithium ion Inorganic materials 0.000 description 5
- 230000002441 reversible effect Effects 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 150000001336 alkenes Chemical class 0.000 description 4
- 239000007772 electrode material Substances 0.000 description 4
- 239000002253 acid Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000003093 cationic surfactant Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000004087 circulation Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 230000009881 electrostatic interaction Effects 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 238000002173 high-resolution transmission electron microscopy Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N Propene Chemical compound CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- XJWSAJYUBXQQDR-UHFFFAOYSA-M dodecyltrimethylammonium bromide Chemical compound [Br-].CCCCCCCCCCCC[N+](C)(C)C XJWSAJYUBXQQDR-UHFFFAOYSA-M 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000000976 ink Substances 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 239000002114 nanocomposite Substances 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- XFNJVJPLKCPIBV-UHFFFAOYSA-N trimethylenediamine Chemical compound NCCCN XFNJVJPLKCPIBV-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 241000872198 Serjania polyphylla Species 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- CSCPPACGZOOCGX-UHFFFAOYSA-N acetone Substances CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229940010552 ammonium molybdate Drugs 0.000 description 1
- 239000011609 ammonium molybdate Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000009831 deintercalation Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000002135 nanosheet Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 230000010148 water-pollination Effects 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/136—Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1397—Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/581—Chalcogenides or intercalation compounds thereof
- H01M4/5815—Sulfides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
The invention discloses a kind of Mo0.5W0.5S2-Nanometer watt/Graphene electrochemistry storage sodium combination electrode and preparation method thereof, its electrochemistry storage sodium active material is Mo0.5W0.5S2-The composite nano materials of nanometer watt/Graphene, Mo in composite nano materials0.5W0.5S2With the ratio of the amount of substance of Graphene be 1:2, Mo0.5W0.5S2The nanometer watt layer structure for few number of plies, the average number of plies is 3-5 layer, the component of combination electrode and mass percentage content thereof are: Mo0.5W0.5S2Nanometer watt/Graphene composite nano materials is 80%, and conductive acetylene is black 10%, carboxymethyl cellulose 5%, Kynoar 5%. Preparation process: first prepare Mo0.5W0.5S2Nanometer watt/Graphene composite nano materials, then with acetylene black and Kynoar furnishing slurry, is coated onto Copper Foil roll extrusion and obtains. Combination electrode of the present invention has high electrochemistry storage sodium capacity.
Description
Technical field
The present invention relates to electrochemistry storage sodium electrode and preparation method thereof, relate in particular to and use Mo0.5W0.5S2Nanometer watt/GrapheneComposite nano materials is prepared the preparation method of electrochemistry storage sodium combination electrode, belongs to inorganic composite nano material, new energy technologyField.
Background technology
Along with the development of modern mobile communication, new-energy automobile and intelligent grid, novel electrochmical power source is in modern societyIn played more and more important effect. Traditional secondary cell, if lead-acid accumulator is because it is containing harmful metallic element Pb,Its application is restricted. Lithium ion battery has the excellent properties such as high specific energy, memory-less effect, environmental friendliness, is movingIn the Portable movable such as mobile phone and notebook computer electrical equipment, be widely used. As electrokinetic cell, lithium ion batteryAlso be with a wide range of applications at aspects such as electric bicycle, electric automobile and intelligent grids. But due to lithium ion batteryNever solution carefully and lithium resource limited of security, lithium ion battery is wide as electrokinetic cell and storage batteryGeneral application is still subject to certain restrictions. Along with the development of new-energy automobile and the large-scale application of storage battery are in the urgent need to seekingLook for a kind of energy to substitute the secondary cell of a kind of cheapness, environmental friendliness and the height ratio capacity of existing secondary cell system. Due to divalenceSodium ion has less radius, can electrochemical intercalation and deintercalation in the compound of some layer of structure, as transition metal sulfurationThing MoS2And WS2Deng. Sodium also has aboundresources in addition, cheap, specific energy is high, nontoxic and process the advantages such as convenient. Therefore,Chargeable sodium-ion battery also becomes the research system of a new secondary cell in recent years. But up to the present as high propertyThe electrode material of the electrochemistry storage sodium of energy or little.
