CN104053638B - Cmc材料部件 - Google Patents
Cmc材料部件 Download PDFInfo
- Publication number
- CN104053638B CN104053638B CN201280061337.2A CN201280061337A CN104053638B CN 104053638 B CN104053638 B CN 104053638B CN 201280061337 A CN201280061337 A CN 201280061337A CN 104053638 B CN104053638 B CN 104053638B
- Authority
- CN
- China
- Prior art keywords
- layer
- ceramic
- matrix
- interface coating
- parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/563—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on boron carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62844—Coating fibres
- C04B35/62857—Coating fibres with non-oxide ceramics
- C04B35/6286—Carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62844—Coating fibres
- C04B35/62857—Coating fibres with non-oxide ceramics
- C04B35/6286—Carbides
- C04B35/62863—Silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62844—Coating fibres
- C04B35/62857—Coating fibres with non-oxide ceramics
- C04B35/62873—Carbon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62884—Coating the powders or the macroscopic reinforcing agents by gas phase techniques
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62894—Coating the powders or the macroscopic reinforcing agents with more than one coating layer
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62897—Coatings characterised by their thickness
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/71—Ceramic products containing macroscopic reinforcing agents
- C04B35/78—Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
- C04B35/80—Fibres, filaments, whiskers, platelets, or the like
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3817—Carbides
- C04B2235/3821—Boron carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3817—Carbides
- C04B2235/3826—Silicon carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/5216—Inorganic
- C04B2235/524—Non-oxidic, e.g. borides, carbides, silicides or nitrides
- C04B2235/5248—Carbon, e.g. graphite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/614—Gas infiltration of green bodies or pre-forms
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/781—Nanograined materials, i.e. having grain sizes below 100 nm
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/25—Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
- Y10T428/259—Silicic material
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Composite Materials (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Ceramic Products (AREA)
- Laminated Bodies (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
