[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN104061930A - Navigation method based on strapdown inertial guidance and Doppler log - Google Patents

Navigation method based on strapdown inertial guidance and Doppler log Download PDF

Info

Publication number
CN104061930A
CN104061930A CN201310653821.0A CN201310653821A CN104061930A CN 104061930 A CN104061930 A CN 104061930A CN 201310653821 A CN201310653821 A CN 201310653821A CN 104061930 A CN104061930 A CN 104061930A
Authority
CN
China
Prior art keywords
mrow
msub
mtd
msubsup
mtr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310653821.0A
Other languages
Chinese (zh)
Other versions
CN104061930B (en
Inventor
程向红
许立平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201310653821.0A priority Critical patent/CN104061930B/en
Publication of CN104061930A publication Critical patent/CN104061930A/en
Application granted granted Critical
Publication of CN104061930B publication Critical patent/CN104061930B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Navigation (AREA)

Abstract

The invention discloses a navigation method based on strapdown inertial guidance and a Doppler log. The navigation method is characterized in that the navigation method is applied to a navigation system based on strapdown inertial guidance and the Doppler log, wherein the navigation system comprises the Doppler log, a strapdown inertial measurement unit, a strapdown inertial measurement unit processing module and a central processing unit; the Doppler log comprises a transceiver, four energy transducers and an interface unit; the Doppler log is connected with the central processing unit through the interface unit; the strapdown inertial measurement unit comprises a three-axis gyroscope and a three-axis accelerator; the strapdown inertial measurement unit is connected with the strapdown inertial measurement unit processing module; the strapdown inertial measurement unit processing module is connected with the central processing unit; the navigation method comprises a plurality of steps, and the method overcomes the defects that an AUV (autonomous underwater vehicle) navigation system is easily influenced by environment and the navigation and positioning error of a strapdown inertial navigation system cannot reach the requirements of accuracy with continued accumulation of time.