MoS2And WS2Having and layer structure like graphite-like, is the S-M-S (M=of very strong covalent bonds in its layerMo, W), be weak Van der Waals force between layers. MoS2And WS2Weak interlaminar action power and larger interlamellar spacing permitPerhaps react at its interlayer and introduce external atom or molecule by insertion. Such characteristic makes MoS2And WS2Material can be used asInsert the material of main part of reaction. Therefore, MoS2And WS2A kind of electrode material of rising electrochemistry storage sodium, stillGeneral MoS2And WS2Its electrochemistry storage sodium poor-performing of material, its electrochemistry storage sodium capacity is lower, only has 50-100mAh/g。
Two-dimensional nano material has the characteristic of numerous excellences with its unique pattern, its research has caused that people's is greatly emergingInterest. Graphene is most typical two-dimensional nano material, and its unique two-dimensional nano chip architecture makes physics, the chemistry of its numerous uniquenessesWith performances such as mechanics, there is important scientific research meaning and technology application prospect widely. Graphene has high ratio tableArea, high conduction and heat conductivility, high charge mobility, excellent mechanical property, these excellent characteristics make graphiteAlkene is before nano electron device, the novel field such as catalyst material and electrochemistry energy storage and energy conversion have a wide range of applicationsScape.
The immense success that the discovery of Graphene and research thereof obtain has excited people to grind other inorganic two-dimensional nano materialsThe very big interest of studying carefully, if the transition metal dichalcogenide of individual layer or few number of plies etc. is (as MoS2And WS2). Recently, Graphene conceptExpand to the inorganic compound of other layer structures from material with carbon element, namely for the inorganic material of layer structure, when itWhen the number of plies reduces (8 layers are following), while especially reducing to individual layer, its electronic property or band structure can produce obvious variation,Thereby cause it to show the physics and chemistry characteristic different from corresponding body phase material. Except Graphene, as body phase MoS2WithWS2Reduce to few number of plies when individual layer (especially), shown and the visibly different physics of body phase material, chemical characteristic. Research tableThe MoS of bright individual layer or few number of plies2And WS2Nanometer sheet has better electrochemistry storage sodium performance. But as electrochemistry storage sodiumElectrode material, MoS2And WS2Low electric conductivity between layers affected the performance of its application.
Due to MoS2And WS2Nanometer sheet and Graphene have similar two-dimensional nano sheet pattern, both at microscopic appearance andOn crystal structure, there is good similitude. If by MoS2And WS2The composite wood of nanometer sheet and the compound preparation of GrapheneMaterial, the high conduction performance of graphene nanometer sheet can further improve the electric conductivity of composite, strengthens electrochemistry storage sodium electricityElectronics transmission in utmost point course of reaction, can further improve the electrochemistry of composite and store sodium performance. With common MoS2And WS2Nanometer sheet comparison, the MoS of little nanometer watt shape pattern2And WS2Not only there is more edge, more short sodium can be providedIon diffusion admittance, and load on Graphene, more contact area there is with electrolyte. Therefore MoS2And WS2NanometerWatt/composite nano materials of Graphene can show the electrochemistry storage sodium performance of enhancing.
In addition, research is also found as electrochemistry storage sodium electrode material, MoS2Nano material compares WS2Nano material hasHigh electrochemistry storage sodium reversible capacity, and WS2Nano material compares MoS2Nano material has good high rate during charging-discharging,Therefore, MoS2And WS2It is comprehensive that the compound heterogeneous stratified material of bi-material should have as electrochemistry storage sodium materialEnergy. Therefore, Mo0.5W0.5S2The composite nano materials of nanometer watt/Graphene has widely as electrochemistry storage sodium electrode materialApplication and the chemical property strengthening.