本发明涉及一种由陶瓷基体复合材料制成的部件,所述陶瓷基体复合材料包含纤维增强件和主要陶瓷序列的基体,所述纤维增强件由碳或陶瓷纤维制得,所述主要陶瓷序列的基体包含由裂纹转向材料制成的第一基体层,所述第一基体层与由陶瓷制成的第二基体层交替。界面涂层置于所述纤维和所述基体之间,所述界面涂层粘附于所述纤维并粘附于所述基体,并且由至少一个序列形成,所述序列由以下构成:由任选地掺杂硼的碳制成的第一基础层,其上覆盖了由陶瓷制成的第二基础层,所述界面涂层的外基础层为陶瓷层,所述陶瓷层的外表面由陶瓷颗粒形成,所述陶瓷颗粒的尺寸基本上在20nm至200nm范围,且50nm以上颗粒尺寸的存在赋予外表面的粗糙度确保与相邻基体层的机械连接。
Description
技术领域
本发明涉及由陶瓷基体复合(CMC)材料制成的部件。
背景技术
术语“CMC材料部件”在本文中用来指由包含纤维增强件的材料制成的部件,所述纤维增强件由碳或陶瓷纤维制成,其已被包含至少大部分的陶瓷的基体致密化。
CMC材料部件在各个应用中使用,特别是在航空和空间领域,它们被用于此是因为它们的热结构性质,即由于它们的机械强度而构成结构部件的能力(特别是远远大于固体陶瓷的弯曲度、牵引力,和抗冲击的能力),以及它们保持该机械强度直至大大超过1000℃的高温的能力。
在CMC材料中,基体的开裂在实践中是不可避免的,通常从制造开始。
已提出建议在纤维和基体之间设置界面涂层,该涂层能够在基体和纤维之间有效地传递负载并且由能够使到达界面涂层的裂纹转向的材料制成,从而阻止在基体中传播的裂纹到达强化纤维和引起它们开裂,因为这会迅速降低CMC材料的机械性能。文献US 4 752 503和US 5 026 604公开了由热解碳(PyC)或氮化硼(BN)制备界面,其具有层状或由薄片组成的结构。由多孔材料制造裂纹-转向界面也是已知的。
尽管如此,在处于氧化气氛和处于高温的应用条件下,传播直至界面的裂纹提供接近氧的路径,然后PyC或BN界面可以氧化,实际上可以氧化下面的纤维(如果它们由碳制成),因而降解CMC材料。
用于改进抗氧化的第一个已知的方法在于采用交替的纳米层裂纹-转向(déviatrice de fissures)材料(如PyC或BN)制备序列的界面(interphase séquencée),且纳米层材料具有氧化保护功能,特别是如碳化硅(SiC)或Si-B-C三元体系的材料能够在氧存在下形成玻璃状的化合物,该化合物能够在CMC材料所暴露的高温下通过转化成浆态使裂纹愈合。关于SiC基体复合材料可以参考文献US 5 738 951,其描述了由脉冲的化学气相渗透(P-CVI)形成这类序列的界面,其中界面的基础层具有10纳米(nm)以下的厚度。
使用P-CVI形成序列的(PyC-SiC)n类型的界面还描述于下列文献中:Sébastien BERTRAND等人:"Influence of strong fiber/coatinginterfaces on the mechanical behavior and lifetime ofHi-Nicalon/(PyC-SiC)n/SiC minicomposites",Journal of the AmericanCeramic Society,Blackwell Publishing,MALDEN,MA,US,第84卷,第4期,2011年4月1日(2001-04-01),第787-794页,以及Roger NASLAIN等人:"Processing of ceramic matrix composites by pulsed-CVI and relatedtechniques",Key Engineering Materials,Trans Tech Publications Ltd.,STAFA-ZURICH,CH,第159-160卷,1999年1月1日(1999-01-01),第359-365页。
在这两个文献中,描述的复合材料为具有单向增强的微型复合材料或微复合材料。
Takashi NOZAWA等人的文献:"Tensile,flexural,and shearproperties of neutron irradiated SiC/SiC composites with differentfiber-matrix interfaces",STP/ASTM International,ASTM International,WEST CONSHOHOCKEN,PA.,2001,US,第1475卷STP,2004年1月1日(2004-01-01),第392-404页,也提及了具有单向纤维增强件的微型复合材料和SiC基体,以及(SiC-PyC)n类型界面,由等温CVI方法制备的复合材料没有进一步的详细说明。
第二个已知方法在于在基体中引入一个或多个表面材料,该表面材料能够在基体上赋予自愈性从而阻止或减缓在基体内的裂纹的传播,其中这些相特别地由碳化硼B4C或Si-B-C三元体系制成。可以参考文献US 5 965 266,其描述了由与B4C相或Si-B-C相交替的SiC相制成的基体。
第三个已知的方法在于制备序列的基体,所述序列的基体包含与陶瓷材料层交替的裂纹-转向材料(例如PyC或BN)层,裂纹在基体内转向减缓周围氧化介质接近界面或接近纤维。可以参考文献US 6 068 930。
第四个已知的方法在于制备具有微弱各向异性的PyC或BN的界面,从而能够与由陶瓷,特别是SiC制成的基体或基体层强力结合,使得在界面层内和在纤维-界面和界面-基体结合的剪切中断裂强度大于在基体内遇到的断裂强度。
发明内容
本发明的目的是提供具有改进使用期的CMC材料部件,特别是当负载下高温暴露于氧化介质时。
该目的通过由陶瓷基体复合材料制成的部件而实现,所述陶瓷基体复合材料具有碳或陶瓷纤维的纤维增强件和主要-陶瓷序列的基体,所述主要-陶瓷序列的基体具有与由陶瓷材料制成的第二基体层交替的由裂纹-转向材料制成的第一基体层,在该部件中,界面涂层置于所述纤维和所述基体之间,所述界面涂层粘附于所述纤维并且粘附于所述基体,并且由至少一个序列形成,所述序列由以下构成:由可能掺杂硼的碳制成的第一基础界面层,其上覆盖了由陶瓷制成的第二基础界面层,所述界面涂层的外基础层为陶瓷层,所述陶瓷层具有由陶瓷颗粒形成的外表面,所述陶瓷颗粒的尺寸基本上在20nm至200nm范围,且50nm以上颗粒尺寸的存在赋予外表面的粗糙度确保与相邻基体层的机械连接。