Description

Navigation method based on strapdown inertial guidance and Doppler log
Technical Field
The invention relates to a navigation method based on strapdown inertial guidance and a Doppler log, belonging to the field of navigation, positioning and tracking of underwater and water surface aircrafts.
Background
AUV (Autonomous Underwater Vehicle) is an important tool for exploring and developing and utilizing marine environmental resources, and plays an important role in marine military application. The problem of navigation of AUVs remains one of the major technical challenges facing today due to their remoteness, concealment, and autonomy. Because the underwater environment is complex, an integrated navigation mode is often adopted to perform navigation positioning on the AUV, and the design of a filter of an integrated navigation system is the key for ensuring the navigation precision. The navigation positioning precision of the conventional AUV can reach about <0.8 nmile/h at present, and the accuracy requirement of AUV navigation positioning is met to a certain extent.
The SINS (Strapdown Inertial Navigation system) system has autonomous Navigation capability, is not influenced by environment, carrier maneuvering and radio interference, can continuously provide Navigation positioning information such as carrier position, speed and attitude, has high data updating frequency and higher relative precision in a short time. However, as the operating time of the system is prolonged, the navigation error of the strapdown inertial navigation system is accumulated and increased, and at this time, the error accumulated over time needs to be suppressed by correcting and compensating the strapdown inertial navigation system through a filtering algorithm by using the observation information of the external sensor.
The DVL (Doppler Velocity Log Doppler Log) is a speed measuring device widely used in combined systems of underwater and surface navigation systems, and has an acoustic navigation positioning system that outputs the three-dimensional speed and range capability of a carrier in real time. The Doppler system obtains the acoustic wave frequency shift through the information of four transducers arranged at the bottom of the AUV, and then calculates to obtain the three-dimensional speed information of the carrier in the carrier system, and has the advantages of high precision, reliability, real-time performance and the like. However, due to the complex underwater environment, the accumulation of the position error of the dead reckoning system along with time and the long endurance and concealment requirements of the AUV, the precision of the conventional filtering algorithm of the strapdown inertial navigation/Doppler combined system is difficult to meet the requirement of a high-precision navigation positioning function.
The conventional H-infinity filtering algorithm does not make any assumption on the statistical characteristics of the system, has the advantages of simple filtering model and good robustness, and is often applied to the AUV navigation system. However, the conventional H-infinity filter has weak capability of tracking a maneuvering process, and the instantaneity is difficult to guarantee. When the state estimation value of the filter deviates from the system state due to the influence of factors such as model uncertainty, the state estimation value of the filter is necessarily expressed on the mean value and the amplitude of the output residual sequence, and at the moment, if the time-varying gain matrix is adjusted on line, the system estimation error variance is minimum, and the residual sequences are still mutually orthogonal, namely, the orthogonality principle is satisfied, the filter can be forced to keep high-precision tracking on the actual system state. The invention implements the fading on the past data by introducing the suboptimal fading factor into the H-infinity filtering algorithm to weaken the influence of old data on the current filtering estimation value, namely, the filter is forced to track the actual system state with high precision by adjusting the estimation error variance matrix and the corresponding gain matrix in real time to meet the orthogonality principle, and all effective information in the output residual error is extracted to the greatest extent to obtain the filtering algorithm with high tracking performance. The filtering algorithm has strong robustness about model uncertainty and the tracking capability of the system maneuvering process, keeps the advantage of simplicity of an H-infinity filtering model, realizes the tracking of the filter on the system state of the AUV maneuvering process, and has important theoretical significance and engineering practical value.
The AUV integrated navigation system based on the strapdown inertial navigation/Doppler combines the advantages of the strapdown inertial navigation, Doppler and the filtering algorithm provided by the invention, can provide real-time navigation tracking parameters with high precision of a carrier, and solves the problems that the AUV navigation system is easily influenced by the environment and the navigation positioning error of the strapdown inertial navigation continuously accumulates along with the time and cannot meet the precision requirement.
Disclosure of Invention
The purpose of the invention is as follows: the invention aims to overcome the defects of the prior art and provides a filtering method for an AUV (autonomous underwater vehicle) integrated navigation system for strapdown inertial navigation/Doppler (AUV). And the designed filter is utilized to introduce Doppler velocity measurement information into an AUV combined system so as to assist strapdown inertial navigation to carry out navigation positioning. The method can integrate a plurality of sub navigation information, and overcomes the defects that an AUV navigation system is easily influenced by the environment and the navigation positioning error of a strapdown inertial navigation system continuously accumulates along with the time and cannot meet the precision requirement.
The technical scheme is as follows: the invention relates to a navigation method based on a strapdown inertial guidance and a Doppler log, which is applied to a navigation system based on the strapdown inertial guidance and the Doppler log, wherein the navigation system comprises the Doppler log, a strapdown inertial measurement unit processing module and a central processing unit; the Doppler log comprises a transceiver, four transducers and an interface unit; the Doppler log is connected with the central processing unit through the interface unit; the strapdown inertial measurement unit comprises a three-axis gyroscope and a three-axis accelerometer; the strapdown inertial measurement unit is connected with the processing module of the strapdown inertial measurement unit; the strapdown inertial measurement unit processing module is connected with the central processing unit; the navigation method comprises the following steps:
(1) measuring triaxial angular velocity information through a triaxial gyroscope and triaxial acceleration information through an accelerometer in the strapdown inertial measurement unit assembly, receiving navigation information output by the strapdown inertial measurement unit through a processing module of the strapdown inertial measurement unit, and obtaining navigation information such as carrier position, velocity and attitude through navigation integral calculation;
(2) transmitting an electric oscillation signal to the transducer through a transceiver of the Doppler log;
(3) transmitting ultrasonic waves and receiving reflected echoes with frequency shift characteristics through four transducers of a Doppler log;
(4) by usingThe receiving system in the transceiver amplifies the echo signal sent by the transducer, then obtains Doppler frequency shift, converts the echo signal into a navigational speed analog signal and sends the navigational speed analog signal to the interface unit. If the carrier navigation speed is V, the beam launching depression angle is theta, and the sound velocity C is approximately equal to 1500 m/s, the single-beam frequency shift calculation formula is as follows: Δ f 2Vf0cos θ/C, the velocity calculation from which is derived is: v ═ Δ fC/(2 f)0cosθ);
(5) Converting the four navigational speed analog signals sent by the transceiver into navigational speed by using an interface unit in the transceiver, and outputting the navigational speed analog signals to the central processing unit in a digital mode;
(6) an arithmetic unit in the central processing unit periodically calculates the real-time three-dimensional carrier system speed of the carrier according to the speed information output by the interface unit of the Doppler log;
(7) a filtering module in the central processing unit carries out filtering fusion calculation on the received strapdown inertial navigation information and the three-dimensional speed information of the Doppler log to obtain the correction value of the inertial strapdown measurement system at the moment kAfter correction, the final high-precision navigation positioning information is obtained;
the method for obtaining the correction value of the inertia strapdown measurement system through filtering fusion calculation comprises the following steps:
taking strapdown inertial navigation as a reference system, and taking a speed error by a state variable XAttitude angle error (phi)e,φn,φu) Accelerometer random constant biasAnd gyro random constant drift (epsilon)x,εy,εz) And 10 dimensions in total: <math><mrow> <mi>X</mi> <mo>=</mo> <msup> <mrow> <mo>[</mo> <msubsup> <mi>&delta;V</mi> <mi>e</mi> <mi>n</mi> </msubsup> <mo>,</mo> <msubsup> <mi>&delta;V</mi> <mi>n</mi> <mi>n</mi> </msubsup> <mo>,</mo> <msub> <mi>&phi;</mi> <mi>e</mi> </msub> <mo>,</mo> <msub> <mi>&phi;</mi> <mi>n</mi> </msub> <mo>,</mo> <msub> <mi>&phi;</mi> <mi>u</mi> </msub> <mo>,</mo> <msub> <mo>&dtri;</mo> <mi>x</mi> </msub> <mo>,</mo> <msub> <mo>&dtri;</mo> <mi>y</mi> </msub> <mo>,</mo> <msub> <mi>&epsiv;</mi> <mi>x</mi> </msub> <mo>,</mo> <msub> <mi>&epsiv;</mi> <mi>y</mi> </msub> <mo>,</mo> <msub> <mi>&epsiv;</mi> <mi>z</mi> </msub> <mo>]</mo> </mrow> <mi>T</mi> </msup> <mo>;</mo> </mrow></math> W=[wax,way,wgx,wgy,wgz,0,0,0,0,0]Tis a system noise vector;
the difference between the velocity solved by the strapdown inertial navigation and the velocity of the carrier system measured by the Doppler log after being converted into the navigation system is used as the measurement value of the system, and then the measurement equation is expressed as follows:
Z = V SINSe n - C b n V DVLe V SINSn n - C b n V DVLn = HX + V
wherein the observation vector isMeasurement noise vector V ═ wvx,wvy]TThe system measurement matrix is H, and a discrete system filter equation can be obtained by discretizing a system state equation and a measurement equation; using initial valuesAnd P0According to the measurement of time kkThe state estimate up to time k can be deduced X ^ k ( k = 1,2,3 , . . . ) :
<math><mrow> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>K</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mi>k</mi> </msub> <mo>-</mo> <msub> <mi>H</mi> <mi>k</mi> </msub> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </mrow></math>
K k = P k H k T ( H k P k H k T + I ) - 1
Wherein <math><mrow> <msub> <mi>P</mi> <mi>k</mi> </msub> <mo>=</mo> <msub> <mi>&Gamma;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>&Gamma;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> <mo>+</mo> <mi>&Lambda;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>{</mo> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> <mo>-</mo> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msubsup> <mi>H</mi> <mi>k</mi> <mi>T</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>L</mi> <mi>k</mi> <mi>T</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> <msubsup> <mi>R</mi> <mrow> <mi>e</mi> <mo>,</mo> <mi>k</mi> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>H</mi> <mi>k</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>L</mi> <mi>k</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> <mo>}</mo> </mrow></math>
Wherein: Λ (k) = diag [ λ1(k),λ2(k),…λn(k)],λi(k) Not less than 1; i is 1, 2, …, n. In the sub-optimization method, λ is roughly determined based on a priori knowledge of the system1(k):λ2(k):…:λn(k) The initial values of (a) are: lambda [ alpha ]1(k):λ2(k):…:λn(k)=α1:α2:…:αnIn the formula, αiIs not less than 1(i =1, 2, …, n), then λ is obtainedi(k) The approximation algorithm of (d) is as follows:
<math><mrow> <msub> <mi>&lambda;</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>&alpha;</mi> <mi>i</mi> </msub> <msub> <mi>&lambda;</mi> <mrow> <mn>0</mn> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>,</mo> </mtd> <mtd> <msub> <mi>&alpha;</mi> <mi>i</mi> </msub> <msub> <mi>&lambda;</mi> <mrow> <mn>0</mn> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>&GreaterEqual;</mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> <mo>,</mo> </mtd> <mtd> <msub> <mi>&alpha;</mi> <mi>i</mi> </msub> <msub> <mi>&lambda;</mi> <mrow> <mn>0</mn> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>&le;</mo> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> </mrow></math>
wherein,
<math><mrow> <msub> <mi>&lambda;</mi> <mrow> <mn>0</mn> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mi>tr</mi> <mo>[</mo> <mi>N</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>&alpha;</mi> <mi>i</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>M</mi> <mi>ii</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow></math>
<math><mrow> <mi>N</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>V</mi> <mrow> <mn>0</mn> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>H</mi> <mi>k</mi> </msub> <msub> <mi>&Gamma;</mi> <mi>k</mi> </msub> <msubsup> <mi>&Gamma;</mi> <mi>k</mi> <mi>T</mi> </msubsup> <msubsup> <mi>H</mi> <mi>k</mi> <mi>T</mi> </msubsup> <mo>-</mo> <mi>&beta;</mi> <msub> <mi>I</mi> <mi>k</mi> </msub> </mrow></math>
<math><mrow> <mrow> <mi>M</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>{</mo> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> <mo>-</mo> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msubsup> <mi>H</mi> <mi>k</mi> <mi>T</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>L</mi> <mi>k</mi> <mi>T</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> <msubsup> <mi>R</mi> <mrow> <mi>e</mi> <mo>,</mo> <mi>k</mi> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>H</mi> <mi>k</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>L</mi> <mi>k</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> <mo>}</mo> </mrow> <msubsup> <mi>H</mi> <mi>k</mi> <mi>T</mi> </msubsup> <msub> <mi>H</mi> <mi>k</mi> </msub> </mrow></math>
tr (A) represents the trace-finding operation for matrix A, where V is0,kIs calculated by the following formula:
<math><mrow> <msub> <mi>V</mi> <mrow> <mn>0</mn> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>&gamma;</mi> <mn>1</mn> </msub> <msubsup> <mi>&gamma;</mi> <mn>1</mn> <mi>T</mi> </msubsup> <mo>,</mo> </mtd> <mtd> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <msub> <mi>&rho;V</mi> <mrow> <mn>0</mn> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>&gamma;</mi> <mi>k</mi> </msub> <msubsup> <mi>&gamma;</mi> <mi>k</mi> <mi>T</mi> </msubsup> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>&rho;</mi> </mrow> </mfrac> <mo>,</mo> </mtd> <mtd> <mi>k</mi> <mo>&GreaterEqual;</mo> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> </mrow></math>
in the above equation, residual errorRho is more than or equal to 0.95 and less than or equal to 1, which is taken as a forgetting factor, and rho is generally 0.95; β ≧ 1 is a selected attenuation factor, typically β = 1.
Furthermore, the three-axis gyroscope of the strapdown inertial measurement unit is orthogonally installed in three axes, and the three-axis accelerometer is orthogonally installed in three axes.
Furthermore, the three-axis gyroscope of the strapdown inertial measurement unit is an optical fiber gyroscope.
Further, the triaxial accelerometer is a quartz flexible accelerometer.
Further, the transceiver of the doppler log comprises a transmitting system, a receiving system and a calculation compensation circuit.
Furthermore, the navigation system also comprises a display, wherein the display is connected with the arithmetic unit and is used for displaying the navigation information obtained by the operation of the central processing unit.
The navigation system includes: the system comprises a strapdown inertial measurement unit, a processing module of the strapdown inertial measurement unit, a Doppler log, a transceiver, a transducer, an interface unit and a central processing unit, wherein the transceiver, the transducer, the interface unit and the central processing unit are arranged on an AUV. The strapdown inertial measurement unit is used for outputting inertial measurement data; the strapdown inertial measurement unit processing module is used for receiving the digital signals output by the strapdown inertial measurement unit and obtaining carrier position, speed and attitude data through navigation integral calculation; the Doppler log is used for measuring the longitudinal speed and the transverse speed of the carrier relative to the sea bottom; the transducer which can be arranged at the bottom end of the AUV is used for transmitting ultrasonic waves and receiving reflected echoes; the transceiver arranged at the bottom end of the AUV comprises a transmitting system, a receiving system, a calculation compensation circuit and other units; the interface unit is used for converting the navigational speed signal sent by the transceiver into navigational speed and outputting data to external equipment in a digital mode or an analog mode; the central processing unit comprises an arithmetic unit and a filtering module, can receive the navigation information of the processing module of the strapdown inertial measurement unit and the Doppler log, and corrects the parameters of the processing module of the strapdown inertial measurement unit by utilizing the estimated system state through real-time filtering calculation to obtain final combined navigation information data.
The invention can be applied to AUV system, AUV is an important tool for exploring and developing and utilizing marine environment resources, and plays an important role in marine military application. Because of its long-range, disguise and complicated underwater environment, often adopt the integrated navigation mode to navigate the location to AUV. The strapdown inertial navigation system has autonomous navigation capability, is not influenced by environment, carrier maneuvering and radio interference, can continuously provide navigation positioning information such as carrier position, speed and attitude, has high data updating frequency and has higher relative precision in a short time. However, as the operating time of the system is prolonged, the navigation error of the strapdown inertial navigation system is accumulated and increased, and at this time, the error accumulated over time needs to be suppressed by correcting and compensating the strapdown inertial navigation system through a filtering algorithm by using the observation information of the external sensor. Doppler is a speed measuring device widely applied to an underwater and water surface navigation combined system, and has an acoustic navigation positioning system capable of outputting the three-dimensional speed and range capability of a carrier in real time. The method has the advantages of high precision, reliability, real-time performance and the like. However, due to the complex underwater environment, the accumulation of the position error of the dead reckoning system along with time and the long endurance and concealment requirements of the AUV, the precision of the conventional filtering algorithm of the strapdown inertial navigation/Doppler combined system is difficult to meet the requirement of a high-precision navigation positioning function. The conventional H-infinity filtering algorithm does not make any assumption on the statistical characteristics of the system, and has the advantages of simple filtering model and good robustness. However, the conventional H-infinity filter has weak capability of tracking a maneuvering process, and the instantaneity is difficult to guarantee. The invention implements the fading on the past data by introducing the suboptimal fading factor into the H-infinity filtering algorithm to weaken the influence of old data on the current filtering estimation value, namely, the filter is forced to keep the high-precision tracking on the actual system state by adjusting the estimation error variance matrix and the corresponding gain matrix in real time to meet the orthogonality principle, and all effective information in the output residual error is extracted to the maximum extent to obtain the filtering algorithm with high tracking performance. The filtering algorithm has stronger robustness about model uncertainty and the tracking capability of the system maneuvering process, keeps the advantage of simplicity of an H ∞ filtering model, and realizes the tracking of the filter on the system state of the AUV maneuvering process. The invention utilizes the filtering technology to perform data fusion calculation on the strapdown inertial navigation information and the three-dimensional speed information of the Doppler log to obtain a final navigation positioning result with high precision, strong real-time performance and good continuity.
The concrete description is as follows:
(1) geometric model of the earth and physical parameters
Description of the shape of the Earth
WGS-84 reference ellipsoid is used as an earth model in inertial navigation solution, and the equator radius major semi-axis R of the earth model ise6378137.0m, and 1/298.257223563. Meridian plane radius of curvature RNCurvature radius R of unitary and quartile ringECan be obtained from the following equation:
R N = R e ( 1 - e ) 2 [ ( 1 - e ) 2 sin 2 L + cos 2 L ] 3 2 R E = R e [ ( 1 - e ) 2 sin 2 L + cos 2 L ] 1 2
② the rotation angular rate (ω) of the earthie)
In an inertial navigation system, the rotational angular velocity of the earth is:
ωie=15.0411°/h=7.29211585×10-5rad/s
③ acceleration of gravity of the earth (g)
The gravitational acceleration of the WGS-84 reference ellipsoid is:
<math><mrow> <mi>g</mi> <mo>=</mo> <mn>9.7803267714</mn> <mo>&times;</mo> <mfrac> <mrow> <mn>1</mn> <mo>+</mo> <mn>0.00193185138639</mn> <msup> <mi>sin</mi> <mn>2</mn> </msup> <mi>L</mi> </mrow> <msqrt> <mn>1</mn> <mo>-</mo> <mn>0.00669437999013</mn> <msup> <mi>sin</mi> <mn>2</mn> </msup> <mi>L</mi> </msqrt> </mfrac> <msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mfrac> <mi>h</mi> <msub> <mi>R</mi> <mi>e</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>2</mn> </mrow> </msup> </mrow></math>
wherein L represents the local latitude, h represents the altitude, ReThe equator radius major axis.
(2) Definition of coordinate system
Earth's center inertial coordinate system (i series)
With oxiyiziIndicating that the origin is at the center of the earth, oxiAnd oyiAxis in the equatorial plane of the earth, oxiAxis pointing to spring equinox, oziAxis coincident with the earth's axis of rotation, oyiWith oxi、oziAnd forming a right-hand rectangular coordinate system. The orientation of the three coordinate axes in the inertial space is fixed. The output of the strapdown inertial measurement unit takes i as a reference.
② terrestrial coordinate system (e series)
With oxeyezeIndicating that the origin is at the center of the earth, ozeAxis coincident with the earth's axis of rotation, oxeAxis along the intersection of the Greenwich meridian plane and the equatorial plane of the Earth, oyeAxis in equatorial plane, oxe、oye、ozeThe three axes form a right-hand rectangular coordinate system. The earth coordinate system is fixedly connected with the earth, and the angular rate of the e system rotating relative to the i system is the rotational angular speed omega of the earthie
③ geographical coordinate system (g series)
With oxgygzgMeaning that the origin is at the center of gravity of the carrier, typically using the northeast sky coordinate system as the geographic coordinate system, oxgThe axis points to east (E), oygThe axis pointing to north (N), ozgThe axis points to the day (U).
Navigation coordinate system (n series)
With oxnynznIndicating that the northeast geographic coordinate system (ENU) is used as the navigation coordinate system.
Vehicle coordinate system (b series)
With oxbybzbIndicating that the origin is generally taken as the geometric center, ox, of the strapdown inertial measurement unitbAxis to the right along the transverse axis of the carrier, oybAxis forward along the longitudinal axis of the carrier, ozbThe axis is vertical to the carrier axis.
(3) Conversion relation between attitude angle and attitude matrix
Defining of attitude angle
Course angle: longitudinal axis of the carrier oybThe angle between the projection on the horizontal plane and the north of the geographic meridian, called the heading angle, is psi. The heading angle value is calculated clockwise by taking the geographic north direction as a starting point, and the definition range of the heading angle value is 0-360 degrees.