But, up to the present, use Mo0.5W0.5S2Nanometer watt/Graphene composite nano materials is as electro-chemical activity thingElectrochemistry storage sodium combination electrode and the preparation thereof of matter have not been reported. The present invention first use graphene oxide, ammonium thiomolybdate andSulfo-ammonium tungstate etc. is raw material, and the hydrothermal method of assisting by Gemini surface active agent and heat treatment subsequently, preparedMo0.5W0.5S2The composite nano materials of nanometer watt/Graphene, then uses Mo0.5W0.5S2The composite Nano material of nanometer watt/GrapheneMaterial, as the active material of electrochemistry storage sodium, has been prepared the combination electrode of electrochemistry storage sodium. This preparation Mo0.5W0.5S2NanometerWatt/method of Graphene composite nano materials electrochemistry storage sodium combination electrode has simply, facilitates and is easy to expand industrialization shouldWith a little.
Summary of the invention
The object of the present invention is to provide a kind of Mo0.5W0.5S2Nanometer watt/Graphene electrochemistry storage sodium combination electrode andPreparation method, the electrochemistry storage sodium active material of combination electrode is Mo0.5W0.5S2-The composite nano materials of nanometer watt/Graphene,Mo in composite nano materials0.5W0.5S2Nanometer watt is 1:2 with the ratio of the amount of substance of Graphene, described Mo0.5W0.5S2Nanometer watt isThe layer structure of few number of plies, the component of combination electrode and mass percentage content thereof are: Mo0.5W0.5S2Nanometer watt/Graphene is multipleClose nano material 80%, conductive acetylene is black 10%, carboxymethyl cellulose 5%, Kynoar 5%.
In technique scheme, the layer structure of few number of plies refers to the layer structure of the number of plies below 6 layers or 6 layers, described inMo0.5W0.5S2The average number of plies of nanometer watt is 3 layers.
Above-mentioned Mo0.5W0.5S2The preparation method of nanometer watt/Graphene electrochemistry storage sodium combination electrode carries out according to the following steps:
(1) be dispersed in deionized water ultrasonic graphene oxide, add Gemini surface active agent N-dodecyl Asia thirdThe two ammonium bromides (seeing accompanying drawing 1) of base diamines, and fully stir, then add successively Cys, ammonium thiomolybdate and sulfo-tungstenAcid ammonium, and constantly stir Cys, ammonium thiomolybdate and sulfo-ammonium tungstate are dissolved completely, Cys, molybdenum dithiophosphateThe ratio of the amount of substance of acid ammonium and sulfo-ammonium tungstate consumption is 5:0.5:0.5, ammonium thiomolybdate, sulfo-ammonium tungstate and graphite oxideThe ratio of the amount of substance of alkene is 0.5:0.5:2;
(2) mixed dispersion step (1) being obtained is transferred in hydrothermal reaction kettle, and adds deionized water to adjust bodyAmass to 80% of hydrothermal reaction kettle nominal volume the concentration of the two ammonium bromides of Gemini surface active agent N-dodecyl trimethylene diamineBe 0.01 ~ 0.02mol/L, the content of graphene oxide is 30-65mmol/L, this reactor is put in constant temperature oven,At 230-250 DEG C, after hydro-thermal reaction 24h, allow it naturally cool to room temperature, with centrifugation collection hydro-thermal solid product, and useDeionized water is fully washed, vacuum drying at 100 DEG C, by the hydro-thermal solid product obtaining in nitrogen/hydrogen mixed gas atmosphereHeat treatment 2h at 800 DEG C, in mist, hydrogen volume mark is 10%, finally prepares Mo0.5W0.5S2Nanometer watt/stoneThe composite nano materials of China ink alkene;
(3) by the Mo of above-mentioned preparation0.5W0.5S2Nanometer watt/Graphene composite nano materials is as the electrochemistry storage sodium of electrodeActive material, exists with the 1-METHYLPYRROLIDONE solution of the Kynoar of acetylene black, carboxymethyl cellulose and mass fraction 5%Stir the lower uniform slurry of furnishing that fully mixes, each constituent mass percentage is: Mo0.5W0.5S2Nanometer watt/Graphene is compound to be receivedRice material 80%, conductive acetylene is black 10%, carboxymethyl cellulose 5%, Kynoar 5%, using this slurry be coated onto equably asOn the Copper Foil of collector, dry, roll extrusion obtains electrode.