在界面涂层上的序列的基体的连接增加了基体和纤维之间负载的传递,其对以下几点很重要:部件的机械强度和在氧化环境中部件的使用期。优选地,界面涂层和基体之间的结合显示在剪切中的断裂强度,其大于在基体内遇到的强度。有利地,开裂的破坏被转到序列的基体并且在界面以优选的方式不发生。由于基体的序列,该破坏为开裂模式I(裂纹在陶瓷基体层中横向地传播)和开裂模式II(裂纹沿着裂纹-转向材料的层传播)的结合的形式,因此延缓界面涂层经裂纹网暴露于周围介质的氧中。由此增加了部件的使用期。
有利地,位置最接近界面涂层的基体层为裂纹-转向材料的层。
在一个实施方案中,界面涂层由与陶瓷的第二基础层交替的掺杂硼的碳的第一基础层制成,且在每个第一基础层中,硼的原子百分比在5%至20%的范围。
界面涂层的第一基础层或每个第一基础层可具有的平均厚度在20nm至500nm的范围。
在一个实施方案中,界面涂层的第二基础层或每个第二基础层由碳化硅制成。
界面涂层的第二基础层或每个第二基础层可具有的平均厚度在20nm至500nm的范围。
界面涂层的总平均厚度可以在0.10微米(μm)至4μm范围,以平均值计。
一种制备如上定义的CMC材料部件的方法,包括:
-由碳或陶瓷纤维制备纤维预成型体以构成部件的纤维增强件;
-使用化学气相渗透在预成型体的纤维上形成界面涂层,所述界面涂层包含至少一个序列,其由以下构成:任选掺杂硼的热解碳的第一基础层,其上覆盖了陶瓷的第二基础界面层;以及
-借助于大部分陶瓷序列的基体使涂布界面涂层的纤维预成型体致密化。
在所述方法的一个实施方案中,涂层的第一基础界面层或每个第一基础界面可以由气体制备,其中碳前体为丙烷,当第一基础层由掺杂硼的碳制成时。
在所述方法的另一个实施方案中,涂层的第一基础界面层或每个第一基础界面可以由气体制备,其中碳前体为甲烷或天然气,当第一基础层由碳自身制成时。
有利地,界面涂层使纤维预成型体固结,即,界面涂层与预成型体的纤维结合在一起从而预成型体充分坚硬能够被操作同时维持其形状,而不需要支撑工具的辅助。
附图说明
本发明的其它特征和优点通过阅读以下描述(以非限制性实施例方式),并参照附图而显现,其中:
-图1至4为显示根据本发明的CMC材料制成的部件的界面涂层的显微镜视图。
-图5至9为显示用于对比目的的CMC材料制成的部件的界面涂层的显微镜视图。
-图10绘制了呈现由CMC材料制成的各个部件的牵引应力和应变之间的关系的曲线。
具体实施方式
根据本发明的CMC材料部件的制备的第一步在于制备纤维预成型体,所述纤维预成型体用于构成待制备的部件的纤维增强件,因此具有对应于所述部件的形状的形状。
预成型体由碳或陶瓷纤维制成,且所述纤维是基于碳化硅SiC,例如,当纤维为陶瓷纤维时。
制备纤维预成型体的各种方法是公知的。
例如通过单纤维缠绕或通过多层编织(三维编织),可能跟随成形步骤,可以从一维的纤维结构,例如纱线、丝束或粗纱制备预成型体。
还可能从二维纤维结构(例如二维纤维织物或纱线或丝束的片材)开始形成板层,所述板层覆盖在成型机上并有可能,例如通过针刺、通过缝合或通过移植纱线结合在一起。
还可能从三维纤维结构(例如毛毡)开始。
在所有情况下,可以通过装配各个预成型体部分,例如通过缝合制备复杂形状的预成型体。
同样地在所有情况下,可由纤维制备预成型体,所述纤维本身由聚合物(其是碳或陶瓷的前体)制成,且所述前体随后通过加热处理被转化成碳或陶瓷。
第二步骤在于在预成型体的纤维上形成界面涂层,通常同时借助于工具维持所述预成型体的形状。界面涂层为通过常规化学气相渗透(CVI)方法形成的多层涂层。CVI方法是公知的。它们包括:放置多孔预成型体于封闭罩内,反应气体允许进入所述封闭罩,在特定条件(特定温度和压力),所述气体扩散进入预成型体的孔内,并且与孔接触,借助于一个或多个气体分解的成分,或者借助于气体一起反应的多个成分形成所需材料的沉积物。
在已知方式中,在常规CVI方法中,气体连续不断地流过封闭罩,其维持在恒定或基本恒定的压力(等压或准-等压CVI方法)。
在本发明中,界面涂层由至少一个序列形成,所述序列由以下构成:可能掺杂硼的碳的第一基础层,且碳的第一基础层被陶瓷的第二基础层覆盖。
由碳单独形成的界面涂层的第一基础层有利地为通过CVI形成的热解碳(PyC)的层,其中包含在反应气体中的碳前体为甲烷或天然气。
当界面涂层的第一基础层由PyC单独形成时,所述界面涂层可以由单一序列形成,所述序列由覆盖了陶瓷的基础层的PyC的基础层构成。
由掺杂硼的碳(BC)形成的界面涂层的第一基础层有利地为通过CVI形成的层,其中包含在反应气体中的气态的碳前体为丙烷。例如,包含在气体中的气态的硼前体可以为三氯化硼BCl3。优选地以这样的方式选择反应气体中的碳前体和硼前体的各自性质从而获得在BC的层中硼的原子百分比在5%至20%的范围。
当界面涂层的第一基础层为BC的层时,所述界面涂层优选为多序列的,即由与多个陶瓷的第二基础层交替的多个BC的第一基础层制成。
在界面的第一基础层或每个第一基础层中,任选掺杂硼的碳有利地为PyC,其具有光滑或粗糙的层状类型的显微结构且12°以上的消光角,通过照明在偏振光下引起“马耳他十字(croix de Malte)”型图案的出现观察到显微结构的类型,且消光角为偏振旋转的角度,众所周知,其引起图案的消失。
举例来说,陶瓷的第二基础层或每个第二基础层为碳化硅SiC的层。有可能想到使用其他陶瓷材料,例如氮化硅或耐高温氧化物。
众所周知,通过CVI使用包含三氯甲硅烷(MTS)和氢气H2的混合物的气体可以形成SiC的层。
根据本发明,界面涂层由这样的方式形成:最后形成的基础层为陶瓷层且陶瓷层的外表面由陶瓷颗粒(陶瓷颗粒的尺寸基本上在20nm至200nm的范围)制成,且存在尺寸50nm以上的颗粒,因此给予该表面相对大的粗糙度从而提供与第一基体层的机械连接。本文使用的术语“颗粒的尺寸基本上在20nm至200nm的范围”是指80%以上的陶瓷颗粒的尺寸在该范围。而且,50nm以上尺寸的颗粒的存在应当优选为显著的,即应当代表至少20%的陶瓷层。