Pitch angle: the carrier being wound about a transverse axis oxbThe angle between the longitudinal axis of the carrier and the horizontal plane when rotating, called pitch angle, is denoted as θ. The pitch angle is positive when the pitch angle is up and negative when the pitch angle is down from the horizontal plane, and the range of the pitch angle is-90 degrees to +90 degrees.
Roll angle: the included angle between the longitudinal symmetric plane of the carrier and the longitudinal plumb plane is called the roll angle and is marked as gamma. The roll angle is positive when the right inclination is positive and negative when the left inclination is negative from the vertical plane, and the definition range is-180 DEG to +180 deg.
Matrix of the posture 2
The transformation from the carrier coordinate system b to the geographic coordinate system (navigation system n system) can be realized by three rotations in the following sequenceThe specific sequence is as follows: around-ozgAngle phi of axis rotation, axis ox1Angle of rotation of axis theta, rewind of axis oy2The shaft rotates by an angle gamma. The conversion relationship between them is shown as follows.
<math><mrow> <mi>o</mi> <msub> <mi>x</mi> <mi>g</mi> </msub> <msub> <mi>y</mi> <mi>g</mi> </msub> <msub> <mi>z</mi> <mi>g</mi> </msub> <munderover> <mo>&RightArrow;</mo> <mi>y</mi> <mrow> <mo>-</mo> <mi>o</mi> <msub> <mi>z</mi> <mi>g</mi> </msub> </mrow> </munderover> <mi>o</mi> <msub> <mi>x</mi> <mn>1</mn> </msub> <msub> <mi>y</mi> <mn>1</mn> </msub> <msub> <mi>z</mi> <mn>1</mn> </msub> <munderover> <mo>&RightArrow;</mo> <mi>q</mi> <mrow> <mi>o</mi> <msub> <mi>x</mi> <mn>1</mn> </msub> </mrow> </munderover> <mi>o</mi> <msub> <mi>x</mi> <mn>2</mn> </msub> <msub> <mi>y</mi> <mn>2</mn> </msub> <msub> <mi>z</mi> <mn>2</mn> </msub> <munderover> <mo>&RightArrow;</mo> <mi>g</mi> <mrow> <mi>o</mi> <msub> <mi>y</mi> <mn>2</mn> </msub> </mrow> </munderover> <mi>o</mi> <msub> <mi>x</mi> <mi>b</mi> </msub> <msub> <mi>y</mi> <mi>b</mi> </msub> <msub> <mi>z</mi> <mi>b</mi> </msub> </mrow></math>
The transformation matrices corresponding to the three rotations are respectively
<math><mrow> <msub> <mi>C</mi> <mi>&psi;</mi> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mi>&psi;</mi> </mtd> <mtd> <mo>-</mo> <mi>sin</mi> <mi>&psi;</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mi>&psi;</mi> </mtd> <mtd> <mi>cos</mi> <mi>&psi;</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> </mrow></math>
<math><mrow> <msub> <mi>C</mi> <mi>&theta;</mi> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mi>cos</mi> <mi>&theta;</mi> </mtd> <mtd> <mi>sin</mi> <mi>&theta;</mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <mi>sin</mi> </mtd> <mtd> <mi>cos</mi> <mi>&theta;</mi> </mtd> </mtr> </mtable> </mfenced> </mrow></math>
<math><mrow> <msub> <mi>C</mi> <mi>&gamma;</mi> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mi>&gamma;</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <mi>sin</mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mi>&gamma;</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mi>cos</mi> <mi>&gamma;</mi> </mtd> </mtr> </mtable> </mfenced> </mrow></math>
Therefore, the transformation matrix from the geographic coordinate system to the carrier coordinate system is:
<math><mrow> <msubsup> <mi>C</mi> <mi>g</mi> <mi>b</mi> </msubsup> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mi></mi> <mi>&gamma;</mi> <mi>cos</mi> <mi>&psi;</mi> <mo>+</mo> <mi>sin</mi> <mi></mi> <mi>&gamma;</mi> <mi>sin</mi> <mi></mi> <mi>&psi;</mi> <mi>sin</mi> <mi>&theta;</mi> </mtd> <mtd> <mo>-</mo> <mi>cos</mi> <mi></mi> <mi>&gamma;</mi> <mi>sin</mi> <mi>&psi;</mi> <mo>+</mo> <mi>sin</mi> <mi></mi> <mi>&gamma;</mi> <mi>cos</mi> <mi></mi> <mi>&psi;</mi> <mi>sin</mi> <mi>&theta;</mi> </mtd> <mtd> <mo>-</mo> <mi>sin</mi> <mi></mi> <mi>&gamma;</mi> <mi>cos</mi> <mi>&theta;</mi> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mi></mi> <mi>&psi;</mi> <mi>cos</mi> <mi>&theta;</mi> </mtd> <mtd> <mi>cos</mi> <mi></mi> <mi>&psi;</mi> <mi>cos</mi> <mi>&theta;</mi> </mtd> <mtd> <mi>sin</mi> <mi>&theta;</mi> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mi></mi> <mi>&gamma;</mi> <mi>cos</mi> <mi>&psi;</mi> <mo>-</mo> <mi>cos</mi> <mi></mi> <mi>&gamma;</mi> <mi>sin</mi> <mi></mi> <mi>&psi;</mi> <mi>sin</mi> <mi>&theta;</mi> </mtd> <mtd> <mo>-</mo> <mi>sin</mi> <mi></mi> <mi>&gamma;</mi> <mi>sin</mi> <mi>&psi;</mi> <mo>-</mo> <mi>cos</mi> <mi></mi> <mi>&gamma;</mi> <mi>cos</mi> <mi></mi> <mi>&psi;</mi> <mi>sin</mi> <mi>&theta;</mi> </mtd> <mtd> <mi>cos</mi> <mi></mi> <mi>&gamma;</mi> <mi>cos</mi> <mi>&theta;</mi> </mtd> </mtr> </mtable> </mfenced> </mrow></math>
the geographic coordinate system is used as the navigation coordinate system, and the strapdown inertial navigation system attitude matrix is
C b n = ( C g b ) T
(iii) conversion relationship between attitude angle and attitude matrix
<math><mrow> <msubsup> <mi>C</mi> <mi>b</mi> <mi>n</mi> </msubsup> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>C</mi> <mi>g</mi> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>=</mo> <msub> <mrow> <mo>[</mo> <msub> <mi>T</mi> <mi>ij</mi> </msub> <mo>]</mo> </mrow> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mrow></math>
The conversion relationship between the attitude matrix and the attitude angle of the main value interval can be solved as follows:
(4) basic principle of strapdown inertial navigation system
Differential equation of strapdown inertial navigation system
The attitude matrix differential equation is:
wherein, is the angular velocity of the carrier, is measured by a gyroscope,and has the following components:
<math><mrow> <msubsup> <mi>&omega;</mi> <mi>ie</mi> <mi>n</mi> </msubsup> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>cos</mi> <mi>L</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>sin</mi> <mi>L</mi> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <msubsup> <mi>&omega;</mi> <mi>en</mi> <mi>n</mi> </msubsup> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mo>-</mo> <mfrac> <msubsup> <mi>V</mi> <mi>N</mi> <mi>n</mi> </msubsup> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mfrac> <msubsup> <mi>V</mi> <mi>E</mi> <mi>n</mi> </msubsup> <mrow> <msub> <mi>R</mi> <mi>E</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mfrac> <msubsup> <mi>V</mi> <mi>E</mi> <mi>n</mi> </msubsup> <mrow> <msub> <mi>R</mi> <mi>E</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> <mi>tan</mi> <mi>L</mi> </mtd> </mtr> </mtable> </mfenced> </mrow></math>
in the formula, V n = V E n V N n V U n T the speed of the carrier to the ground is the size of the navigation system.
The specific force equation of the carrier in the navigation system is as follows: <math><mrow> <msup> <mover> <mi>V</mi> <mo>&CenterDot;</mo> </mover> <mi>n</mi> </msup> <mo>=</mo> <msup> <mi>f</mi> <mi>n</mi> </msup> <mo>-</mo> <mrow> <mo>(</mo> <msubsup> <mrow> <mn>2</mn> <mi>&omega;</mi> </mrow> <mi>ie</mi> <mi>n</mi> </msubsup> <mo>+</mo> <msubsup> <mi>&omega;</mi> <mi>en</mi> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> <msup> <mi>V</mi> <mi>n</mi> </msup> <mo>+</mo> <msup> <mi>g</mi> <mi>n</mi> </msup> </mrow></math>
in the formulafbSpecific force, g, measured for an accelerometern=[0 0 -g]T
Position update differential equation: in a system with a geographic coordinate system as a navigation coordinate system, the differential equations for latitude L, longitude λ, and altitude h are:
<math><mrow> <mover> <mi>L</mi> <mo>&CenterDot;</mo> </mover> <mo>=</mo> <mfrac> <msubsup> <mi>V</mi> <mi>N</mi> <mi>n</mi> </msubsup> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> <mo>,</mo> <mover> <mi>&lambda;</mi> <mo>&CenterDot;</mo> </mover> <mo>=</mo> <mfrac> <msubsup> <mi>V</mi> <mi>E</mi> <mi>n</mi> </msubsup> <mrow> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mi>E</mi> </msub> <mo>+</mo> <mi>h</mi> <mo>)</mo> </mrow> <mi>cos</mi> <mi>L</mi> </mrow> </mfrac> <mo>,</mo> <mover> <mi>h</mi> <mo>&CenterDot;</mo> </mover> <mo>=</mo> <msubsup> <mi>V</mi> <mi>U</mi> <mi>n</mi> </msubsup> </mrow></math>
error model of strapdown inertial navigation system
Gyroscope error model: epsilonibiwi(i=x,y,z),εbiIs a random constant, epsilonwiIs white noise;
an accelerometer error model:(i=x,y,z),is a random constant and is a function of time,is white noise;
the attitude error equation is: <math><mrow> <msup> <mover> <mi>&phi;</mi> <mo>&CenterDot;</mo> </mover> <mi>n</mi> </msup> <mo>=</mo> <mo>-</mo> <msubsup> <mi>&omega;</mi> <mi>in</mi> <mi>n</mi> </msubsup> <mo>&times;</mo> <msup> <mi>&phi;</mi> <mi>n</mi> </msup> <mo>+</mo> <mi>&delta;</mi> <msubsup> <mi>&omega;</mi> <mi>ie</mi> <mi>n</mi> </msubsup> <mo>+</mo> <mi>&delta;</mi> <msubsup> <mi>&omega;</mi> <mi>en</mi> <mi>n</mi> </msubsup> <mo>-</mo> <msubsup> <mi>C</mi> <mi>b</mi> <mi>n</mi> </msubsup> <msup> <mi>&epsiv;</mi> <mi>b</mi> </msup> <mo>,</mo> <msup> <mi>&phi;</mi> <mi>n</mi> </msup> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>&phi;</mi> <mi>x</mi> </msub> </mtd> <mtd> <msub> <mi>&phi;</mi> <mi>y</mi> </msub> </mtd> <mtd> <msub> <mi>&phi;</mi> <mi>z</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> </mrow></math> as attitude error,. epsilonb=[εx εy εz]TIs the gyroscope error.
The velocity error equation is:
<math><mrow> <mi>&delta;</mi> <msup> <mover> <mi>V</mi> <mo>&CenterDot;</mo> </mover> <mi>n</mi> </msup> <mo>=</mo> <mo>-</mo> <mi>&phi;</mi> <mo>&times;</mo> <msup> <mi>f</mi> <mi>n</mi> </msup> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <msubsup> <mi>&delta;&omega;</mi> <mi>ie</mi> <mi>n</mi> </msubsup> <mo>+</mo> <mi>&delta;</mi> <msubsup> <mi>&omega;</mi> <mi>en</mi> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> <msup> <mi>V</mi> <mi>n</mi> </msup> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <msubsup> <mi>&omega;</mi> <mi>ie</mi> <mi>n</mi> </msubsup> <mo>+</mo> <msubsup> <mi>&omega;</mi> <mi>en</mi> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> <msup> <mi>&delta;V</mi> <mi>n</mi> </msup> <mo>+</mo> <msubsup> <mi>C</mi> <mi>b</mi> <mi>n</mi> </msubsup> <msup> <mo>&dtri;</mo> <mi>b</mi> </msup> <mo>,</mo> </mrow></math>
<math><mrow> <mi>&delta;</mi> <msup> <mi>V</mi> <mi>n</mi> </msup> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>&delta;</mi> <msubsup> <mi>V</mi> <mi>e</mi> <mi>n</mi> </msubsup> </mtd> <mtd> <mi>&delta;</mi> <msubsup> <mi>V</mi> <mi>n</mi> <mi>n</mi> </msubsup> </mtd> <mtd> <mi>&epsiv;</mi> <msubsup> <mi>V</mi> <mi>u</mi> <mi>n</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> </mrow></math> in order to be able to determine the speed error, <math><mrow> <msup> <mo>&dtri;</mo> <mi>b</mi> </msup> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mo>&dtri;</mo> <mi>x</mi> </msub> </mtd> <mtd> <msub> <mo>&dtri;</mo> <mi>y</mi> </msub> </mtd> <mtd> <msub> <mo>&dtri;</mo> <mi>z</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> </mrow></math> is the accelerometer error.
The position error equation is:
<math><mrow> <mi>&delta;</mi> <mover> <mi>L</mi> <mo>&CenterDot;</mo> </mover> <mo>=</mo> <mfrac> <mrow> <mi>&delta;</mi> <msubsup> <mi>V</mi> <mi>n</mi> <mi>n</mi> </msubsup> </mrow> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> <mo>-</mo> <mfrac> <msubsup> <mi>V</mi> <mi>N</mi> <mi>n</mi> </msubsup> <msup> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> <mi>&delta;h</mi> </mrow></math>
<math><mrow> <mi>&delta;</mi> <mover> <mi>&lambda;</mi> <mo>&CenterDot;</mo> </mover> <mo>=</mo> <mfrac> <mrow> <mi>sec</mi> <mi>L</mi> </mrow> <mrow> <msub> <mi>R</mi> <mi>E</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> <mi>&delta;</mi> <msubsup> <mi>V</mi> <mi>e</mi> <mi>n</mi> </msubsup> <mo>+</mo> <mfrac> <mrow> <msubsup> <mi>V</mi> <mi>E</mi> <mi>n</mi> </msubsup> <mi>sec</mi> <mi>L</mi> <mi>tan</mi> <mi>L</mi> </mrow> <mrow> <msub> <mi>R</mi> <mi>E</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> <mi>&delta;L</mi> <mo>-</mo> <mfrac> <mrow> <msubsup> <mi>V</mi> <mi>E</mi> <mi>n</mi> </msubsup> <mi>sec</mi> <mi>L</mi> </mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mi>E</mi> </msub> <mo>+</mo> <mi>h</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> <mi>&delta;h</mi> </mrow></math>
<math><mrow> <mi>&delta;</mi> <mover> <mi>h</mi> <mo>&CenterDot;</mo> </mover> <mo>=</mo> <mi>&delta;</mi> <msubsup> <mi>V</mi> <mi>u</mi> <mi>n</mi> </msubsup> </mrow></math>
(5) filtering algorithm
Introduction of H infinity filtering algorithm
Consider the following Krein-based spatial discrete state space system model:
<math><mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>X</mi> <mi>k</mi> </msub> <mo>=</mo> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>X</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>&Gamma;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>W</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>Z</mi> <mi>k</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mi>k</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>H</mi> <mi>k</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>L</mi> <mi>k</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <msub> <mi>X</mi> <mi>k</mi> </msub> <mo>+</mo> <msub> <mi>V</mi> <mi>k</mi> </msub> </mtd> </mtr> </mtable> </mfenced></math>
Xkis tkA state vector of a system to be estimated at a moment;
Φk,k-1is tk-1Time to tkA one-step transition matrix of time;
Γk-1as system noiseA drive array;
Zkis a measurement state vector;
Hkis a measuring array;
Wk-1exciting a noise sequence for the system;
Vkto measure the noise sequence;
Xk,k-1predicting the system state in one step;
Pkan estimation error variance matrix is obtained;
Kkis a filter gain matrix;
ykis a given system state XkLinear combination observations of (2).
Wherein, WkAnd VkIs I2Energy-bounded noise, i.e.No assumptions are made about its statistical properties. Let the initial state of the system be X0Represents the initial state X of the system0Defining an initial estimation error variance matrix as:
order toExpressed at a given observation value ZkFor y under the conditionkDefining the filtering error as follows e k = y ^ k - L k X k .
Let Tk(Ff) Indicating unknown interferenceMapping to Filter error ekThe transfer function of. Sub-optimal H ∞ estimation problem description: given a positive number gamma>0, finding a suboptimal H-infinity estimate y ^ k = F f ( Z 0 , Z 1 , . . . , Z k ) , So that | | Tk(Ff)||<Gamma, i.e. satisfy
<math><mrow> <munder> <mi>inf</mi> <msub> <mi>F</mi> <mi>f</mi> </msub> </munder> <munder> <mi>sup</mi> <mrow> <msub> <mi>X</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>W</mi> <mo>,</mo> <mi>V</mi> <mo>&Element;</mo> <msub> <mi>h</mi> <mn>2</mn> </msub> </mrow> </munder> <mfrac> <msubsup> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>e</mi> <mi>k</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> <mn>2</mn> <mn>2</mn> </msubsup> <mrow> <msubsup> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>X</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mn>0</mn> </msub> <mo>|</mo> <mo>|</mo> </mrow> <msubsup> <mi>P</mi> <mn>0</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>W</mi> <mi>k</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> <mn>2</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>V</mi> <mi>k</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> <mn>2</mn> <mn>2</mn> </msubsup> </mrow> </mfrac> <mo><</mo> <msup> <mi>&gamma;</mi> <mn>2</mn> </msup> </mrow></math>
For a given gamma>0, if [ phi ]k,k-1,Γk,k-1]Is full rank, the condition | | | T is satisfiedk(Ff)||Gamma filters exist, if and only if for all k, there is
<math><mrow> <msubsup> <mi>P</mi> <mi>k</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>H</mi> <mi>k</mi> <mi>T</mi> </msubsup> <msub> <mi>H</mi> <mi>k</mi> </msub> <mo>-</mo> <msup> <mi>&gamma;</mi> <mrow> <mo>-</mo> <mn>2</mn> </mrow> </msup> <msubsup> <mi>L</mi> <mi>k</mi> <mi>T</mi> </msubsup> <msub> <mi>L</mi> <mi>k</mi> </msub> <mo>></mo> <mn>0</mn> </mrow></math>
Wherein, PkSatisfy the following recursive Riccati equation
<math><mrow> <msub> <mi>P</mi> <mi>k</mi> </msub> <mo>=</mo> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>.</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> <mo>+</mo> <msub> <mi>&Gamma;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>&Gamma;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> <mo>-</mo> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msubsup> <mi>H</mi> <mi>k</mi> <mi>T</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>L</mi> <mi>k</mi> <mi>T</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> <msubsup> <mi>R</mi> <mrow> <mi>e</mi> <mo>,</mo> <mi>k</mi> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>H</mi> <mi>k</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>L</mi> <mi>k</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> </mrow></math>
<math><mrow> <msub> <mi>R</mi> <mrow> <mi>e</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>I</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <msup> <mi>&gamma;</mi> <mn>2</mn> </msup> <mi>I</mi> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>H</mi> <mi>k</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>L</mi> <mi>k</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <msub> <mi>P</mi> <mi>k</mi> </msub> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msubsup> <mi>H</mi> <mi>k</mi> <mi>T</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>L</mi> <mi>k</mi> <mi>T</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> </mrow></math>
If the above inequality holds, the H ∞ filtering recursion algorithm can be obtained as follows:
y ^ k = L k X ^ k
<math><mrow> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>K</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mi>k</mi> </msub> <mo>-</mo> <msub> <mi>H</mi> <mi>k</mi> </msub> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </mrow></math>
K k = P k H k T ( H k P k H k T + I ) - 1
suboptimal H-infinity filtering algorithm at PkGiven a positive number gamma, through Re,kFurther adjust PkThe robustness of the filtering algorithm is better. As long as the initial value is givenAnd P0According to the measurement of time kkThe state estimate up to time k can be deduced X ^ k ( k = 1,2,3 , . . . ) .
Improved algorithm
The filter state estimate has the following general structure:
in the formula <math><mrow> <mfenced open='' close=''> <mtable> <mtr> <mtd> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&gamma;</mi> <mi>k</mi> </msub> <mo>=</mo> <msub> <mi>Z</mi> <mi>k</mi> </msub> <mo>-</mo> <msub> <mi>H</mi> <mi>k</mi> </msub> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow></math> γkA residual vector representing time k;
on-line selection of an appropriate time-varying gain matrix KkThe following conditions, namely, the orthogonality principle, are satisfied simultaneously:
E [ ( X k - X ^ k ) ( X k - X ^ k ) T ] = min
<math><mrow> <mi>E</mi> <mo>[</mo> <msub> <mi>&gamma;</mi> <mrow> <mi>k</mi> <mo>+</mo> <mi>j</mi> </mrow> </msub> <msubsup> <mi>&gamma;</mi> <mi>k</mi> <mi>T</mi> </msubsup> <mo>]</mo> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mi>k</mi> <mo>=</mo> <mn>0,1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>j</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mrow></math>
when the state estimation value of the filter deviates from the system state due to the influence of factors such as model uncertainty, the state estimation value will inevitably show on the mean value and amplitude of the output residual sequence, and at this time, if the gain array K is adjusted on linekSo that the residual sequences remain mutually orthogonal, the filter can be forced to keep track of the actual system state.
Introducing a suboptimal fading factor into an H-infinity filtering algorithm to implement fading on past data so as to weaken the influence of old data on the current filtering estimation value, and adjusting an estimation error variance matrix P in real timekAnd a corresponding gain matrix KkThe output residual error is forced to be approximate to Gaussian white noise, all effective information in the output residual error can be extracted to the maximum extent, and the filtering algorithm with strong tracking performance is obtained.
Will PkWritten as follows:
<math><mrow> <msub> <mi>P</mi> <mi>k</mi> </msub> <mo>=</mo> <msub> <mi>&Gamma;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>&Gamma;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> <mo>+</mo> <mi>&Lambda;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>{</mo> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> <mo>-</mo> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msubsup> <mi>H</mi> <mi>k</mi> <mi>T</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>L</mi> <mi>k</mi> <mi>T</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> <msubsup> <mi>R</mi> <mrow> <mi>e</mi> <mo>,</mo> <mi>k</mi> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>H</mi> <mi>k</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>L</mi> <mi>k</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> <mo>}</mo> </mrow></math>
wherein: Λ (k) = diag [ λ1(k),λ2(k),…λn(k)],λi(k)≥1;i=1,2, …, n. In the sub-optimization method, λ is roughly determined based on a priori knowledge of the system1(k):λ2(k):…:λn(k) The initial values of (a) are: lambda [ alpha ]1(k):λ2(k):…:λn(k)=α1:α2:…:αnIn the formula, αiIs not less than 1(i =1, 2, …, n), then λ is obtainedi(k) The approximation algorithm of (d) is as follows:
<math><mrow> <msub> <mi>&lambda;</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>&alpha;</mi> <mi>i</mi> </msub> <msub> <mi>&lambda;</mi> <mrow> <mn>0</mn> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>,</mo> </mtd> <mtd> <msub> <mi>&alpha;</mi> <mi>i</mi> </msub> <msub> <mi>&lambda;</mi> <mrow> <mn>0</mn> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>&GreaterEqual;</mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> <mo>,</mo> </mtd> <mtd> <msub> <mi>&alpha;</mi> <mi>i</mi> </msub> <msub> <mi>&lambda;</mi> <mrow> <mn>0</mn> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>&le;</mo> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> </mrow></math>
wherein,
<math><mrow> <msub> <mi>&lambda;</mi> <mrow> <mn>0</mn> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mi>tr</mi> <mo>[</mo> <mi>N</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>&alpha;</mi> <mi>i</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>M</mi> <mi>ii</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow></math>
<math><mrow> <mi>N</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>V</mi> <mrow> <mn>0</mn> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>H</mi> <mi>k</mi> </msub> <msub> <mi>&Gamma;</mi> <mi>k</mi> </msub> <msubsup> <mi>&Gamma;</mi> <mi>k</mi> <mi>T</mi> </msubsup> <msubsup> <mi>H</mi> <mi>k</mi> <mi>T</mi> </msubsup> <mo>-</mo> <mi>&beta;</mi> <msub> <mi>I</mi> <mi>k</mi> </msub> </mrow></math>
<math><mrow> <mrow> <mi>M</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>{</mo> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> <mo>-</mo> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msubsup> <mi>H</mi> <mi>k</mi> <mi>T</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>L</mi> <mi>k</mi> <mi>T</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> <msubsup> <mi>R</mi> <mrow> <mi>e</mi> <mo>,</mo> <mi>k</mi> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>H</mi> <mi>k</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>L</mi> <mi>k</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> <mo>}</mo> </mrow> <msubsup> <mi>H</mi> <mi>k</mi> <mi>T</mi> </msubsup> <msub> <mi>H</mi> <mi>k</mi> </msub> </mrow></math>
tr (A) represents a trace-finding operation for an arbitrary matrix A, wherein V is0,kIs calculated by the following formula:
<math><mrow> <msub> <mi>V</mi> <mrow> <mn>0</mn> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>&gamma;</mi> <mn>1</mn> </msub> <msubsup> <mi>&gamma;</mi> <mn>1</mn> <mi>T</mi> </msubsup> <mo>,</mo> </mtd> <mtd> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <msub> <mi>&rho;V</mi> <mrow> <mn>0</mn> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>&gamma;</mi> <mi>k</mi> </msub> <msubsup> <mi>&gamma;</mi> <mi>k</mi> <mi>T</mi> </msubsup> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>&rho;</mi> </mrow> </mfrac> <mo>,</mo> </mtd> <mtd> <mi>k</mi> <mo>&GreaterEqual;</mo> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> </mrow></math>
in the above equation, residual errorRho is more than or equal to 0.95 and less than or equal to 1, which is taken as a forgetting factor, and rho is generally 0.95; beta.gtoreq.1 is a weakening factor, and the purpose of introducing the weakening factor is to make the state estimation value smoother.
The method is based on an H-infinity filtering algorithm, and the orthogonality principle is satisfied by adjusting an estimation error variance matrix and a corresponding gain matrix in real time, so that a filter is forced to keep high-precision tracking of the actual system state, and a filtering algorithm with high tracking performance is obtained. The filtering algorithm has stronger robustness about model uncertainty and the tracking capability of the system maneuvering process, keeps the advantage of simplicity of an H-infinity filtering model, and realizes the high-precision tracking of the filter on the system state of the carrier maneuvering process.
The filtering algorithm is applied to the AUV integrated navigation system, and data fusion is carried out on the navigation information of the inertial strapdown navigation system and the three-dimensional speed information of the Doppler log, so that a navigation positioning result with high precision, strong real-time performance and good continuity is obtained, and the navigation positioning performance of the integrated system is effectively improved.
Compared with the prior art, the invention has the beneficial effects that: the method can integrate information of a plurality of sub navigation sensors, and has complementary advantages to obtain navigation information with higher precision and more reliability.
Drawings
FIG. 1 is a main block diagram of a strapdown inertial guidance and Doppler log-based navigation system in the strapdown inertial guidance and Doppler log-based navigation method of the present invention;
FIG. 2 is a block diagram of a combined model of the navigation method based on strapdown inertial guidance and a Doppler log according to the present invention;
FIG. 3 is a structural schematic diagram of a navigation method based on strapdown inertial guidance and a Doppler log according to the present invention;
FIG. 4 is a flow chart of a filtering fusion calculation algorithm in the navigation method based on strapdown inertial guidance and a Doppler log according to the present invention;
FIG. 5 is a general flow chart of the strapdown inertial navigation and Doppler system in the strapdown inertial guidance and Doppler log based navigation method of the present invention;
fig. 6 is a simulation analysis effect diagram of the navigation method based on strapdown inertial guidance and doppler log in embodiment 1 of the present invention.
Detailed Description
The technical solution of the present invention is described in detail below, but the scope of the present invention is not limited to the embodiments.
Example (b):
in this embodiment, the navigation method is applied to a navigation system based on a strapdown inertial guidance and doppler log, and the navigation system includes a doppler log, a strapdown inertial measurement unit processing module, and a central processing unit; the Doppler log comprises a transceiver, four transducers and an interface unit; the Doppler log is connected with the central processing unit through the interface unit; the strapdown inertial measurement unit comprises a three-axis gyroscope and a three-axis accelerometer; the strapdown inertial measurement unit is connected with the processing module of the strapdown inertial measurement unit; the strapdown inertial measurement unit processing module is connected with the central processing unit; the navigation method comprises the following steps:
(1) measuring triaxial angular velocity information through a triaxial gyroscope in the strapdown inertial measurement unit assembly and triaxial acceleration information through an accelerometer, receiving navigation information output by the strapdown inertial measurement unit through a processing module of the strapdown inertial measurement unit, and obtaining navigation information such as carrier position, velocity and attitude through navigation integral calculation;
(2) transmitting an electric oscillation signal to the transducer through a transceiver of the Doppler log;
(3) transmitting ultrasonic waves and receiving reflected echoes with frequency shift characteristics through four transducers of a Doppler log;
(4) the receiving system in the transceiver is used for amplifying the echo signal sent by the transducer, obtaining Doppler frequency shift, converting the echo signal into an analog signal of navigational speed and sending the analog signal to the interface unit. If the carrier navigation speed is V, the beam launching depression angle is theta, and the sound velocity C is approximately equal to 1500 m/s, the single-beam frequency shift calculation formula is as follows: Δ f 2Vf0cos θ/C, the velocity calculation from which is derived is: v ═ Δ fC/(2 f)0cosθ);
(5) Converting the four navigational speed analog signals sent by the transceiver into navigational speed by using an interface unit in the transceiver, and outputting the navigational speed analog signals to the central processing unit in a digital mode;
(6) an arithmetic unit in the central processing unit periodically calculates the real-time three-dimensional carrier system speed of the carrier according to the speed information output by the interface unit of the Doppler log;
(7) a filtering module in the central processing unit carries out filtering fusion calculation on the received strapdown inertial navigation information and the three-dimensional speed information of the Doppler log to obtain the correction value of the inertial strapdown measurement system at the moment kAfter correction, the final high-precision navigation positioning information is obtained;
the method for obtaining the correction value of the inertia strapdown measurement system through filtering fusion calculation comprises the following steps:
taking strapdown inertial navigation as a reference system, and taking a speed error by a state variable XAttitude angle error (phi)e,φn,φu) Accelerometer random constant biasAnd gyro random constant drift (epsilon)x,εy,εz) And 10 dimensions in total: <math><mrow> <mi>X</mi> <mo>=</mo> <msup> <mrow> <mo>[</mo> <msubsup> <mi>&delta;V</mi> <mi>e</mi> <mi>n</mi> </msubsup> <mo>,</mo> <msubsup> <mi>&delta;V</mi> <mi>n</mi> <mi>n</mi> </msubsup> <mo>,</mo> <msub> <mi>&phi;</mi> <mi>e</mi> </msub> <mo>,</mo> <msub> <mi>&phi;</mi> <mi>n</mi> </msub> <mo>,</mo> <msub> <mi>&phi;</mi> <mi>u</mi> </msub> <mo>,</mo> <msub> <mo>&dtri;</mo> <mi>x</mi> </msub> <mo>,</mo> <msub> <mo>&dtri;</mo> <mi>y</mi> </msub> <mo>,</mo> <msub> <mi>&epsiv;</mi> <mi>x</mi> </msub> <mo>,</mo> <msub> <mi>&epsiv;</mi> <mi>y</mi> </msub> <mo>,</mo> <msub> <mi>&epsiv;</mi> <mi>z</mi> </msub> <mo>]</mo> </mrow> <mi>T</mi> </msup> <mo>;</mo> </mrow></math> W=[wax,way,wgx,wgy,wgz,0,0,0,0,0]Tis a system noise vector;
the difference between the velocity solved by the strapdown inertial navigation and the velocity of the carrier system measured by the Doppler log after being converted into the navigation system is used as the measurement value of the system, and then the measurement equation is expressed as follows:
Z = V SINSe n - C b n V DVLe V SINSn n - C b n V DVLn = HX + V
wherein the observation vector isMeasurement noise vector V = [ w = [)vx,wvy]TThe system measurement matrix is H, and a discrete system filter equation can be obtained by discretizing a system state equation and a measurement equation; using initial valuesAnd P0According to the measurement of time kkThe state estimation to the k time can be deduced X ^ k ( k = 1,2,3 , . . . ) :
<math><mrow> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>K</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mi>k</mi> </msub> <mo>-</mo> <msub> <mi>H</mi> <mi>k</mi> </msub> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </mrow></math>
K k = P k H k T ( H k P k H k T + I ) - 1
Wherein <math><mrow> <msub> <mi>P</mi> <mi>k</mi> </msub> <mo>=</mo> <msub> <mi>&Gamma;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>&Gamma;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> <mo>+</mo> <mi>&Lambda;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>{</mo> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> <mo>-</mo> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msubsup> <mi>H</mi> <mi>k</mi> <mi>T</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>L</mi> <mi>k</mi> <mi>T</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> <msubsup> <mi>R</mi> <mrow> <mi>e</mi> <mo>,</mo> <mi>k</mi> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>H</mi> <mi>k</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>L</mi> <mi>k</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> <mo>}</mo> </mrow></math>
Wherein: Λ (k) = diag [ λ1(k),λ2(k),…λn(k)],λi(k) Not less than 1; i =1, 2, …, n. In the sub-optimization method, λ is roughly determined based on a priori knowledge of the system1(k):λ2(k):…:λn(k)The initial values of (a) are: lambda [ alpha ]1(k):λ2(k):…:λn(k)=α1:α2:…:αnIn the formula, αiIs not less than 1(i =1, 2, …, n), then λ is obtainedi(k) The approximation algorithm of (d) is as follows:
<math><mrow> <msub> <mi>&lambda;</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>&alpha;</mi> <mi>i</mi> </msub> <msub> <mi>&lambda;</mi> <mrow> <mn>0</mn> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>,</mo> </mtd> <mtd> <msub> <mi>&alpha;</mi> <mi>i</mi> </msub> <msub> <mi>&lambda;</mi> <mrow> <mn>0</mn> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>&GreaterEqual;</mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> <mo>,</mo> </mtd> <mtd> <msub> <mi>&alpha;</mi> <mi>i</mi> </msub> <msub> <mi>&lambda;</mi> <mrow> <mn>0</mn> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>&le;</mo> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> </mrow></math>
wherein,
<math><mrow> <msub> <mi>&lambda;</mi> <mrow> <mn>0</mn> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mi>tr</mi> <mo>[</mo> <mi>N</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>&alpha;</mi> <mi>i</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>M</mi> <mi>ii</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow></math>
<math><mrow> <mi>N</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>V</mi> <mrow> <mn>0</mn> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>H</mi> <mi>k</mi> </msub> <msub> <mi>&Gamma;</mi> <mi>k</mi> </msub> <msubsup> <mi>&Gamma;</mi> <mi>k</mi> <mi>T</mi> </msubsup> <msubsup> <mi>H</mi> <mi>k</mi> <mi>T</mi> </msubsup> <mo>-</mo> <mi>&beta;</mi> <msub> <mi>I</mi> <mi>k</mi> </msub> </mrow></math>
<math><mrow> <mrow> <mi>M</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>{</mo> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> <mo>-</mo> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msubsup> <mi>H</mi> <mi>k</mi> <mi>T</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>L</mi> <mi>k</mi> <mi>T</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> <msubsup> <mi>R</mi> <mrow> <mi>e</mi> <mo>,</mo> <mi>k</mi> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>H</mi> <mi>k</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>L</mi> <mi>k</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> <mo>}</mo> </mrow> <msubsup> <mi>H</mi> <mi>k</mi> <mi>T</mi> </msubsup> <msub> <mi>H</mi> <mi>k</mi> </msub> </mrow></math>
tr (A) represents the trace-finding operation for matrix A, where V is0,kIs calculated by the following formula:
<math><mrow> <msub> <mi>V</mi> <mrow> <mn>0</mn> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>&gamma;</mi> <mn>1</mn> </msub> <msubsup> <mi>&gamma;</mi> <mn>1</mn> <mi>T</mi> </msubsup> <mo>,</mo> </mtd> <mtd> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <msub> <mi>&rho;V</mi> <mrow> <mn>0</mn> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>&gamma;</mi> <mi>k</mi> </msub> <msubsup> <mi>&gamma;</mi> <mi>k</mi> <mi>T</mi> </msubsup> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>&rho;</mi> </mrow> </mfrac> <mo>,</mo> </mtd> <mtd> <mi>k</mi> <mo>&GreaterEqual;</mo> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> </mrow></math>
in the above equation, residual errorRho is more than or equal to 0.95 and less than or equal to 1, which is taken as a forgetting factor, and rho is generally 0.95; β ≧ 1 is a selected attenuation factor, typically β = 1.
In the strapdown inertial measurement unit of the embodiment, the triaxial gyroscope is orthogonally installed in triaxial, and the triaxial accelerometer is orthogonally installed in triaxial.
The three-axis gyroscope of the strapdown inertial measurement unit of the embodiment is an optical fiber gyroscope.
The three-axis accelerometer of this embodiment is a silicon micro-accelerometer.
The transceiver of the doppler log of the present embodiment includes a transmitting system, a receiving system, and a calculation compensation circuit.
The navigation system of the embodiment further comprises a display, wherein the display is connected with the arithmetic unit and displays the navigation information obtained by the operation of the central processing unit.
The conventional navigation method (comparative example) based on the H infinity filtering algorithm and the navigation method (embodiment) based on the inertial strapdown navigation and the Doppler log of the embodiment are subjected to simulation analysis on the filtering performance in the AUV integrated navigation system, and the AUV track curve tracking and comparing effect is shown in fig. 6.
As noted above, while the present invention has been shown and described with reference to certain preferred embodiments, it is not to be construed as limited thereto. Various changes in form and detail may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.

Claims (6)

1. A navigation method based on strapdown inertial guidance and a Doppler log is characterized in that the navigation method is applied to a navigation system based on the strapdown inertial guidance and the Doppler log, and the navigation system comprises the Doppler log, a strapdown inertial measurement unit processing module and a central processing unit; the Doppler log comprises a transceiver, four transducers and an interface unit; the Doppler log is connected with the central processing unit through the interface unit; the strapdown inertial measurement unit comprises a three-axis gyroscope and a three-axis accelerometer; the strapdown inertial measurement unit is connected with the processing module of the strapdown inertial measurement unit; the strapdown inertial measurement unit processing module is connected with the central processing unit; the navigation method comprises the following steps:
(1) measuring triaxial angular velocity information through a triaxial gyroscope and triaxial acceleration information through an accelerometer in the strapdown inertial measurement unit assembly, receiving navigation information output by the strapdown inertial measurement unit through a processing module of the strapdown inertial measurement unit, and obtaining navigation information such as carrier position, velocity and attitude through navigation integral calculation;
(2) transmitting an electric oscillation signal to the transducer through a transceiver of the Doppler log;
(3) transmitting ultrasonic waves and receiving reflected echoes with frequency shift characteristics through four transducers of a Doppler log;
(4) the receiving system in the transceiver is used for amplifying the echo signal sent by the transducer, obtaining Doppler frequency shift, converting the echo signal into an analog signal of navigational speed and sending the analog signal to the interface unit. If the carrier navigation speed is V, the beam launching depression angle is theta, and the sound velocity C is approximately equal to 1500 m/s, the single-beam frequency shift calculation formula is as follows: Δ f 2Vf0cos θ/C, the velocity calculation from which is derived is: v ═ Δ fC/(2 f)0cosθ);
(5) Converting the four navigational speed analog signals sent by the transceiver into navigational speed by using an interface unit in the transceiver, and outputting the navigational speed analog signals to the central processing unit in a digital mode;
(6) an arithmetic unit in the central processing unit periodically calculates the real-time three-dimensional carrier system speed of the carrier according to the speed information output by the interface unit of the Doppler log;
(7) a filtering module in the central processing unit carries out filtering and platform-fusing calculation on the received strapdown inertial navigation information and the three-dimensional speed information of the Doppler log to obtain the correction value of the inertial strapdown measurement system at the moment kAfter correction, the final high-precision navigation positioning information is obtained;
the method for obtaining the correction value of the inertia strapdown measurement system through filtering fusion calculation comprises the following steps:
taking strapdown inertial navigation as a reference system, and taking a speed error by a state variable XAttitude angle error (phi)e,φn,φu) Accelerometer random constant biasAnd gyro random constant drift (epsilon)x,εy,εz) And 10 dimensions in total: <math> <mrow> <mi>X</mi> <mo>=</mo> <msup> <mrow> <mo>[</mo> <msubsup> <mi>&delta;V</mi> <mi>e</mi> <mi>n</mi> </msubsup> <mo>,</mo> <msubsup> <mi>&delta;V</mi> <mi>n</mi> <mi>n</mi> </msubsup> <mo>,</mo> <msub> <mi>&phi;</mi> <mi>e</mi> </msub> <mo>,</mo> <msub> <mi>&phi;</mi> <mi>n</mi> </msub> <mo>,</mo> <msub> <mi>&phi;</mi> <mi>u</mi> </msub> <mo>,</mo> <msub> <mo>&dtri;</mo> <mi>x</mi> </msub> <mo>,</mo> <msub> <mo>&dtri;</mo> <mi>y</mi> </msub> <mo>,</mo> <msub> <mi>&epsiv;</mi> <mi>x</mi> </msub> <mo>,</mo> <msub> <mi>&epsiv;</mi> <mi>y</mi> </msub> <mo>,</mo> <msub> <mi>&epsiv;</mi> <mi>z</mi> </msub> <mo>]</mo> </mrow> <mi>T</mi> </msup> <mo>;</mo> </mrow> </math>
W=[wax,way,wgx,wgy,wgz,0,0,0,0,0]Tis a system noise vector;
the difference between the velocity solved by the strapdown inertial navigation and the velocity of the carrier system measured by the Doppler log after being converted into the navigation system is used as the measurement value of the system, and then the measurement equation is expressed as follows:
Z = V SINSe n - C b n V DVLe V SINSn n - C b n V DVLn = HX + V
wherein the observation vector isMeasurement noise vector V = [ w = [)vx,wvy]TThe system measurement matrix is H, and a discrete system filter equation can be obtained by discretizing a system state equation and a measurement equation; using initial valuesAnd P0According to the measurement of time kkThe state estimate up to time k can be deduced X ^ k ( k = 1,2,3 , . . . ) :
<math> <mrow> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>K</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mi>k</mi> </msub> <mo>-</mo> <msub> <mi>H</mi> <mi>k</mi> </msub> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </math>
K k = P k H k T ( H k P k H k T + I ) - 1
Wherein <math> <mrow> <msub> <mi>P</mi> <mi>k</mi> </msub> <mo>=</mo> <msub> <mi>&Gamma;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>&Gamma;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> <mo>+</mo> <mi>&Lambda;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>{</mo> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> <mo>-</mo> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msubsup> <mi>H</mi> <mi>k</mi> <mi>T</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>L</mi> <mi>k</mi> <mi>T</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> <msubsup> <mi>R</mi> <mrow> <mi>e</mi> <mo>,</mo> <mi>k</mi> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>H</mi> <mi>k</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>L</mi> <mi>k</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> <mo>}</mo> </mrow> </math>
Wherein: Λ (k) = diag [ λ1(k),λ2(k),…λn(k)],λi(k) Not less than 1; 1, 2, …, n; in the sub-optimization method, λ is roughly determined based on a priori knowledge of the system1(k):λ2(k):…:λn(k) The initial values of (a) are: lambda [ alpha ]1(k):λ2(k):…:λn(k)=α1:α2:…:αnIn the formula, αi1(i ═ 1, 2, …, n), then λ is obtainedi(k) The approximation algorithm of (d) is as follows:
<math> <mrow> <msub> <mi>&lambda;</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>&alpha;</mi> <mi>i</mi> </msub> <msub> <mi>&lambda;</mi> <mrow> <mn>0</mn> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>,</mo> </mtd> <mtd> <msub> <mi>&alpha;</mi> <mi>i</mi> </msub> <msub> <mi>&lambda;</mi> <mrow> <mn>0</mn> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>&GreaterEqual;</mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> <mo>,</mo> </mtd> <mtd> <msub> <mi>&alpha;</mi> <mi>i</mi> </msub> <msub> <mi>&lambda;</mi> <mrow> <mn>0</mn> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>&le;</mo> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
wherein,
<math> <mrow> <msub> <mi>&lambda;</mi> <mrow> <mn>0</mn> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mi>tr</mi> <mo>[</mo> <mi>N</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>&alpha;</mi> <mi>i</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>M</mi> <mi>ii</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </math>
<math> <mrow> <mi>N</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>V</mi> <mrow> <mn>0</mn> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>H</mi> <mi>k</mi> </msub> <msub> <mi>&Gamma;</mi> <mi>k</mi> </msub> <msubsup> <mi>&Gamma;</mi> <mi>k</mi> <mi>T</mi> </msubsup> <msubsup> <mi>H</mi> <mi>k</mi> <mi>T</mi> </msubsup> <mo>-</mo> <mi>&beta;</mi> <msub> <mi>I</mi> <mi>k</mi> </msub> </mrow> </math>
<math> <mrow> <mrow> <mi>M</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>{</mo> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> <mo>-</mo> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msubsup> <mi>H</mi> <mi>k</mi> <mi>T</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>L</mi> <mi>k</mi> <mi>T</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> <msubsup> <mi>R</mi> <mrow> <mi>e</mi> <mo>,</mo> <mi>k</mi> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>H</mi> <mi>k</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>L</mi> <mi>k</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> <mo>}</mo> </mrow> <msubsup> <mi>H</mi> <mi>k</mi> <mi>T</mi> </msubsup> <msub> <mi>H</mi> <mi>k</mi> </msub> </mrow> </math>
tr (A) represents a trace-finding operation for an arbitrary matrix A, in the formulaV0,kIs calculated by the following formula:
<math> <mrow> <msub> <mi>V</mi> <mrow> <mn>0</mn> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>&gamma;</mi> <mn>1</mn> </msub> <msubsup> <mi>&gamma;</mi> <mn>1</mn> <mi>T</mi> </msubsup> <mo>,</mo> </mtd> <mtd> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <msub> <mi>&rho;V</mi> <mrow> <mn>0</mn> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>&gamma;</mi> <mi>k</mi> </msub> <msubsup> <mi>&gamma;</mi> <mi>k</mi> <mi>T</mi> </msubsup> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>&rho;</mi> </mrow> </mfrac> <mo>,</mo> </mtd> <mtd> <mi>k</mi> <mo>&GreaterEqual;</mo> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
in the above equation, residual errorRho is more than or equal to 0.95 and less than or equal to 1 and is a forgetting factorGenerally, ρ is 0.95; beta.gtoreq.1 is a weakening factor, and generally beta =1 is taken.
2. The strapdown inertial guidance and doppler log-based navigation method of claim 1, wherein the three-axis gyroscope of the strapdown inertial measurement unit is orthogonally mounted in three axes, and the three-axis accelerometer is orthogonally mounted in three axes.
3. The strapdown inertial guidance and doppler velocity log based navigation method of claim 1, wherein the three-axis gyroscope of the strapdown inertial measurement unit is a fiber optic gyroscope.
4. The strapdown inertial guidance and doppler log-based navigation method of claim 1, wherein the three-axis accelerometer is a silicon micro-accelerometer.
5. The strapdown inertial guidance and doppler log based navigation method of claim 1, wherein the transceiver of the doppler log comprises a transmitting system, a receiving system and a computational compensation circuit.
6. The strapdown inertial guidance and doppler log-based navigation method of claim 1, wherein the navigation system further comprises a display, the display is connected to the operator, and the display displays the navigation information obtained by the operation of the cpu.
CN201310653821.0A 2013-12-05 2013-12-05 A kind of air navigation aid based on strap-down inertial guidance and Doppler log Expired - Fee Related CN104061930B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310653821.0A CN104061930B (en) 2013-12-05 2013-12-05 A kind of air navigation aid based on strap-down inertial guidance and Doppler log

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310653821.0A CN104061930B (en) 2013-12-05 2013-12-05 A kind of air navigation aid based on strap-down inertial guidance and Doppler log

Publications (2)

Publication Number Publication Date
CN104061930A true CN104061930A (en) 2014-09-24
CN104061930B CN104061930B (en) 2017-06-16

Family

ID=51549758

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310653821.0A Expired - Fee Related CN104061930B (en) 2013-12-05 2013-12-05 A kind of air navigation aid based on strap-down inertial guidance and Doppler log

Country Status (1)

Country Link
CN (1) CN104061930B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104457754A (en) * 2014-12-19 2015-03-25 东南大学 SINS/LBL (strapdown inertial navigation systems/long base line) tight combination based AUV (autonomous underwater vehicle) underwater navigation positioning method
CN104748749A (en) * 2015-03-11 2015-07-01 中国矿业大学 Automatic inertial navigation deviation correction device and method of parallel type movable crushing system
CN105115492A (en) * 2015-08-14 2015-12-02 武汉大学 Underwater topography matching navigation system based on acoustics Doppler log
CN105676855A (en) * 2016-01-29 2016-06-15 中国船舶重工集团公司第七一〇研究所 Remote self-propelled mine near-surface navigation attitude calibration system and method
CN107014374A (en) * 2017-01-03 2017-08-04 东南大学 A kind of underwater glider Energy Saving Algorithm based on complementary filter
CN110411444A (en) * 2019-08-22 2019-11-05 深圳赛奥航空科技有限公司 A kind of subsurface digging mobile device inertia navigation positioning system and localization method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4875774A (en) * 1988-05-02 1989-10-24 Litton Systems, Inc. Apparatus and method for determining ring laser gyroscope phase at turnaround
US6037893A (en) * 1998-07-31 2000-03-14 Litton Systems, Inc. Enhanced motion compensation technique in synthetic aperture radar systems
CN101187567A (en) * 2007-12-18 2008-05-28 哈尔滨工程大学 Optical fiber gyroscope strap-down inertial navigation system initial posture determination method
CN101424534A (en) * 2008-12-09 2009-05-06 东南大学 Inertia/gravity combined navigation semi-physical object simulating device
CN101871782A (en) * 2010-05-19 2010-10-27 北京航空航天大学 Position error forecasting method for GPS (Global Position System)/MEMS-INS (Micro-Electricomechanical Systems-Inertial Navigation System) integrated navigation system based on SET2FNN
CN103245360A (en) * 2013-04-24 2013-08-14 北京工业大学 Autocollimation method of carrier aircraft rotating type strapdown inertial navigation system under shaking base
CN103389095A (en) * 2013-07-24 2013-11-13 哈尔滨工程大学 Self-adaptive filter method for strapdown inertial/Doppler combined navigation system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4875774A (en) * 1988-05-02 1989-10-24 Litton Systems, Inc. Apparatus and method for determining ring laser gyroscope phase at turnaround
US6037893A (en) * 1998-07-31 2000-03-14 Litton Systems, Inc. Enhanced motion compensation technique in synthetic aperture radar systems
CN101187567A (en) * 2007-12-18 2008-05-28 哈尔滨工程大学 Optical fiber gyroscope strap-down inertial navigation system initial posture determination method
CN101424534A (en) * 2008-12-09 2009-05-06 东南大学 Inertia/gravity combined navigation semi-physical object simulating device
CN101871782A (en) * 2010-05-19 2010-10-27 北京航空航天大学 Position error forecasting method for GPS (Global Position System)/MEMS-INS (Micro-Electricomechanical Systems-Inertial Navigation System) integrated navigation system based on SET2FNN
CN103245360A (en) * 2013-04-24 2013-08-14 北京工业大学 Autocollimation method of carrier aircraft rotating type strapdown inertial navigation system under shaking base
CN103389095A (en) * 2013-07-24 2013-11-13 哈尔滨工程大学 Self-adaptive filter method for strapdown inertial/Doppler combined navigation system

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
曹洁等: "《AUV中SINS/DVL组合导航技术研究》", 《中国航海》 *
段世梅等: "《基于SINS/DVL/GPS的AUV组合导航技术》", 《火力与指挥控制 》 *
王其等: "《自适应联邦H_∞滤波在水下组合导航系统中的应用》", 《系统仿真学报》 *
秦瑞等: "《多普勒测速仪/捷联惯导组合导航技术研究 》", 《 战术导弹技术》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104457754A (en) * 2014-12-19 2015-03-25 东南大学 SINS/LBL (strapdown inertial navigation systems/long base line) tight combination based AUV (autonomous underwater vehicle) underwater navigation positioning method
CN104457754B (en) * 2014-12-19 2017-04-26 东南大学 SINS/LBL (strapdown inertial navigation systems/long base line) tight combination based AUV (autonomous underwater vehicle) underwater navigation positioning method
CN104748749A (en) * 2015-03-11 2015-07-01 中国矿业大学 Automatic inertial navigation deviation correction device and method of parallel type movable crushing system
CN104748749B (en) * 2015-03-11 2017-05-03 中国矿业大学 Automatic inertial navigation deviation correction device and method of parallel type movable crushing system
CN105115492A (en) * 2015-08-14 2015-12-02 武汉大学 Underwater topography matching navigation system based on acoustics Doppler log
CN105676855A (en) * 2016-01-29 2016-06-15 中国船舶重工集团公司第七一〇研究所 Remote self-propelled mine near-surface navigation attitude calibration system and method
CN105676855B (en) * 2016-01-29 2018-06-19 中国船舶重工集团公司第七一〇研究所 A kind of navigation pose calibrating system and method for long-range self-propelled mine approximately level
CN107014374A (en) * 2017-01-03 2017-08-04 东南大学 A kind of underwater glider Energy Saving Algorithm based on complementary filter
CN107014374B (en) * 2017-01-03 2020-04-21 东南大学 Underwater glider energy-saving algorithm based on complementary filtering
CN110411444A (en) * 2019-08-22 2019-11-05 深圳赛奥航空科技有限公司 A kind of subsurface digging mobile device inertia navigation positioning system and localization method
CN110411444B (en) * 2019-08-22 2024-01-09 深圳赛奥航空科技有限公司 Inertial navigation positioning system and positioning method for underground mining mobile equipment

Also Published As

Publication number Publication date
CN104061930B (en) 2017-06-16

Similar Documents

Publication Publication Date Title
CN103744098B (en) AUV integrated navigation systems based on SINS/DVL/GPS
CN109324330B (en) USBL/SINS tight combination navigation positioning method based on mixed derivative-free extended Kalman filtering
CN109443379B (en) SINS/DV L underwater anti-shaking alignment method of deep-sea submersible vehicle
CN104457754B (en) SINS/LBL (strapdown inertial navigation systems/long base line) tight combination based AUV (autonomous underwater vehicle) underwater navigation positioning method
Kinsey et al. A survey of underwater vehicle navigation: Recent advances and new challenges
CN106767793A (en) A kind of AUV underwater navigation localization methods based on SINS/USBL tight integrations
Grenon et al. Enhancement of the inertial navigation system for the Morpheus autonomous underwater vehicles
CN108594272B (en) Robust Kalman filtering-based anti-deception jamming integrated navigation method
CN104061930B (en) A kind of air navigation aid based on strap-down inertial guidance and Doppler log
CN106643709B (en) Combined navigation method and device for offshore carrier
CN103697910B (en) The correction method of autonomous underwater aircraft Doppler log installation error
CN109141436A (en) The improved Unscented kalman filtering algorithm application method in integrated navigation under water
CN104316045A (en) AUV (autonomous underwater vehicle) interactive auxiliary positioning system and AUV interactive auxiliary positioning method based on SINS (strapdown inertial navigation system)/LBL (long base line)
CN109737956A (en) A kind of SINS/USBL phase difference tight integration navigation locating method based on double response device
CN102252677A (en) Time series analysis-based variable proportion self-adaptive federal filtering method
CN111829512B (en) AUV navigation positioning method and system based on multi-sensor data fusion
CN106767752A (en) A kind of Combinated navigation method based on polarization information
CN110274591B (en) ADCP (advanced deep submersible vehicle) assisted SINS (strapdown inertial navigation system) navigation method of deep submersible manned submersible
CN109631884B (en) Passive underwater navigation method based on single buoy
CN105486313A (en) Positioning method based on low-cost USBL-assisted SINS
CN112197765B (en) Method for realizing fine navigation of underwater robot
CN105928515A (en) Navigation system for unmanned plane
CN104931994A (en) Software receiver-based distributed deep integrated navigation method and system
CN114459476B (en) Underwater unmanned submarine current measuring DVL/SINS integrated navigation method based on virtual speed measurement
CN112747748A (en) Pilot AUV navigation data post-processing method based on reverse solution

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170616

CF01 Termination of patent right due to non-payment of annual fee