Above-mentioned graphene oxide adopts improved Hummers method preparation.
Hydrothermal method system of assisting with the two ammonium bromides of Gemini surface active agent N-dodecyl trimethylene diamine of the present inventionStandby Mo0.5W0.5S2The method of nanometer watt/Graphene composite nano materials has the following advantages: graphene oxide surface and marginal beltHave a lot of oxygen-containing functional groups (as hydroxyl, carbonyl, carboxyl), these oxygen-containing functional groups make graphene oxide more easily be dispersed in waterOr in organic liquid, but these oxygen-containing functional groups make graphene oxide surface with negative electrical charge, make graphene oxide and bandThere is the MoS of negative electrical charge4 2-And WS4 2-Ion is incompatible, and the present invention passes through electrostatic interaction first by Gemini surface active agent N-dodecaneThe two ammonium bromides of base trimethylene diamine are adsorbed onto graphene oxide surface, make it with part positive charge, due to electrostatic interaction,MoS4 2-And WS4 2-Ion is just easy to interact and combine with the graphene oxide that has adsorbed Gemini surface active agent.The more important thing is, compared with common single cationic surfactant, Gemini surface active agent N-dodecyl trimethylene diamineIn two ammonium bromides, have 2 positively charged quaternary ammonium hydrophilic radicals, there is enough hydrophilies, with electronegative graphene oxide itBetween there is stronger mutual electrostatic interaction; The two ammonium bromides of N-dodecyl trimethylene diamine also have 2 hydrophobic long alkyl chain basesGroup's (seeing accompanying drawing 1), its hydrophobicity is stronger. The two ammonium bromides of N-dodecyl trimethylene diamine are adsorbed on Graphene surface, and it is hydrophobicThere is (seeing accompanying drawing 2) with irregular " brush head " form of bending in group, this version has caused water-heat process and heatProcess the Mo of back loading on Graphene surface0.5W0.5S2There is the pattern of nanometer watt. This undersized Mo0.5W0.5S2Nanometer wattThere is more edge, as electrochemistry storage sodium material, can provide more short lithium ion diffusion admittance, contribute to strengthenIts electrochemistry storage sodium performance; Mo0.5W0.5S2Nanometer watt/graphene composite material can increase the contact area of itself and electrolyte,Can further contribute to improve its chemical property; Mo0.5W0.5S2A nanometer watt heterogeneous stratified material also makes Mo0.5W0.5S2ReceiveRice watt/graphene composite material has comprehensively good electrochemistry storage sodium performance. Therefore, the present invention Mo0.5W0.5S2Nanometer watt/stoneThe electrochemistry storage sodium electrode that China ink alkene composite is prepared as electroactive substance has high electrochemistry storage sodium capacity, excellenceCycle performance and significantly strengthen large current density electrical characteristics.
Brief description of the drawings
The two ammonium bromide structural representations of Fig. 1 Gemini surface active agent N-dodecyl trimethylene diamine.
Fig. 2 Gemini surface active agent is adsorbed on the schematic diagram on graphene oxide surface.
The Mo that Fig. 3 embodiment 1 prepares0.5W0.5S2The XRD figure (a) of nanometer watt/Graphene composite nano materials, SEMShape appearance figure (b) and transmission electron microscope photo (c, d).
Mo prepared by Fig. 4 comparative example0.5W0.5S2The TEM of nanometer sheet and Graphene composite nano materials and HRTEM photo.
Detailed description of the invention
Further illustrate the present invention below in conjunction with embodiment.
Graphene oxide in following example adopts improved Hummers method preparation: 0oUnder C ice bath, by 10.0Mmol (0.12g) graphite powder dispersed with stirring, in the 50mL concentrated sulfuric acid, slowly adds KMnO under constantly stirring4, institute adds KMnO4'sQuality is 4 times of graphite powder, stirs 50 minutes, in the time of temperature rise to 35 DEG C, slowly adds 50mL deionized water, then stirs30 minutes, add the H of 15mL mass fraction 30%2O2, stir 30 minutes, through centrifugation, use successively mass fraction 5%HCl solution, deionized water and acetone cyclic washing after obtain graphene oxide.