任选掺杂硼的碳的第一基础界面层或每个第一基础界面层的平均厚度优选在20nm至500nm的范围。
陶瓷的第二基础界面层或每个第二基础界面层的平均厚度优选在20nm至500nm的范围。
界面涂层的总平均厚度优选在0.10μm至4μm的范围,以平均值计。
以这样的方式可以选择总厚度从而保证纤维预成型体被在其上的界面涂层固结,即,其中界面涂层与预成型体的纤维充分强烈结合在一起以获得加强的预成型体,其可以被处置同时保持其形状,不需要支撑工具的辅助。
在形成界面涂层且为了促进涂层在纤维上的良好连接,可以使纤维预成型体经受如文献US 5 476 685描述的热处理,当其由碳纤维制成时,或者可以使其经受如文献US 5 071 679描述的化学处理,当其由陶瓷纤维(特别是由SiC或基本上由SiC制成的纤维)制成时。
然后借助于序列的主要-陶瓷基体使具有界面涂层的预成型体致密化,所述序列的主要-陶瓷基体包含与裂纹-转向材料的层交替的陶瓷层。裂纹-转向材料的层可以由可能掺杂硼的热解碳制成,或者它们可以由氮化硼BN制成。陶瓷层可以由SiC或Si-B-C三元体系或碳化硼B4C制成。对于陶瓷层,可能在耐高温材料例如SiC和自愈型材料例如Si-B-C或B4C之间交替变化。使用的术语“自愈性材料”是指适合通过氧化产生玻璃状态,因此在裂纹中通过填充提供愈合的材料。
通过CVI可以获得序列的基体。特别在上面提及的文献US 5 965 266和US 6 068 930中描述了制备序列的基体的方法。包含陶瓷材料的层的序列基体是特别有利的,因为通过结合开裂模式I(裂纹在陶瓷层中横向地扩展)和开裂模式II(裂纹沿平行于裂纹-转向材料的层扩展),它延缓界面的碳经裂纹网暴露于周围介质的氧中。
优选地,最先形成的基体层(最接近界面涂层)为裂纹-转向材料的层。界面涂层的最后形成的基础层的外表面的相对大的粗糙度提供了界面涂层和基体之间的机械连接,有利地避免了优先在该位置在应力作用下发生开裂,因为其将产生用于周围介质的氧通向界面涂层的碳的通路。另外,优选地,由裂纹-偏向材料制成的基体的第一层的在剪切中的断裂强度大于在基体内别处存在的在剪切中的断裂强度。
与在序列的基体中的开裂模式的混合物结合,这有助于通过保留界面的完整性改进CMC材料的使用期。另外,界面涂层和基体之间的机械连接有助于提供从基体向纤维的良好负载传递,其对于CMC材料的机械性能是必不可少的。
下面描述了本发明CMC材料部件的实施方案,以及对比实施例。
实施例1(C纤维,(BC丙烷/SiC)×4界面,PyC,B4C,SiC,Si-B-C类型基体)
纤维预成型体由碳纱的多层编织制成的纤维获得。采用互锁类型织物进行编织从而提高材料的分层强度以最终获得材料。预成型体通过以下方式获得:从所得多层纤维切断和保持在石墨成型机的两个多孔板之间,从而使纤维体积分数(即,纤维占有的预成型体的表观体积的百分比)通常在大约30%至50%的范围。
通过常规CVI在预成型体纤维上制备界面涂层,所述界面涂层由与SiC层交替的掺杂硼的热解碳层制成。由四个BC/SiC双层制成的涂层被写成(BC/SiC)×4。
每个BC基础层被沉积于包含丙烷C3H8和三氯化硼BCl3的混合物的反应气体中从而获得BC材料。
每个SiC基础层被沉积于包含MTS和H2的混合物的反应气体中。
通过CVI沉积BC和SiC层的方法特别地描述于上面提及的文献US 6 068 930中。
选择这些方法的参数,特别是形成每个基础层的时间长度,从而获得50nm和100nm的数量级平均厚度(分别针对BC层和SiC层),提供固结界面的平均厚度约0.6μm。尽管如此,应当注意到这些厚度随位置变化很大的,尤其相对于在石墨成型机的多孔板的孔的位置,接近孔有利于接近反应气体,并且因此导致更厚的层正在形成。
当界面涂层形成之后,通过涂层固结的预成型体从它们的支撑工具上被除去并且通过CVI使用基体进行致密化,其中大部分陶瓷由与碳化硼B4C层或碳化硅SiC层或混合的硼和碳化硅形成的Si-B-C三元体系层交替的热解碳PyC层构成,所述层因此形成以下序列(从最接近界面的基体层开始):
C/B4C/C/SiC/C/Si-B-C/C/SiC(其可以重复一次或多次)如上面指明文献US 5 965 266中所描述的,获得由丙烷和天然气的混合物形成的前体衍生的由热解碳制成的裂纹-转向材料的C相;耐火陶瓷的SiC相和自愈性陶瓷的Si-B-C和B4C相。
界面涂层的SiC的最后形成的层的外表面的粗糙度显示于图1、2和3中,其是在继续密实化之前固结阶段期间的界面涂层的显微镜视图,分别显示横截面、纵截面和表面视图。该粗糙度来自与具有相对大的平均尺寸的颗粒形成的SiC层,在该实施例平均尺寸在50nm以上,因此显著存在50nm以上尺寸的颗粒。
实施例2(C纤维,(BC丙烷/SiC)×4界面,BC,B4C,SiC,Si-B-C类型基体)
过程与实施例1相同,除了在序列基体中裂纹-转向层的热解碳PyC被替换为掺杂硼的碳BC,其性质类似于界面涂层的性质。
实施例3(C纤维,PyCCH4/SiC界面,PyC,B4C,SiC,Si-B-C类型基体)
过程与实施例1相同,除了界面涂层是由覆盖了SiC的基础层的PyC的基础层形成的PyC/SiC类型。通过常规CVI,采用气体(其中碳前体是天然气,即基本上是甲烷)获得PyC基础层。PyC和SiC层的目标平均厚度分别为大约100nm和大约1μm,足够固结预成型体。
图4显示SiC的基础层呈现相对大的表面粗糙度,其由存在的具有50nm以上尺寸的SiC的粗糙颗粒产生。
实施例4(对比例)(C纤维,BC/B4C/BC/SiC界面,PyC,B4C,SiC,Si-B-C类型基体)
过程与实施例2相同,除了界面涂层为BC/B4C/BC/SiC类型,BC的基础层和SiC的基础层是如实施例2中那样获得,且B4C的基础层是如基体中那样获得。
图5显示界面涂层的SiC层的外表面相对光滑。
实施例5(对比例)(C纤维,(BC天然气/SiC)×4界面,PyC,B4C,SiC,Si-B-C类型基体)
过程如实施例2那样,除了用天然气替换用于界面涂层的第一层的碳前体。