Embodiment 1
1) be dispersed in 60mL deionized water ultrasonic 2.5mmol graphene oxide, then add 0.8mmol Shuangzi tableThe two ammonium bromides of surface-active agent N-dodecyl trimethylene diamine, and fully stir, then add successively 0.76g (6.25Mmol) Cys, 0.625mmol ammonium thiomolybdate and 0.625mmol sulfo-ammonium tungstate, and constantly stirring makes L-halfCystine, ammonium thiomolybdate and sulfo-ammonium tungstate dissolve completely, with extremely about 80mL of deionized water adjustment volume;
2) obtained mixed liquor is transferred in the hydrothermal reaction kettle of 100mL, this reactor is put into constant temperature ovenIn, after hydro-thermal reaction 24h, allow it naturally cool to room temperature at 230 DEG C, collect solid product with centrifugation, and use deionizationWater fully washs, vacuum drying at 100 DEG C, by obtained solid product in nitrogen/hydrogen mixed gas atmosphere at 800 DEG CHeat treatment 2h, in mist, the volume fraction of hydrogen is 10%, prepares Mo0.5W0.5S2Nanometer watt/Graphene compoundNano material, Mo in composite nano materials0.5W0.5S2With the ratio of Graphene amount of substance be 1:2, with XRD, SEM and TEM are to institutePrepare Mo0.5W0.5S2The composite nano materials of nanometer watt/Graphene characterizes, XRD analysis result (seeing accompanying drawing 3(a))Show Mo in composite nano materials0.5W0.5S2For the layer structure of few number of plies, the average number of plies is 3 layers. SEM pattern (is shown in accompanying drawing 3(b)) and TEM photo (seeing accompanying drawing 3(c, d)) also shown the Mo loading on Graphene0.5W0.5S2There is little nanometer watt shapeLooks, its number of plies is at layer 2-4, and majority is 3 layers, consistent with XRD analysis;
3) by the Mo of above-mentioned preparation0.5W0.5S2Nanometer watt/Graphene composite nano materials is as the electrode of electrochemistry storage sodiumActive material, black with conductive acetylene, the 1-METHYLPYRROLIDONE of the Kynoar of carboxymethyl cellulose and mass fraction 5% is moltenLiquid under agitation fully mixes the uniform slurry of furnishing, this slurry is coated onto equably on the Copper Foil of collector, at 110 DEG CVacuum drying, then roll extrusion obtains Mo0.5W0.5S2Nanometer watt/Graphene electrochemistry storage sodium combination electrode, each component in combination electrodeMass percent is: Mo0.5W0.5S2Nanometer watt/Graphene composite nano materials 80%, conductive acetylene is black 10%, carboxymethyl celluloseElement 5%, Kynoar 5%.
Electrochemistry storage sodium performance test: taking combination electrode as working electrode, as to electrode, electrolyte is with sodium metal sheet1.0mol/LNaClO4Perfluorocarbon acid vinyl acetate/propene carbonate (FEC/PC, 1:1, volume ratio) solution be electrolysisLiquid, porous polypropylene film (Celguard-2400) is barrier film, in the suitcase that is full of argon gas, is assembled into test battery. By perseveranceThe electrochemistry storage sodium performance of electric current charge-discharge test combination electrode, charge and discharge cycles is on programme controlled auto charge and discharge instrumentCarry out charging and discharging currents density 50mA/g, voltage range 0.01 ~ 3.0V. Electrochemical results shows: Mo0.5W0.5S2ReceiveRice watt/the initial reversible capacity of the electrochemistry of graphene combination electrode storage sodium is 437mAh/g, and after 50 circulations, reversible capacity is4335mAh/g, has shown high specific capacity and excellent stable circulation performance; In the time of high current charge-discharge, (charging and discharging currents is1000mA/g), its capacity is 368mAh/g, has shown that its high power charging-discharging characteristic significantly strengthening is (with comparative example belowRelatively).