图6、7和8(分别是横截面、纵截面和表面视图)显示界面涂层的最后形成的层由相对小尺寸且彼此接触的SiC颗粒制成,没有产生任何显著的粗糙度。
当与图3和8比较时,具有相同尺度,用合适的图像分析可以容易看出在界面最后层中的SiC颗粒尺寸的不同,可能量化颗粒的尺寸。
实施例6(对比例)(C纤维,(PyCCH4+C3H8/SiC)×2界面,PyC,B4C,SiC,Si-B-C类型基体)
过程与实施例3相同,除了界面涂层为(PyC/SiC)×2类型,其由与两层SiC交替的两层PyC制成且PyC的基础层是通过常规CVI使用气体(其中PyC前体为丙烷和天然气的混合物,丙烷为主要前体)获得的。
选择界面的总厚度以与实施例3的总厚度相似,即足够固结预成型体。
图9显示PyC的外基础层呈现少许粗糙度,SiC的颗粒为相对小尺寸并且彼此接触。
试验
使根据实施例1、3和6获得的部件经受牵引试验。图10中曲线A、B和C分别显示实施例1、3和6部件所示牵引应力与相对延长之间的关系,直至破裂。曲线C的线性形状随其长度变长直至破裂,表示界面涂层和基体之间开裂,因此在基体和纤维之间传递更少负荷。
使根据实施例1、3和6获得的部件在600℃和1200℃在空气中也经受循环疲劳使用期试验,这些试验包括使部件经受牵引应力120兆帕(MPa)(表观应力)且应力以0.25赫兹(Hz)的频率变松弛。
下表给出了获得的结果。
在600℃根据实施例1和3获得的部件的使用期远长于根据实施例6获得的部件的使用期。在1200℃,根据实施例3获得的部件的使用期变短,这可以解释为:从天然气前体获得的PyC对氧化更加敏感。
于600℃在上述相同条件下使根据实施例2和4获得的部件经受循环疲劳使用期试验。
下表给出了获得的结果。
部件 | 在600℃的使用期 |
实施例2 | >74h |
实施例4 | 20h |
可以看出在600℃,实施例2的部件的表现好于实施例4的部件的表现,表明由BC制成的界面的第一基础层在此条件下优于存在的多个SiC层,无定形B4C层没有促进产生粗糙度。
于600℃在上述相同条件下使根据实施例2和5获得的部件经受循环疲劳使用期试验,除了使用的应力为90MPa或130MPa。
下表给出了获得的结果。
可以看出在根据实施例5部件获得的结果中存在相当大的散布,这些结果通常比根据实施例2部件获得的那些结果要差得多,不同之处在于针对基础界面层所选择的碳前体,在实施例5中碳前体由BC制成,也就是天然气(或甲烷),而在实施例2中碳前体由丙烷制成。
上面的实施例显示适合提供与基体有效机械连接的在界面涂层中的陶瓷制成的最后形成的基础层的表面粗糙度可以通过在如下条件下制备界面涂层而获得,所述条件促进在该最后层中的陶瓷颗粒生长而非萌发,然而促进萌发而非生长的条件产生相对小且挨在一起的颗粒,其中颗粒的接近快速阻断了生长。
Claims (7)
1.一种由陶瓷基体复合材料制成的部件,所述陶瓷基体复合材料具有碳或陶瓷纤维的纤维增强件和主要-陶瓷序列的基体,所述主要-陶瓷序列的基体具有与由陶瓷材料制成的第二基体层交替的由裂纹-转向材料制成的第一基体层,
在该部件中,界面涂层置于所述纤维和所述基体之间,所述界面涂层粘附于所述纤维并且粘附于所述基体,并且由至少一个序列形成,所述序列由以下构成:由碳制成的第一基础界面层,其上覆盖了由陶瓷制成的第二基础界面层,所述界面涂层的外基础层为陶瓷层,所述陶瓷层具有由陶瓷颗粒形成的外表面,所述陶瓷颗粒的尺寸在20nm至200nm范围,且50nm以上颗粒尺寸的存在赋予外表面的粗糙度确保与相邻基体层的机械连接。
2.根据权利要求1所述的部件,其中邻近所述界面涂层的基体层由PyC或BC裂纹-转向材料制成。
3.根据权利要求1所述的部件,其中所述界面涂层由与陶瓷的第二基础层交替的掺杂硼的碳的第一基础层制成,且在每个第一基础层中,硼的原子百分比在5%至20%的范围。
4.根据权利要求1所述的部件,其中所述界面涂层的所述第一基础层或每个第一基础层具有的平均厚度在20nm至500nm的范围。
5.根据权利要求1所述的部件,其中所述界面涂层的所述第二基础层或每个第二基础层由碳化硅制成。
6.根据权利要求1所述的部件,其中所述界面涂层的所述第二基础层或每个第二基础层具有的平均厚度在20nm至500nm的范围。
7.根据权利要求1所述的部件,其中所述界面涂层的总平均厚度在0.10μm至4μm的范围。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1161522 | 2011-12-13 | ||
FR1161522A FR2983851B1 (fr) | 2011-12-13 | 2011-12-13 | Piece en materiau cmc |
PCT/FR2012/052702 WO2013088015A1 (fr) | 2011-12-13 | 2012-11-22 | Pièce en matériau cmc |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104053638A CN104053638A (zh) | 2014-09-17 |
CN104053638B true CN104053638B (zh) | 2016-08-17 |
Family
ID=47436050
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201280061337.2A Active CN104053638B (zh) | 2011-12-13 | 2012-11-22 | Cmc材料部件 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9604886B2 (zh) |
EP (1) | EP2791080B1 (zh) |
JP (1) | JP6301261B2 (zh) |
KR (1) | KR20140132705A (zh) |
CN (1) | CN104053638B (zh) |
FR (1) | FR2983851B1 (zh) |