Comparative example
Adopt DTAB cationic surfactant, prepared by above-mentioned similar approachMo0.5W0.5S2Nanometer sheet/Graphene electrochemistry storage sodium combination electrode, concrete preparation process is as follows:
Be dispersed in 60mL deionized water ultrasonic 2.5mmol graphene oxide, then add 1.6mmol dodecylTrimethylammonium bromide cationic surfactant, and fully stir, then add successively 0.76g (6.25mmol) L-half GuangPropylhomoserin, 0.625mmol ammonium thiomolybdate and 0.625mmol sulfo-ammonium tungstate, and constantly stir and make Cys and sulfo-Ammonium molybdate and sulfo-ammonium tungstate dissolve completely, adjust volume to about 80mL by deionized water, and obtained mixed liquor is shiftedIn the hydrothermal reaction kettle of 100mL, this reactor is put in constant temperature oven, at 230 DEG C after hydro-thermal reaction 24h, allow its fromSo be cooled to room temperature, collect solid product with centrifugation, and fully wash by deionized water, vacuum drying at 100 DEG C, willThe solid product obtaining in nitrogen/hydrogen mixed gas atmosphere at 800 DEG C heat treatment 2h, the volume integral of hydrogen in mistNumber is 10%, prepares Mo0.5W0.5S2The nano composite material of nanometer sheet/Graphene, Mo in composite nano materials0.5W0.5S2With the ratio of the amount of substance of Graphene be 1:2. With XRD, SEM and TEM are to finally preparing Mo0.5W0.5S2Nanometer sheet/graphiteThe nano composite material of alkene characterizes, and XRD analysis result shows Mo in composite nano materials0.5W0.5S2For layer structure, itsThe average number of plies is 7 layers, and TEM and HRTEM photo (seeing accompanying drawing 4, is (a) TEM photo, is (b) HRTEM photo) have shown loadMo on Graphene0.5W0.5S2For nanometer sheet pattern, its thickness and size are not so good as Mo above0.5W0.5S2Nanometer watt evenly,Mo0.5W0.5S2The average number of plies of nanometer sheet is 6-7 layer, consistent with XRD analysis.
By above-mentioned steps 3) process prepare Mo0.5W0.5S2Nanometer sheet/Graphene electrochemistry storage sodium combination electrode, and by upperState the electrochemistry storage sodium performance of identical method test compound electrode. Electrochemical results shows: Mo0.5W0.5S2Nanometer sheet/The initial reversible capacity of Graphene electrochemistry storage sodium combination electrode electrochemistry storage sodium is that 235mAh/g(charging and discharging currents is 50mA/G), after 50 circulations, reversible capacity is 206mAh/g; In the time of high current charge-discharge (charging and discharging currents is 800mA/g), its appearanceAmount is 112mAh/g.
Claims (2)
1. a Mo0.5W0.5S2Nanometer watt/Graphene electrochemistry storage sodium combination electrode, is characterized in that the electrochemistry of combination electrodeStorage sodium active material is Mo0.5W0.5S2The composite nano materials of nanometer watt/Graphene, Mo in composite nano materials0.5W0.5S2NanometerWatt and the ratio of the amount of substance of Graphene be 1:2, described Mo0.5W0.5S2The nanometer watt layer structure for few number of plies, combination electrodeComponent and mass percentage content thereof be: Mo0.5W0.5S2Nanometer watt/Graphene composite nano materials 80%, acetylene black 10%,Carboxymethyl cellulose 5%, Kynoar 5%, the preparation method of described combination electrode carries out according to the following steps:
(1) be dispersed in deionized water ultrasonic graphene oxide, add Gemini surface active agent N-dodecyl propylidene twoThe two ammonium bromides of amine, and fully stir, then add successively Cys, ammonium thiomolybdate and sulfo-ammonium tungstate, and constantly stirMix Cys, ammonium thiomolybdate and sulfo-ammonium tungstate are dissolved completely, Cys, ammonium thiomolybdate and sulfo-wolframic acidThe ratio of the amount of substance of ammonium consumption is 5:0.5:0.5, the amount of substance of ammonium thiomolybdate, sulfo-ammonium tungstate and graphene oxide itThan being 0.5:0.5:2;
(2) mixed dispersion step (1) being obtained is transferred in hydrothermal reaction kettle, and adds deionized water to adjust volume extremely80% of hydrothermal reaction kettle nominal volume, the concentration of the two ammonium bromides of Gemini surface active agent N-dodecyl trimethylene diamine is0.01~0.02mol/L, the content of graphene oxide is 30-65mmol/L, this reactor is put in constant temperature oven, at 230-At 250 DEG C, after hydro-thermal reaction 24h, allow it naturally cool to room temperature, with centrifugation collection hydro-thermal solid product, and use deionizationWater fully washs, vacuum drying at 100 DEG C, by the hydro-thermal solid product obtaining in nitrogen/hydrogen mixed gas atmosphere at 800 DEG CLower heat treatment 2h, in mist, hydrogen volume mark is 10%, finally prepares Mo0.5W0.5S2Nanometer watt/GrapheneComposite nano materials;
(3) by the Mo of above-mentioned preparation0.5W0.5S2Nanometer watt/Graphene composite nano materials is as electrochemistry storage sodium active material, withThe 1-METHYLPYRROLIDONE solution of the Kynoar of acetylene black, carboxymethyl cellulose and mass fraction 5% is under agitation abundantMix the uniform slurry of furnishing, this slurry is coated onto equably on the Copper Foil of collector, vacuum drying, roll extrusion obtains compoundElectrode.
2. Mo according to claim 10.5W0.5S2Nanometer watt/Graphene electrochemistry storage sodium combination electrode, is characterized in that,Described Mo0.5W0.5S2The average number of plies of nanometer watt is 3 layers.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410339877.3A CN104091922B (en) | 2014-07-17 | 2014-07-17 | Mo0.5W0.5S2Nanometer watt/Graphene electrochemistry storage sodium combination electrode and preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410339877.3A CN104091922B (en) | 2014-07-17 | 2014-07-17 | Mo0.5W0.5S2Nanometer watt/Graphene electrochemistry storage sodium combination electrode and preparation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104091922A CN104091922A (en) | 2014-10-08 |
CN104091922B true CN104091922B (en) | 2016-05-25 |
Family
ID=51639618
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410339877.3A Expired - Fee Related CN104091922B (en) | 2014-07-17 | 2014-07-17 | Mo0.5W0.5S2Nanometer watt/Graphene electrochemistry storage sodium combination electrode and preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104091922B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104852047A (en) * | 2015-04-13 | 2015-08-19 | 复旦大学 | A sodium/cobalt disulfide battery and manufacturing method thereof |
CN105161691B (en) * | 2015-10-10 | 2017-04-26 | 岭南师范学院 | Preparation method of less-layer MoS2/phosphorus-doped graphene electrochemical sodium-storage combined electrode |
CN105514425B (en) * | 2015-12-11 | 2019-05-31 | 南开大学 | A kind of high-performance room-temperature sodium-ion battery and preparation method thereof |
CN109390567A (en) * | 2017-08-14 | 2019-02-26 | 中原大学 | The constituent of cell negative electrode material |
CN110184615A (en) * | 2019-04-23 | 2019-08-30 | 重庆文理学院 | A kind of preparation method of novel electrocatalytic hydrogen evolution electrode |
CN112436113A (en) * | 2020-11-13 | 2021-03-02 | 内蒙古杉杉科技有限公司 | Sodium-ion battery negative electrode material and preparation method and application thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102683648A (en) * | 2012-06-08 | 2012-09-19 | 浙江大学 | Preparation method of few-layer MoS2/graphene electrochemical storage lithium composite electrode |
CN103864066A (en) * | 2014-03-14 | 2014-06-18 | 嵇天浩 | Method for preparing graphene, MoS2 or WS2 microspheres |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130250260A1 (en) * | 2012-03-23 | 2013-09-26 | Globalfoundries Inc. | Pellicles for use during euv photolithography processes |
-
2014
- 2014-07-17 CN CN201410339877.3A patent/CN104091922B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102683648A (en) * | 2012-06-08 | 2012-09-19 | 浙江大学 | Preparation method of few-layer MoS2/graphene electrochemical storage lithium composite electrode |
CN103864066A (en) * | 2014-03-14 | 2014-06-18 | 嵇天浩 | Method for preparing graphene, MoS2 or WS2 microspheres |
Non-Patent Citations (1)
Title |
---|
Electronic and optical properties of two-dimensional MoS2,WS2,and Mo0.5W0.5S2 from First-principles;A.V.KRIVOSHEEVA et al;《PHYSICS,CHEMISTRY AND APPLICATION OF NANOSTRUCTURES》;20131231;第35页第1段 * |
Also Published As
Publication number | Publication date |
---|---|
CN104091922A (en) | 2014-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102142537B (en) | Graphene/MoS2 compound nano material lithium ion battery electrode and preparation method thereof | |
CN104091922B (en) | Mo0.5W0.5S2Nanometer watt/Graphene electrochemistry storage sodium combination electrode and preparation method | |
CN103326007B (en) | The preparation method of three-dimensional graphite thiazolinyl tin dioxide composite material and application thereof | |
CN103441246B (en) | The preparation method of the graphene-based tin dioxide composite material of three-dimensional N doping and application thereof | |
CN104966824A (en) | Nitrogen-doped porous carbon sphere and cobaltous oxide nano-composite anode material based on chitosan and derivatives thereof and preparation method thereof | |
CN101593827A (en) | Silicon/negative pole made of silicon/graphite nanosheet composite material of lithium ion battery and preparation method thereof | |
CN104124434B (en) | Multiple edge MoS2nanometer sheet/Graphene electrochemistry storage lithium combination electrode and preparation method | |
CN105304862A (en) | Preparation method of graphene-like MoS2/nitrogen and phosphorus co-doped graphene electrochemical lithium storage composite electrode | |
CN107742701A (en) | Graphene titania aerogel composite and its preparation and application | |
CN105161690B (en) | The method that molybdenum disulfide charge and discharge cycles ability is improved by doped graphene and titanium dioxide | |
CN104091915B (en) | The electrochemistry storage sodium combination electrode of a kind of high power capacity and stable circulation and preparation method | |
CN104103814B (en) | Mo0.5W0.5S2Nanometer watt/Graphene electrochemistry storage lithium combination electrode and preparation method | |
CN104124435B (en) | Multiple edge MoS2nanometer sheet/Graphene electrochemistry storage sodium combination electrode and preparation method | |
CN104091926B (en) | WS2Nanometer watt/Graphene electrochemistry storage sodium combination electrode and preparation method | |
CN104091916B (en) | MoS2nanometer sheet with holes/Graphene electrochemistry storage sodium combination electrode and preparation method | |
CN104091924B (en) | Mo0.5W0.5S2Nanometer watt/Graphene electrochemistry storage magnesium combination electrode and preparation method | |
CN104091928B (en) | MoS2Nanometer sheet/Graphene electrochemistry storage lithium combination electrode with holes and preparation method | |
CN104091929B (en) | WS2Nanometer watt/Graphene electrochemistry storage magnesium combination electrode and preparation method | |
CN104091954B (en) | Multiple edge WS2/ Graphene electrochemistry storage sodium combination electrode and preparation method | |
CN104091927B (en) | WS2Nanometer sheet/Graphene electrochemistry storage magnesium combination electrode with holes and preparation method | |
CN104103834B (en) | WS2Nanometer sheet with holes/Graphene electrochemistry storage sodium combination electrode and preparation method | |
CN104103833B (en) | Multiple edge WS2/ Graphene electrochemistry storage magnesium combination electrode and preparation method | |
CN104103811B (en) | MoS2Nanometer sheet with holes/Graphene electrochemistry storage magnesium combination electrode and preparation method | |
CN104103810B (en) | Multiple edge WS2/ Graphene electrochemistry storage lithium combination electrode and preparation method | |
CN104103830B (en) | Electrochemistry storage lithium combination electrode and the preparation method of a kind of high power capacity and stable circulation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160525 Termination date: 20180717 |