WO (1) | WO2013088015A1 (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3025810B1 (fr) * | 2014-09-12 | 2016-12-09 | Herakles | Procede de fabrication d'une structure fibreuse |
KR101743019B1 (ko) * | 2015-01-30 | 2017-06-05 | 한국과학기술연구원 | 고온 내산화성이 우수한 초경도 탄화붕소 박막, 그 박막을 이용하는 절삭 공구 및 그 박막의 제조방법 |
CN106968716B (zh) * | 2016-11-21 | 2017-12-19 | 北京航空航天大学 | 陶瓷基复合材料整体涡轮叶盘 |
CN108316977B (zh) * | 2018-01-22 | 2019-01-22 | 北京航空航天大学 | 多元多层自愈合陶瓷基复合材料发动机涡轮外环 |
EP4008702A1 (en) | 2020-12-03 | 2022-06-08 | Raytheon Technologies Corporation | Ceramic matrix composite with fibers having a specific coating |
JP7535928B2 (ja) | 2020-12-04 | 2024-08-19 | 株式会社Ihiエアロスペース | セラミックス基複合材料、その製造方法、及び取付具 |
US12134583B2 (en) * | 2021-08-12 | 2024-11-05 | Rtx Corporation | Particle based inserts for CMC |
FR3141164B1 (fr) | 2022-10-21 | 2024-10-04 | Safran Ceram | Preforme fibreuse et son procede de fabrication pour realiser une piece en materiau composite a matrice ceramique |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2567874B1 (fr) | 1984-07-20 | 1987-01-02 | Europ Propulsion | Procede de fabrication d'un materiau composite a renfort fibreux refractaire et matrice ceramique, et structure telle qu'obtenue par ce procede |
FR2640258B1 (fr) | 1988-05-10 | 1991-06-07 | Europ Propulsion | Procede de fabrication de materiaux composites a renfort en fibres de carbure de silicium et a matrice ceramique |
US5284685A (en) * | 1988-08-31 | 1994-02-08 | Aerospatiale Societe Nationale Industrielle | Composite material with carbon reinforced fibers and its production |
FR2635773B1 (fr) | 1988-08-31 | 1992-02-14 | Aerospatiale | Materiau composite a fibres de renforcement en carbone et son procede de fabrication |
FR2643898B1 (fr) * | 1989-03-02 | 1993-05-07 | Europ Propulsion | Procede de fabrication d'un materiau composite a matrice ceramique a tenacite amelioree |
CA2035685C (en) | 1990-02-09 | 2002-08-06 | Jean-Philippe Rocher | Process for the manufacture of a carbon fiber reinforced composite material having a ceramic matrix |
FR2710635B1 (fr) * | 1993-09-27 | 1996-02-09 | Europ Propulsion | Procédé de fabrication d'un matériau composite à interphase lamellaire entre fibres de renfort et matrice, et matériau tel qu'obtenu par le procédé. |
FR2732338B1 (fr) | 1995-03-28 | 1997-06-13 | Europ Propulsion | Materiau composite protege contre l'oxydation par matrice auto-cicatrisante et son procede de fabrication |
FR2742433B1 (fr) | 1995-12-14 | 1998-03-13 | Europ Propulsion | Materiaux composites thermostructuraux avec renforts en fibres carbone ou revetues de carbone, ayant une resistance accrue a l'oxydation |
JP2008239404A (ja) | 2007-03-27 | 2008-10-09 | Covalent Materials Corp | 超微細SiC粒子およびその製造方法、超微細SiC焼結体 |
FR2933970B1 (fr) * | 2008-07-21 | 2012-05-11 | Snecma Propulsion Solide | Procede de fabrication d'une piece en materiau composite thermostructural et piece ainsi obtenue |
-
2011
- 2011-12-13 FR FR1161522A patent/FR2983851B1/fr active Active
-
2012
- 2012-11-22 EP EP12806552.1A patent/EP2791080B1/fr active Active
- 2012-11-22 JP JP2014546599A patent/JP6301261B2/ja active Active
- 2012-11-22 CN CN201280061337.2A patent/CN104053638B/zh active Active
- 2012-11-22 WO PCT/FR2012/052702 patent/WO2013088015A1/fr active Application Filing
- 2012-11-22 KR KR1020147018066A patent/KR20140132705A/ko not_active Application Discontinuation
- 2012-11-22 US US14/365,252 patent/US9604886B2/en active Active
Non-Patent Citations (3)
Title |
---|
"Processing of ceramic matrix composites by pulsed-CVI and related;Roger NASLAIN et al.;《Key Engineering Materials》;19990131;第159-160卷;第359-365页 * |
Influence of strong fiber/coating interfaces on the mechanical behavior and lifetime of Hi-Nicalon/(PyC-SiC)n/SiC minicomposites;Sebastien Bertrand et al.;《Journal of the American Ceramic Society》;20110430;第84卷(第4期);第787-794页 * |
Tensile,flexural,and shear;Takashi NOZAWA;《journal of ASTM International》;20040131;第1475卷;第392-404页 * |
Also Published As
Publication number | Publication date |
---|---|
CN104053638A (zh) | 2014-09-17 |
KR20140132705A (ko) | 2014-11-18 |
WO2013088015A1 (fr) | 2013-06-20 |
US9604886B2 (en) | 2017-03-28 |
EP2791080A1 (fr) | 2014-10-22 |
JP6301261B2 (ja) | 2018-03-28 |
US20140363663A1 (en) | 2014-12-11 |
FR2983851B1 (fr) | 2013-12-27 |
JP2015500197A (ja) | 2015-01-05 |
EP2791080B1 (fr) | 2019-02-27 |
FR2983851A1 (fr) | 2013-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104053638B (zh) | Cmc材料部件 | |
Han et al. | The role of CNT in improving the mechanical strength retention rate of C/C composites during heat treatment | |
Xu et al. | Mechanical enhancement of lightweight ZrB2-modified carbon-bonded carbon fiber composites with self-grown carbon nanotubes | |
Bertrand et al. | TEM structure of (PyC/SiC) n multilayered interphases in SiC/SiC composites | |
Jia et al. | Microstructure and mechanical properties of carbon fiber reinforced multilayered (PyC–SiC) n matrix composites | |
Fu et al. | Significant improvement of mechanical properties of carbon/carbon composites by in situ growth of SiC nanowires | |
Liu et al. | Effects of the fiber surface characteristics on the interfacial microstructure and mechanical properties of the KD SiC fiber reinforced SiC matrix composites | |
Zhu et al. | Effect of BNNTs/matrix interface tailoring on toughness and fracture morphology of hierarchical SiC f/SiC composites | |
Fu et al. | Carbon nanotube-toughened interlocking buffer layer to improve the adhesion strength and thermal shock resistance of SiC coating for C/C–ZrC–SiC composites | |
Nakazato et al. | Appropriate thickness of pyrolytic carbon coating on SiC fiber reinforcement to secure reasonable quasi-ductility on NITE SiC/SiC composites | |
Song et al. | Effect of the addition of carbon fibres on the microstructure and mechanical properties of reaction bonded B4C/SiC composites | |
Song et al. | Selective growth of SiC nanowires in interlaminar matrix for improving in-plane strengths of laminated Carbon/Carbon composites | |
Yin et al. | Microstructure and oxidation resistance of carbon/silicon carbide composites infiltrated with chromium silicide | |
Honglei et al. | Microstructure, mechanical properties and reaction mechanism of KD-1 SiCf/SiC composites fabricated by chemical vapor infiltration and vapor silicon infiltration | |
Servadei et al. | Processing and characterization of ultra-high temperature ceramic matrix composites via water based slurry impregnation and polymer infiltration and pyrolysis | |
Yang et al. | Effects of heat treatment on the microstructure and flexural properties of CVI–Tyranno-SA/SiC composite | |
Shi et al. | The oxide-layer configuration alteration and pseudo-ductile crack propagation mechanisms in composites induced by different relative thicknesses of CVI HfC-SiC multiphase matrix | |
Sun et al. | Compressive residual thermal stress induced crack deflection in carbon nanotube-doped carbon/carbon composites | |
Zhen et al. | The improvement of mechanical properties of SiC/SiC composites by in situ introducing vertically aligned carbon nanotubes on the PyC interface | |
Morscher | Modeling the elastic modulus of 2D woven CVI SiC composites | |
Zhao et al. | Design, fabrication, characterization and simulation of PIP-SiC/SiC composites | |
Huang et al. | Influence of fiber/matrix interface on the texture evolution and fracture toughness of C/C | |
Wang et al. | Optimizing mechanical and thermal expansion properties of carbon/carbon composites by controlling textures | |
Deng et al. | Effect of C/SiC interphase on interfacial and mechanical properties of SiC fiber reinforced mullite matrix composites | |
Park et al. | Fabrication and characterization of SiCf/SiC composite by CVI using the whiskering process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |