CN104051499B - Semiconductor device with low on-resistance and manufacturing method thereof - Google Patents
Semiconductor device with low on-resistance and manufacturing method thereof Download PDFInfo
- Publication number
- CN104051499B CN104051499B CN201310311562.3A CN201310311562A CN104051499B CN 104051499 B CN104051499 B CN 104051499B CN 201310311562 A CN201310311562 A CN 201310311562A CN 104051499 B CN104051499 B CN 104051499B
- Authority
- CN
- China
- Prior art keywords
- layer
- region
- conductive layer
- conductive
- gate oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 95
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 20
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 33
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 33
- 238000000034 method Methods 0.000 claims abstract description 18
- 239000010410 layer Substances 0.000 claims description 528
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 72
- 229920005591 polysilicon Polymers 0.000 claims description 72
- 239000000758 substrate Substances 0.000 claims description 42
- 239000007943 implant Substances 0.000 claims description 26
- 229920002120 photoresistant polymer Polymers 0.000 claims description 18
- 238000000151 deposition Methods 0.000 claims description 17
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 13
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 13
- 238000005530 etching Methods 0.000 claims description 11
- 230000009467 reduction Effects 0.000 claims description 8
- 238000002513 implantation Methods 0.000 claims description 7
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 6
- 239000003990 capacitor Substances 0.000 claims description 5
- 210000000746 body region Anatomy 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 4
- 230000007704 transition Effects 0.000 claims description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 2
- 229910052796 boron Inorganic materials 0.000 claims description 2
- 239000011529 conductive interlayer Substances 0.000 claims 6
- 230000005669 field effect Effects 0.000 abstract description 8
- 230000015556 catabolic process Effects 0.000 description 10
- 150000002500 ions Chemical class 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 230000009977 dual effect Effects 0.000 description 5
- 239000012212 insulator Substances 0.000 description 5
- 238000002955 isolation Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 125000006850 spacer group Chemical group 0.000 description 5
- INQLNSVYIFCUML-QZTLEVGFSA-N [[(2r,3s,4r,5r)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2r,3s,4r,5r)-5-(4-carbamoyl-1,3-thiazol-2-yl)-3,4-dihydroxyoxolan-2-yl]methyl hydrogen phosphate Chemical compound NC(=O)C1=CSC([C@H]2[C@@H]([C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=N1 INQLNSVYIFCUML-QZTLEVGFSA-N 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/514—Gate electrodes for field-effect devices for FETs for IGFETs characterised by the insulating layers
- H10D64/516—Gate electrodes for field-effect devices for FETs for IGFETs characterised by the insulating layers the thicknesses being non-uniform
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/028—Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs
- H10D30/0281—Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs of lateral DMOS [LDMOS] FETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/64—Double-diffused metal-oxide semiconductor [DMOS] FETs
- H10D30/65—Lateral DMOS [LDMOS] FETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/17—Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
- H10D62/393—Body regions of DMOS transistors or IGBTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/517—Gate electrodes for field-effect devices for FETs for IGFETs characterised by the conducting layers
- H10D64/518—Gate electrodes for field-effect devices for FETs for IGFETs characterised by the conducting layers characterised by their lengths or sectional shapes
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
本发明公开了一种低导通电阻的半导体装置,该半导体装置具有由邻近于厚介电层的薄介电层所定义的双介电层结构;特别地,提供具有包括邻近于薄氧化/厚氧化层的薄栅极氧化层的双栅极氧化层结构的高电压金属氧化物半导体晶体管;这样的结构可用于延伸漏极金属氧化物半导体场效晶体管、横向扩散金属氧化场效晶体管或任何高电压金属氧化物半导体晶体管。本发明还公开了一种制造延伸漏极金属氧化物半导体场效晶体管装置的方法。
The present invention discloses a semiconductor device with low on-resistance, which has a double dielectric layer structure defined by a thin dielectric layer adjacent to a thick dielectric layer; in particular, a high voltage metal oxide semiconductor transistor having a double gate oxide layer structure including a thin gate oxide layer adjacent to a thin oxide/thick oxide layer is provided; such a structure can be used for an extended drain metal oxide semiconductor field effect transistor, a laterally diffused metal oxide field effect transistor or any high voltage metal oxide semiconductor transistor. The present invention also discloses a method for manufacturing an extended drain metal oxide semiconductor field effect transistor device.
Description
技术领域technical field
本申请案要求享有2013年3月12日提出的美国临时申请案61/776,835的权益,其中该申请案内容在这里都被全部引入作为参考。This application claims the benefit of US Provisional Application 61/776,835, filed March 12, 2013, the contents of which are hereby incorporated by reference in their entirety.
本发明是有关具增加特征导通电阻的半导体装置及其制造方法。本特别地,本发明是有关具有此装置特性的高电压金属氧化物半导体晶体管。本发明可延伸至浮栅半导体装置。The present invention relates to a semiconductor device with increased characteristic on-resistance and its manufacturing method. In particular, the present invention relates to high voltage metal-oxide-semiconductor transistors having such device properties. The present invention can be extended to floating gate semiconductor devices.
背景技术Background technique
图1为已知的延伸漏极金属氧化物半导体场效晶体管(EDMOSFET)的剖面图。金属氧化物半导体通常包括栅极区80、源极区90以及漏极区95。本示范图的金属氧化物半导体晶体管1被配置在具有沿着衬底10配置的深N型阱25的衬底10上。衬底10可以是P型衬底、用于N通道金属氧化物半导体晶体管的P型后栅极、N型衬底或用于P通道金属氧化物半导体晶体管的N型后栅极。FIG. 1 is a cross-sectional view of a known extended-drain metal-oxide-semiconductor field-effect transistor (EDMOSFET). MOS generally includes a gate region 80 , a source region 90 and a drain region 95 . The metal-oxide-semiconductor transistor 1 of this exemplary figure is disposed on a substrate 10 having a deep N-type well 25 disposed along the substrate 10 . The substrate 10 may be a P-type substrate, a P-type back gate for an N-channel MOS transistor, an N-type substrate, or an N-type back gate for a P-channel MOS transistor.
P型阱30被配置在源极区90的深N型阱25中。P掺杂源极区35与N掺杂源极区40被配置在P型阱30中且定义出源极区90的接触区。N掺杂漏极区45定义出漏极区95的接触区。介电层60可以是定义漏极区95的接触区域与源极区90的接触区的界线的场氧化层。导电层70可以是被配置在横跨介电层60的一部分与场氧化层50的多晶硅层。P-type well 30 is arranged in deep N-type well 25 of source region 90 . The P-doped source region 35 and the N-doped source region 40 are disposed in the P-type well 30 and define a contact region of the source region 90 . N-doped drain region 45 defines a contact region for drain region 95 . The dielectric layer 60 may be a field oxide layer defining a boundary between a contact area of the drain region 95 and a contact area of the source region 90 . The conductive layer 70 may be a polysilicon layer disposed across a portion of the dielectric layer 60 and the field oxide layer 50 .
金属氧化物半导体晶体管具有三种根据终端电压而定的运作模式。例如,金属氧化物半导体晶体管具有终端电压Vg(栅极终端电压)、Vs(源极终端电压)以及Vd(漏极终端电压)。当栅极与源极之间的偏压电压Vgs小于金属氧化物半导体晶体管的阈值电压Vth时,N通道金属氧化物半导体以截止模式(cutof fmode)运作。在截止模式中,通道不会增加,通道区中的电流Ids为零。MOS transistors have three modes of operation depending on the terminal voltage. For example, a metal oxide semiconductor transistor has terminal voltages V g (gate terminal voltage), V s (source terminal voltage), and V d (drain terminal voltage). When the bias voltage V gs between the gate and the source is lower than the threshold voltage V th of the MOS transistor, the N-channel MOS transistor operates in a cutoff mode. In cut-off mode, the channel does not increase and the current I ds in the channel region is zero.
当偏压电压Vgs超过阈值电压Vth时,只要通道电压Vds不超过饱和电压Vds,sat,则N通道金属氧化物半导体以线性模式(linear mode)运作。饱和电压通常定义为偏压电压Vgs减去阈值电压Vth。当N通道金属氧化物半导体处于线性模式时,电流Ids随着通道电压Vds增长。最后,当通道电压Vds超过饱和电压Vds,sat时,通道夹止(pinch off)且电流饱和。当N通道金属氧化物半导体晶体管处于这种饱和模式时,Ids独立于Vds。When the bias voltage V gs exceeds the threshold voltage V th , as long as the channel voltage V ds does not exceed the saturation voltage V ds,sat , the N-channel MOS operates in a linear mode. The saturation voltage is generally defined as the bias voltage V gs minus the threshold voltage V th . When N-channel MOS is in linear mode, the current I ds increases with the channel voltage V ds . Finally, when the channel voltage V ds exceeds the saturation voltage V ds,sat , the channel is pinched off and the current is saturated. When an N-channel MOS transistor is in this saturation mode, I ds is independent of V ds .
相较于侧向扩散金属氧化物半导体场效晶体管(LDMOSFET),延伸漏极金属氧化物半导体场效晶体管(EDMOSFET)的特征是相对高的特征导通电阻(RON)。然而,对比于LDMOSFET,EDMOSFET的特征在于具有数量较少的遮蔽层。一般来说,经由降低漂移区的掺杂浓度或增加漂移区长度,可提升EDMOSFET与LDMOSFET的击穿电压。这样会增加特定导通电阻。此方法会提高半导体结构的特定导通电阻(Ron,sp),使得BVdss与Ron,sp无法同时改善。Extended-drain metal-oxide-semiconductor field-effect transistors (EDMOSFETs) are characterized by a relatively high characteristic on-resistance (RON) compared to laterally diffused metal-oxide-semiconductor field-effect transistors (LDMOSFETs). However, EDMOSFETs are characterized by a smaller number of shielding layers compared to LDMOSFETs. Generally, the breakdown voltage of EDMOSFET and LDMOSFET can be improved by reducing the doping concentration of the drift region or increasing the length of the drift region. This increases the specific on-resistance. This method will increase the specific on-resistance (Ron, sp) of the semiconductor structure, so that BVdss and Ron, sp cannot be improved simultaneously.
发明内容Contents of the invention
本案的装置的实施例提供具有增加的击穿电压但不改变装置的特定导通电阻的半导体装置。本案的装置的实施例提供具有减少的特定导通电阻但不影响装置的击穿电压的半导体装置。Embodiments of the present device provide a semiconductor device with increased breakdown voltage without changing the specific on-resistance of the device. Embodiments of the present device provide semiconductor devices with reduced specific on-resistance without affecting the breakdown voltage of the device.
本发明的一面向提供的半导体装置包括具有邻近于厚介电层的薄介电层的双介电层、被配置在厚介电层上的绝缘层以及可沿着具有阶层部分的薄介电层被配置的第一导电层,阶层部分至少有一部份沿着绝缘层被配置。An aspect of the present invention provides a semiconductor device comprising a double dielectric layer having a thin dielectric layer adjacent to a thick dielectric layer, an insulating layer disposed on the thick dielectric layer, and a thin dielectric layer having a layered portion along the The first conductive layer in which the layers are arranged, and at least a part of the layer portion is arranged along the insulating layer.
在本发明的实施例中,半导体装置可包括第二导电层。例如,根据本发明的某些实施例,第二导电层可被配置在第一导电层与绝缘层的一部份上方,而中界导电氧化层可配置在第二导电层与第一导电层以及绝缘层的一部份之间。In an embodiment of the present invention, a semiconductor device may include a second conductive layer. For example, according to some embodiments of the present invention, a second conductive layer may be disposed over a portion of the first conductive layer and the insulating layer, and an intermediate conductive oxide layer may be disposed between the second conductive layer and the first conductive layer. and between a part of the insulating layer.
在本发明的某些实施例中,薄介电层可为薄栅极氧化层且厚介电层可为厚栅极氧化层。更依据这个实施例,厚栅极氧化层、绝缘层与第二多晶硅层边缘上的中界导电氧化层的厚度可在从至的范围内。In some embodiments of the present invention, the thin dielectric layer may be a thin gate oxide layer and the thick dielectric layer may be a thick gate oxide layer. Still in accordance with this embodiment, the thickness of the thick gate oxide, insulating layer, and intermediate conductive oxide on the edge of the second polysilicon layer can vary from to In the range.
根据本发明的某些实施例,第一导电层及/或第二导电层可包括多晶硅。在本发明的某些实施例中,中界导电氧化层是使用高温氧氧化沉积方法所配置的氧化层。According to some embodiments of the present invention, the first conductive layer and/or the second conductive layer may include polysilicon. In certain embodiments of the present invention, the intermediate conductive oxide layer is an oxide layer deposited using a high temperature oxygen oxide deposition method.
本发明的一面向提供的高电压金属氧化物半导体(HVMOS)晶体管包括衬底、沿着衬底配置的双栅极氧化物结构以及双导电层结构。根据本发明的实施例,双栅极氧化物结构具有邻近于厚栅极氧化层的薄栅极氧化层以及被配置在厚栅极氧化层上的绝缘层。An aspect of the present invention provides a high voltage metal oxide semiconductor (HVMOS) transistor including a substrate, a double gate oxide structure and a double conductive layer structure disposed along the substrate. According to an embodiment of the present invention, a dual gate oxide structure has a thin gate oxide layer adjacent to a thick gate oxide layer and an insulating layer disposed on the thick gate oxide layer.
在本发明的某些实施例中,两层导电层结构包括沿着具有至少有部分沿着绝缘层被配置的阶层部分的薄栅极氧化层被配置的第一导电层、被配置在第一导电层与绝缘层的一部分上的第二导电层以及被配置在第二导电层与第一导电层及绝缘层的该部分之间的中界导电氧化层。在本发明的某些实施例中,HVMOS晶体管的中界导电氧化层包括高温氧化物。In some embodiments of the present invention, the two-layer conductive layer structure includes a first conductive layer disposed along a thin gate oxide layer having a layer portion disposed at least partially along the insulating layer, disposed on the first A second conductive layer on a portion of the conductive layer and the insulating layer and an intermediate conductive oxide layer disposed between the second conductive layer and the portion of the first conductive layer and the insulating layer. In some embodiments of the present invention, the intermediate conductive oxide layer of the HVMOS transistor includes a high temperature oxide.
在本发明的实施例中,HVMOS晶体管更包括被配置在两层导电层结构与被配置在N-阱中的P型注入下方的衬底中的N-阱。根据本发明的实施例,P型注入的P型离子选自像是容易向外扩散的P型离子。更依据本发明的这个实施例,P型注入中的掺杂浓度在从5×1012/cm2至1×1014/cm2的范围中。In an embodiment of the present invention, the HVMOS transistor further includes an N -well disposed in the substrate below the two-layer conductive layer structure and a P-type implant disposed in the N- well . According to an embodiment of the present invention, the P-type ions for the P-type implantation are selected from, for example, P-type ions that are easy to diffuse outward. Still in accordance with this embodiment of the invention, the doping concentration in the P-type implant is in the range from 5×10 12 /cm 2 to 1×10 14 /cm 2 .
根据本发明的实施例,HVMOS晶体管具有的有效通道长度的减少在从0.2μm至1μm的范围中,其是对照于没有双栅极氧化物结构、P型注入以及N-阱的HVMOS晶体管。According to an embodiment of the present invention, HVMOS transistors have a reduction in effective channel length in the range from 0.2 μm to 1 μm in contrast to HVMOS transistors without double gate oxide structure, P-type implant and N - well.
在本发明的其他实施例中,HVMOS晶体管更包括N型掺杂漏极(NDD)区,其被配置在延伸自漏极区至该两层导电层结构下方处的衬底中。更依据这个实施例,本发明的HVMOS晶体管具有的有效通道长度的减少在从0.2μm至1μm的范围中,其是对照于没有双栅极氧化物结构以及NDD区的HVMOS晶体管In other embodiments of the present invention, the HVMOS transistor further includes an N-type doped drain (NDD) region disposed in the substrate extending from the drain region to below the two-layer conductive layer structure. Still according to this embodiment, the HVMOS transistor of the present invention has a reduction in effective channel length in the range from 0.2 μm to 1 μm, which is compared to the HVMOS transistor without the double gate oxide structure and the NDD region
在本发明的实施例中,HVMOS晶体管没有类饱和区(quasi-saturation)。在本发明的某些实施例中,漏极-源极电流相对于漏极-源极电压的斜率在建立的转移区于饱和区的直线斜率之间为至少6×10-5安培/微米-伏特。In an embodiment of the invention, the HVMOS transistor has no quasi-saturation. In certain embodiments of the invention, the slope of the drain-source current versus the drain-source voltage is at least 6 x 10-5 amperes/micron- volt.
依然在本发明的其他实施例中,HVMOS晶体管更包括N-注入,其被配置在延伸自横跨N型阱的上端部分与N掺杂漏极区至厚栅极氧化层下方处终止的衬底中。在本发明的某些实施例中,N-注入于第二导电层的边缘对准中界导电氧化层与隔离层处的两层导电层结构下方处终止。In still other embodiments of the present invention, the HVMOS transistor further includes an N - implant configured to extend from the substrate extending across the upper portion of the N-well and the N-doped drain region to terminate below the thick gate oxide. Bottom. In some embodiments of the present invention, the N - implantation terminates at the edge of the second conductive layer below the two-layer conductive layer structure at the mid-level conductive oxide layer and the isolation layer.
依然在本发明的其他实施例中,衬底包括P体区、各自被配置在P体区中并定义出源极区的接触区的P掺杂源极区及N掺杂源极区。In still other embodiments of the present invention, the substrate includes a P-body region, a P-doped source region and an N-doped source region each disposed in the P-body region and defining a contact region of the source region.
依然在本发明的其他实施例中,HVMOS晶体管更可包括具有定义出源极区的接触区的P掺杂源极区以及N掺杂源极区的P型阱,以及邻近于P型阱的N型阱,N型阱具有定义出漏极区的接触区的N掺杂漏极区。Still in other embodiments of the present invention, the HVMOS transistor may further include a P-doped source region with a contact region defining the source region and a P-type well with an N-doped source region, and a P-type well adjacent to the P-type well. An N-type well having an N-doped drain region defining a contact region of the drain region.
在本发明的某些实施例中,第一导电层为第一多晶硅层且第二导电层为第二多晶硅层。在本发明的实施例中,两层导电层结构被配置用于定义多晶硅-绝缘体-多晶硅(PIP)电容。In some embodiments of the present invention, the first conductive layer is a first polysilicon layer and the second conductive layer is a second polysilicon layer. In an embodiment of the invention, a two-layer conductive layer structure is configured to define a polysilicon-insulator-polysilicon (PIP) capacitance.
本发明的一面向提供制造半导体的方法,像是,例如,根据本发明的实施例的延伸漏极金属氧化物半导体场效晶体管装置。An aspect of the present invention is to provide a method of fabricating a semiconductor, such as, for example, an extended-drain MOSFET device according to an embodiment of the present invention.
根据本发明的实施例,制造半导体的方法可包括,例如,提供一半导体装置,其具有一衬底、一深N型阱以及一氧化层;注入一N型阱与一P型阱;驱入该N型阱与该P型阱;沉积一氮化硅层;形成一场氧化层;移除该氮化硅层与该氧化层;形成一厚栅极氧化物;形成一薄栅极氧化物,该薄栅极氧化物的一部分沿着该厚栅极氧化物被配置;形成一第一导电层,该第一导电层沿着至少该薄栅极氧化物的一部分被配置,其包括沿着该厚栅极氧化物被配置的该薄栅极氧化物的该部分的至少一部份;沉积一高温氧化层;以及形成一第二导电层,该高温氧化层将该第二导电层从沿着该第二导电层被配置的该薄氧化层分离。According to an embodiment of the present invention, a method of manufacturing a semiconductor may include, for example, providing a semiconductor device having a substrate, a deep N-type well, and an oxide layer; implanting an N-type well and a P-type well; The N-type well and the P-type well; depositing a silicon nitride layer; forming a field oxide layer; removing the silicon nitride layer and the oxide layer; forming a thick gate oxide; forming a thin gate oxide , a portion of the thin gate oxide is disposed along the thick gate oxide; a first conductive layer is formed, the first conductive layer is disposed along at least a portion of the thin gate oxide, including along The thick gate oxide is disposed at least a portion of the portion of the thin gate oxide; depositing a high temperature oxide layer; and forming a second conductive layer, the high temperature oxide layer extending the second conductive layer from along The thin oxide layer disposed along the second conductive layer is separated.
制造半导体的方法更可包括注入一N-掺杂区;于第一导电层上沉积硅酸乙酯(TEOS)层,刻蚀TEOS层以形成间隙层;注入N+掺杂漏极区;注入N+掺杂源极区;以及注入P+掺杂源极区。The method for manufacturing a semiconductor may further include implanting an N - doped region; depositing an ethyl silicate (TEOS) layer on the first conductive layer, etching the TEOS layer to form a gap layer; implanting an N + doped drain region; implanting N + doped source region; and implanting P + doped source region.
在本发明不限制的示范实施例中,形成一厚栅极氧化层的步骤包括沉积一厚栅极氧化层;涂敷一厚栅极氧化光刻胶层;刻蚀该厚栅极氧化层;以及移除该厚栅极氧化光刻胶层。In a non-limiting exemplary embodiment of the present invention, the step of forming a thick gate oxide layer includes depositing a thick gate oxide layer; coating a thick gate oxide photoresist layer; etching the thick gate oxide layer; and removing the thick gate oxide photoresist layer.
本发明这些实施例与其它面向以及本发明实施例在下列描述与所附图式结合检阅时将成为明显的,虽然本发明是经由所附权利要求范围而指出其特殊性。These and other aspects of the invention, as well as embodiments of the invention, will become apparent when the following description is examined in conjunction with the accompanying drawings, although the invention is pointed out with particularity through the scope of the appended claims.
附图说明Description of drawings
因此本发明已经以通常用语描述,现在将参照所附图式,其不须要按比例描绘,以及其中:Having thus described the invention in general terms, reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and in which:
图1为已知的金属氧化物半导体的剖面图;FIG. 1 is a cross-sectional view of a known metal oxide semiconductor;
图2是依据本发明实施例的延伸漏极金属氧化物半导体晶体管剖面图;2 is a cross-sectional view of an extended-drain metal-oxide-semiconductor transistor according to an embodiment of the present invention;
图3A是依据本发明另一实施例的延伸漏极金属氧化物半导体晶体管剖面图;3A is a cross-sectional view of an extended-drain metal oxide semiconductor transistor according to another embodiment of the present invention;
图3B是图3A的延伸漏极金属氧化物半导体晶体管一部分的详细剖面图;3B is a detailed cross-sectional view of a portion of the extended-drain metal oxide semiconductor transistor of FIG. 3A;
图4A是依据本发明另一实施例的延伸漏极金属氧化物半导体晶体管剖面图;4A is a cross-sectional view of an extended-drain metal oxide semiconductor transistor according to another embodiment of the present invention;
图4B是图4A的延伸漏极金属氧化物半导体晶体管一部分的详细剖面图;4B is a detailed cross-sectional view of a portion of the extended-drain metal oxide semiconductor transistor of FIG. 4A;
图5A是图4A的延伸漏极金属氧化物半导体的电子特性的TCAD仿真;FIG. 5A is a TCAD simulation of the electronic properties of the extended-drain metal oxide semiconductor of FIG. 4A;
图5B是图5A的TCAD模拟的详细概观;Figure 5B is a detailed overview of the TCAD simulation of Figure 5A;
图6A是已知延伸漏极金属氧化物半导体中漏极-源极电压相对于漏极-源极电流的图式;6A is a graph of drain-source voltage versus drain-source current in a known extended-drain MOS;
图6B是依据本发明实施例的延伸漏极金属氧化物半导体中漏极-源极电压相对于漏极-源极电流的图式;6B is a graph of drain-source voltage versus drain-source current in an extended-drain MOS in accordance with an embodiment of the present invention;
图7是依据本发明另一实施例的延伸漏极金属氧化物半导体晶体管剖面图;7 is a cross-sectional view of an extended-drain metal oxide semiconductor transistor according to another embodiment of the present invention;
图8是根据本发明的实施例的N型横向掺杂金属氧化物半导体晶体管的剖面图;8 is a cross-sectional view of an N-type laterally doped metal oxide semiconductor transistor according to an embodiment of the present invention;
图9是根据本发明实施例的RESURF装置的三维图;Figure 9 is a three-dimensional view of a RESURF device according to an embodiment of the present invention;
图10是RESURF装置的俯视图;Figure 10 is a top view of the RESURF device;
图11A是沿着图10的RESURF装置的AA’线的剖面图;Fig. 11 A is a sectional view along the line AA' of the RESURF device of Fig. 10;
图11B是沿着图10的RESURF装置的BB’线的剖面图;Fig. 11 B is a sectional view along the BB' line of the RESURF device of Fig. 10;
图12是根据本发明另一实施例的延伸漏极金属氧化物半导体晶体管剖面图;12 is a cross-sectional view of an extended-drain metal-oxide-semiconductor transistor according to another embodiment of the present invention;
图13是根据本发明的实施例具有多晶硅-绝缘体-多晶硅(PIP)电容的延伸漏极金属氧化物半导体晶体管的剖面图;13 is a cross-sectional view of an extended-drain metal-oxide-semiconductor transistor with polysilicon-insulator-polysilicon (PIP) capacitance in accordance with an embodiment of the present invention;
图14A是根据本发明的实施例的延伸漏极N通道金属氧化物半导体的俯视图;14A is a top view of an extended-drain N-channel MOS in accordance with an embodiment of the present invention;
图14B是根据本发明另一实施例的延伸漏极N通道金属氧化物半导体的俯视图;14B is a top view of an extended-drain N-channel MOS according to another embodiment of the present invention;
图14C是根据本发明另一实施例的延伸漏极N通道金属氧化物半导体的俯视图;14C is a top view of an extended-drain N-channel MOS according to another embodiment of the present invention;
图14D是根据本发明另一实施例的延伸漏极N通道金属氧化物半导体的俯视图;14D is a top view of an extended-drain N-channel MOS according to another embodiment of the present invention;
图14E是根据本发明另一实施例的延伸漏极N通道金属氧化物半导体的俯视图;14E is a top view of an extended-drain N-channel MOS according to another embodiment of the present invention;
图15A至图15H是根据本发明实施例在完成制造此装置的不同步骤后的半导体装置的剖面图;以及15A-15H are cross-sectional views of a semiconductor device after completion of various steps in fabricating the device, according to an embodiment of the present invention; and
图16是根据本发明实施例制造半导体装置的不同步骤的流程图。FIG. 16 is a flowchart of different steps in fabricating a semiconductor device according to an embodiment of the present invention.
【符号说明】【Symbol Description】
1:金属氧化物半导体晶体管 10:衬底1: metal oxide semiconductor transistor 10: substrate
25:深N型阱 30:P型阱25: Deep N-type well 30: P-type well
35:P掺杂源极区 40:N掺杂源极区35: P-doped source region 40: N-doped source region
45:N掺杂漏极区 50:介电层45: N-doped drain region 50: Dielectric layer
60:场氧化层 70:导电层60: field oxide layer 70: conductive layer
80:栅极区 90:源极区80: gate area 90: source area
95:漏极区 100:延伸漏极金属氧化物半导体95: Drain region 100: Extended drain metal oxide semiconductor
102:延伸漏极金属氧化物半导体晶体管 104:NLDMOS102: Extended Drain Metal Oxide Semiconductor Transistor 104: NLDMOS
106:EDMOS 108:EDMOS106: EDMOS 108: EDMOS
110:基底110: base
120:深N型阱 130:P型阱120: Deep N-type well 130: P-type well
135:P体区 140:N型阱135: P body region 140: N-type well
150:P掺杂源极区 155:P掺杂源极区150: P-doped source region 155: P-doped source region
160:N掺杂源极区 165:N掺杂源极区160: N-doped source region 165: N-doped source region
170:N掺杂漏极区 180:介电层170: N-doped drain region 180: Dielectric layer
190:薄氧化层 195:隔离层190: thin oxide layer 195: isolation layer
200:厚氧化层 210:第一多晶硅层200: thick oxide layer 210: first polysilicon layer
220:高温氧化层 230:第二多晶硅层220: high temperature oxide layer 230: second polysilicon layer
240:栅极区 250:源极区240: gate area 250: source area
260:漏极区 270:N-注入260: Drain region 270: N - implantation
280:PIP电容280: PIP capacitor
300:延伸漏极金属氧化物半导体 310:基底300: Extended Drain Metal Oxide Semiconductor 310: Substrate
320:深N型阱 330:P型阱320: Deep N-type well 330: P-type well
350:P掺杂源极区 360:N掺杂源极区350: P-doped source region 360: N-doped source region
370:N掺杂漏极区 380:介电层370: N-doped drain region 380: Dielectric layer
390:薄氧化层 400:厚氧化层390: thin oxide layer 400: thick oxide layer
410:第一多晶硅层 340:N型阱410: first polysilicon layer 340: N-type well
440:栅极区 420:高温氧化层440: gate area 420: high temperature oxide layer
470:N-阱 450:源极区470: N - well 450: Source region
460:漏极区 395:绝缘体460: drain region 395: insulator
490:通道 480:P场注入490: Channel 480: P Field Injection
495:有效长度减少幅度495: effective length reduction
500:延伸漏极金属氧化物半导体 510:基底500: Extended Drain Metal Oxide Semiconductor 510: Substrate
520:深N型阱 540:N型掺杂漏极区520: Deep N-type well 540: N-type doped drain region
530:P型阱 550:P掺杂源极区530: P-type well 550: P-doped source region
560:N掺杂源极区 570:N掺杂漏极区560: N-doped source region 570: N-doped drain region
580:介电层 590:薄氧化层580: Dielectric layer 590: Thin oxide layer
600:厚氧化层 610:第一多晶硅层600: thick oxide layer 610: first polysilicon layer
630:第二多晶硅层 620:高温氧化层630: second polysilicon layer 620: high temperature oxide layer
595:绝缘体 640:栅极区595: Insulator 640: Gate region
650:源极区 660:漏极区650: source region 660: drain region
615:阶梯部份 680:有效长度615: Step part 680: Effective length
690:通道 695:有效长度减少幅度690: Channel 695: Effective length reduction
525:第一PN结 535:第二PN结525: the first PN junction 535: the second PN junction
692:区域 694:清楚定义的电流692: Area 694: Clearly Defined Currents
700:延伸漏极金属氧化物半导体 710:基底700: Extended Drain Metal Oxide Semiconductor 710: Substrate
720:深N型阱 730:P型阱720: Deep N-type well 730: P-type well
740:N型阱 750:P掺杂源极区740: N-type well 750: P-doped source region
760:N掺杂源极区 770:N掺杂漏极区760: N-doped source region 770: N-doped drain region
810:第一多晶硅层 830:第二多晶硅层810: first polysilicon layer 830: second polysilicon layer
880:P漂移注入880: P drift injection
950:源极区 1050:源极区950: source region 1050: source region
1150:源极区 1250:源极区1150: source region 1250: source region
1350:源极区 910:N掺杂源极区1350: source region 910: N-doped source region
1050:N掺杂源极区 1110:N掺杂源极区1050: N-doped source region 1110: N-doped source region
1210:N掺杂源极区 1310:N掺杂源极区1210: N-doped source region 1310: N-doped source region
920:P掺杂源极区 1020:P掺杂源极区920: P-doped source region 1020: P-doped source region
1120:P掺杂源极区 1220:P掺杂源极区1120: P-doped source region 1220: P-doped source region
1320:P掺杂源极区 960:N掺杂漏极区1320: P-doped source region 960: N-doped drain region
1060:N掺杂漏极区 1160:N掺杂漏极区1060: N-doped drain region 1160: N-doped drain region
1260:N掺杂漏极区 1360:N掺杂漏极区1260: N-doped drain region 1360: N-doped drain region
970:漏极区 1070:漏极区970: drain region 1070: drain region
1170:漏极区 1270:漏极区1170: drain region 1270: drain region
1370:漏极区 930:第一多晶硅层1370: drain region 930: first polysilicon layer
1040:第一多晶硅层 1140:第一多晶硅层1040: first polysilicon layer 1140: first polysilicon layer
1240:第一多晶硅层 1340:第一多晶硅层1240: first polysilicon layer 1340: first polysilicon layer
940:第二多晶硅层 1040:第二多晶硅层940: second polysilicon layer 1040: second polysilicon layer
1140:第二多晶硅层 1240:第二多晶硅层1140: second polysilicon layer 1240: second polysilicon layer
1340:第二多晶硅层 1500:半导体装置1340: second polysilicon layer 1500: semiconductor device
1700:EDMOS晶体管 1710:牺牲氧化层1700: EDMOS transistor 1710: Sacrificial oxide layer
1520:深N型阱 1720:牺牲氧化层1520: Deep N-type well 1720: Sacrificial oxide layer
1510:衬底 1525:牺牲氧化层1510: Substrate 1525: Sacrificial Oxide
1730:P型阱 1720:N型阱1730: P-type well 1720: N-type well
1740:注入物 1750:氮化硅层1740: implant 1750: silicon nitride layer
1760:场氧化层 1585:氮化硅层1760: Field oxide layer 1585: Silicon nitride layer
1580:场氧化层 1770:氮化硅层1580: field oxide layer 1770: silicon nitride layer
1780:牺牲氧化层 1790:厚栅极氧化物1780: Sacrificial Oxide 1790: Thick Gate Oxide
1575:氮化硅层 1600:厚栅极氧化物1575: Silicon nitride layer 1600: Thick gate oxide
1590:薄栅极氧化物 1800:薄栅极氧化物1590: Thin Gate Oxide 1800: Thin Gate Oxide
1605:厚栅极与薄栅极层 1810:第一导电层1605: thick gate and thin gate layer 1810: first conductive layer
1820:高温氧化层 1830:第二导电层1820: high temperature oxide layer 1830: second conductive layer
1620:高温氧化层 1630:第二导电层1620: high temperature oxide layer 1630: second conductive layer
1840:N-掺杂区 1850:P-注入区1840: N - doped region 1850: P - implanted region
1860:正硅酸乙酯层 1870:N+掺杂漏极区1860: Orthosilicate layer 1870: N + doped drain region
1880:N+掺杂源极区 1890:P+掺杂漏极区1880: N + doped source region 1890: P + doped drain region
1545:N-掺杂区 1550:P+掺杂源极区1545: N - doped region 1550: P + doped source region
1560:N+掺杂源极区 1570:N+掺杂漏极区1560: N + doped source region 1570: N + doped drain region
具体实施方式detailed description
本发明某些实施例现在将参照所附图式充分地在下文描述,但不是本发明的所有实施例都会展示,本发明的各种实施例可以用很多不同形式实施,且不应该被诠释为对实施例的局限,反而,提供这些实施例将使本发明满足适用的法律规范。Certain embodiments of the invention will now be fully described below with reference to the accompanying drawings, but not all embodiments of the invention will be shown, various embodiments of the invention may be embodied in many different forms, and should not be construed as Rather, these examples are provided so that this invention will satisfy applicable legal regulations.
除非上下文清楚地另外指出,本案说明书以及所附权利要求项中所使用的单数形式“一”以及“该”应涵盖多个的指涉,例如,对“半导体装置”的指涉包括多个如此的半导体装置。Unless the context clearly indicates otherwise, the singular forms "a" and "the" used in this specification and the appended claims shall cover multiple references, for example, the reference to "semiconductor device" includes multiple such semiconductor device.
在本发明中所使用的某些特定用语,它们只使用在上位与描述性概念且不为了限制的目的,所有的用语,包括技术与科学用语,除非上下文清楚地另外定义,皆具有如本发明所属领域中的普通技艺者所普遍了解的相同意义;再者,如在普遍使用的字典中所定义者,应该被解释为具有如本发明所属领域中具有普通技艺的人所普遍了解的意义,以及,如在普遍使用的字典中所定义者,应该解释为具有与在相关领域以及本发明的上下文中它们的意义一致的意义,这些普遍地使用的用语将不会解释成过度理想或者刻板的概念,除非上下文清楚地另外定义。Certain specific terms used in the present invention are used in general and descriptive terms only and not for the purpose of limitation. All terms, including technical and scientific terms, unless the context clearly defines otherwise, have the same meaning as in the present invention. The same meaning as generally understood by those of ordinary skill in the art; moreover, as defined in commonly used dictionaries, it should be interpreted as having the meaning generally understood by those of ordinary skill in the art to which the present invention belongs, And, as defined in commonly used dictionaries, should be interpreted as having meanings consistent with their meanings in the relevant fields and in the context of the present invention, and these commonly used terms will not be construed as being overly idealistic or stereotyped concepts unless the context clearly defines otherwise.
发明人构想出双栅极氧化层以提供金属氧化物半导体控制的功率半导体装置。图2是依据本发明实施例的金属氧化物半导体剖面示范说明实施例。图2是展示本发明的半导体装置的其中一种型式的示范的延伸漏极金属氧化物半导体(EDMOS)晶体管。图2的延伸漏极金属氧化物半导体100,以P型基底为例,具有基底110,其上被配置深N型阱120。配置于深N型阱120中的是位于源极区250的P型阱130与位于漏极区260的N型阱140。P掺杂源极区150与N掺杂源极区160被配置在P型阱中并定义出源极区250的接触区。配置在N型阱140中的N掺杂漏极区170定义出漏极区260的接触区。The inventors conceived of dual gate oxides to provide metal oxide semiconductor controlled power semiconductor devices. FIG. 2 is an exemplary illustration of a cross-section of a metal oxide semiconductor according to an embodiment of the present invention. FIG. 2 is an exemplary extended-drain metal-oxide-semiconductor (EDMOS) transistor showing one type of semiconductor device of the present invention. The extended drain metal oxide semiconductor 100 in FIG. 2 takes a P-type substrate as an example and has a substrate 110 on which a deep N-type well 120 is disposed. Disposed in the deep N-type well 120 are the P-type well 130 located in the source region 250 and the N-type well 140 located in the drain region 260 . The P-doped source region 150 and the N-doped source region 160 are disposed in the P-type well and define a contact region of the source region 250 . The N-doped drain region 170 disposed in the N-type well 140 defines a contact region of the drain region 260 .
介电层180定义P掺杂源极区150对于源极区250的接触区域的外边界以及位于漏极区260的N型阱140的外边界。介电层从源极区250的接触区到N掺杂源极区160结束,并约略从漏极区260的N型阱140的内边界延续。根据图2的说明实施例,介电层包括薄氧化层190与厚氧化层200。在本发明的某一实施例中,薄氧化层190与厚氧化层200可为栅极氧化层。介电层180定义P掺杂源极区150对于源极区250的接触区域的外边界以及位于漏极区260的N型阱140的外边界。介电层从源极区250的接触区到N掺杂源极区160结束,并约略从漏极区260的N型阱140的内边界延续。根据图2的说明实施例,介电层包括薄氧化层190与厚氧化/薄氧化层200。在本发明的某一实施例中,薄氧化层190与厚氧化/薄氧化层200可为栅极氧化层。The dielectric layer 180 defines the outer boundary of the contact region of the P-doped source region 150 to the source region 250 and the outer boundary of the N-type well 140 located in the drain region 260 . The dielectric layer ends from the contact region of the source region 250 to the N-doped source region 160 and continues approximately from the inner boundary of the N-type well 140 of the drain region 260 . According to the illustrated embodiment of FIG. 2 , the dielectric layer includes a thin oxide layer 190 and a thick oxide layer 200 . In an embodiment of the invention, the thin oxide layer 190 and the thick oxide layer 200 may be gate oxide layers. The dielectric layer 180 defines the outer boundary of the contact region of the P-doped source region 150 to the source region 250 and the outer boundary of the N-type well 140 located in the drain region 260 . The dielectric layer ends from the contact region of the source region 250 to the N-doped source region 160 and continues approximately from the inner boundary of the N-type well 140 of the drain region 260 . According to the illustrated embodiment of FIG. 2 , the dielectric layer includes a thin oxide layer 190 and a thick/thin oxide layer 200 . In an embodiment of the present invention, the thin oxide layer 190 and the thick oxide/thin oxide layer 200 may be gate oxide layers.
定义栅极区240的两层导电层结构被配置在包括本发明的双栅极氧化层的介电层上。例如,如图2的说明实施例所示,两层导电层结构包括被中界导电氧化层分隔的第一多晶硅层210与第二多晶硅层230,该层间导电氧化层为高温氧化层(HTO)220。在图2的说明实施例中,第一多晶硅层210被配置横跨薄氧化层190以及第一多晶硅层210的一部分。在本发明的实施例中,薄氧化层190,至少局部,可延着薄氧化/厚氧化层200被配置。更准确地说,第一多晶硅层210延着薄氧化层190以一固定厚度延续,然后第一多晶硅层210以阶梯方式叠层,延着薄氧化层190延续而变厚。此时,当薄氧化层190被配置横跨薄氧化/厚氧化层200时,第一多晶硅层210的厚度改变以相符于薄氧化/厚氧化层200。第一多晶硅层210延续以延伸到薄氧化层190被延着薄氧化/厚氧化层200配置的区域中。薄氧化层190被延着薄氧化/厚氧化层200配置且未被第一多晶硅层覆盖的剩余的部分会与高温氧化层接触。The two-layer conductive layer structure defining the gate region 240 is disposed on a dielectric layer including the double gate oxide layer of the present invention. For example, as shown in the illustrative embodiment of FIG. 2, a two-layer conductive layer structure includes a first polysilicon layer 210 and a second polysilicon layer 230 separated by a middle conductive oxide layer, which is a high temperature oxide layer (HTO) 220 . In the illustrated embodiment of FIG. 2 , first polysilicon layer 210 is disposed across thin oxide layer 190 and a portion of first polysilicon layer 210 . In an embodiment of the invention, thin oxide layer 190 may, at least partially, be disposed along thin oxide/thick oxide layer 200 . More precisely, the first polysilicon layer 210 extends along the thin oxide layer 190 with a fixed thickness, and then the first polysilicon layer 210 is stacked in a stepwise manner, extending along the thin oxide layer 190 to become thicker. At this time, when the thin oxide layer 190 is disposed across the thin oxide/thick oxide layer 200 , the thickness of the first polysilicon layer 210 changes to conform to the thin oxide/thick oxide layer 200 . The first polysilicon layer 210 continues to extend into the region where the thin oxide layer 190 is disposed along the thin oxide/thick oxide layer 200 . The thin oxide layer 190 is disposed along the thin oxide/thick oxide layer 200 and the remaining portion not covered by the first polysilicon layer is in contact with the high temperature oxide layer.
第二多晶硅层230,其被高温氧化层220所分隔,被配置在由第一多晶硅层210与高温氧化层220向内的某些部分,且第二多晶硅层230延着第一多晶硅层210的外表面至两层导电层结构的边界共形地延伸。实际上,第一多晶硅层210与高温氧化层220被配置用于在漂移区形成场效电板,以保护漂移区不被电荷效应所影响导致击穿而增加的击穿电压。The second polysilicon layer 230, which is separated by the high temperature oxide layer 220, is configured in some parts inward from the first polysilicon layer 210 and the high temperature oxide layer 220, and the second polysilicon layer 230 extends along the first polysilicon layer 230. The outer surface of a polysilicon layer 210 extends conformally to the boundary of the two-layer conductive layer structure. In fact, the first polysilicon layer 210 and the high temperature oxide layer 220 are configured to form a field effect electric plate in the drift region, so as to protect the drift region from being affected by the charge effect to cause breakdown and increase the breakdown voltage.
如图2的说明实施例所示,两层导电层结构的边界可为N掺杂源极区160起始之处。故,薄氧化/厚氧化层200的部分可延续以延伸至位于漏极区260的N掺杂源极区160之处。As shown in the illustrative embodiment of FIG. 2 , the boundary of the two-layer conductive layer structure may be where the N-doped source region 160 begins. Therefore, portions of the thin oxide/thick oxide layer 200 may continue to extend to the N-doped source region 160 located at the drain region 260 .
当图2的实施例以具有多晶硅层的两层导电层结构的形式被形容时,在某些实施例中,导电层其中之一或是两者可包括任何材料或本领域中作为导电材料的材料。更确切地,第一导电层的导电材料可与第二导电层的导电材料相同或相异。在本发明的某些实施例中,第一导电层与第二导电层可具有如本发明说明实施例所示及上述说明的不同的几何形状。While the embodiment of FIG. 2 is described in the form of a two-layer conductive layer structure having a polysilicon layer, in some embodiments, one or both of the conductive layers may comprise any material or known in the art as a conductive material. Material. Rather, the conductive material of the first conductive layer may be the same as or different from the conductive material of the second conductive layer. In some embodiments of the present invention, the first conductive layer and the second conductive layer may have different geometries as shown in the illustrated embodiments of the present invention and described above.
根据本发明的某些实施例,两层导电层结构的栅极材料可为多晶硅、金属或硅化物多晶硅。层间绝缘层可为氧化物、氧化氮氧化物(ONO)或高介电绝缘体。在本发明的某些实施例中,第一导电层与第二导电层可被配置具有相同的偏压电压。在本发明的其他实施例中,第一导电层与第二导电层可被配置具有不同的偏压电压。According to some embodiments of the present invention, the gate material of the two-layer conductive layer structure may be polysilicon, metal or silicide polysilicon. The interlayer insulating layer may be oxide, oxynitride oxide (ONO), or a high dielectric insulator. In some embodiments of the present invention, the first conductive layer and the second conductive layer may be configured to have the same bias voltage. In other embodiments of the present invention, the first conductive layer and the second conductive layer may be configured to have different bias voltages.
在不被理论限制的情况下,对比于传统的延伸漏极金属氧化物半导体场效晶体管(EDMOSFET),本发明的双栅极氧化结构复合物增加栅极区240与漏极区260之间的击穿电压,而漂移区的电流流动路径被有效的减少以降低装置的RON。Without being bound by theory, the double gate oxide structure composite of the present invention increases the distance between the gate region 240 and the drain region 260 compared to a conventional extended drain metal oxide semiconductor field effect transistor (EDMOSFET). breakdown voltage, while the current flow path in the drift region is effectively reduced to lower the RON of the device.
在本发明的实施例中,中界导电氧化层(在某些实施例中为高温氧化层)、绝缘层、以及第二导电层(在某些实施例中为第二多晶硅层)边缘的后介电层(在某些实施例中为厚栅极氧化物)的总厚度为该厚度以增加击穿电压。在本发明的实施例中,上述层的总厚度可在第二导电层边缘上从约到约的范围之间。在本发明的实施例中,薄氧化层的厚度可为约到约厚栅极氧化层的厚度可为约到高温氧化层的厚度可为约到约在本发明的实施例中,薄氧化层,其可为栅极氧化层,的厚度可为约到约在本发明的实施例中,厚氧化层,其可为栅极氧化层,的厚度可为约到约依然在本发明的实施例中,中界导电氧化层,其可为用高温氧化沉积的氧化物,将第一导电层从第二导电层分离,可为约到约 In an embodiment of the present invention, the boundary conductive oxide layer (in some embodiments, a high temperature oxide layer), the insulating layer, and the second conductive layer (in some embodiments, a second polysilicon layer) edge The total thickness of the rear dielectric layer (thick gate oxide in some embodiments) is this thickness to increase the breakdown voltage. In an embodiment of the present invention, the total thickness of the aforementioned layers may vary from about to appointment between the ranges. In an embodiment of the invention, the thickness of the thin oxide layer may be about to appointment The thickness of the thick gate oxide can be approximately arrive The thickness of the high temperature oxide layer can be about to appointment In an embodiment of the invention, the thin oxide layer, which may be a gate oxide layer, may have a thickness of about to appointment In an embodiment of the invention, the thick oxide layer, which may be a gate oxide layer, may have a thickness of about to appointment Still in an embodiment of the invention, the intermediate conductive oxide layer, which may be an oxide deposited by high temperature oxidation, separating the first conductive layer from the second conductive layer, may be about to appointment
在本发明的实施例中,在第二多晶硅层的总氧化物的结构对于击穿电压提供约10.8MV/cm的贡献。依据本发明的某些实施例,在第二多晶硅层边缘与漏极区之间的击穿电压在约39V至约200V的范围之间。In an embodiment of the invention, the structure of the total oxide in the second polysilicon layer provides a contribution of about 10.8 MV/cm to the breakdown voltage. According to some embodiments of the present invention, the breakdown voltage between the edge of the second polysilicon layer and the drain region is in the range of about 39V to about 200V.
在本发明的某些实施例中,漂移区一般都包括P型阱与N型阱,但在后续的描述中可能会有不同的配置。在本发明的实施例中,N型阱可为N-阱。依据某些实施例,在不被理论限制的情况下,N-阱可帮助减少有效的通道长度以及漂移区的电阻。In some embodiments of the present invention, the drift region generally includes a P-type well and an N-type well, but there may be different configurations in the subsequent description. In an embodiment of the invention, the N-well may be an N-well. According to some embodiments, without being bound by theory, the N-well can help reduce the effective channel length and the resistance of the drift region.
根据本发明的某些实施例,N型双漏极(NDD)层可被注入于漂移区中。在本发明的某些实施例中,在不被理论限制的情况下,NDD层可减少装置的RON。According to some embodiments of the present invention, an N-type double drain (NDD) layer may be implanted in the drift region. In certain embodiments of the present invention, without being bound by theory, the NDD layer can reduce the RON of the device.
在本发明的某些实施例中,P型阱的材料容易向外扩散至氧化层。在不被理论限制的情况下,该P型材料可用于减少有效的通道长度以及通道电阻。In some embodiments of the present invention, the material of the P-type well readily out-diffuses into the oxide layer. Without being bound by theory, the P-type material can be used to reduce the effective channel length and channel resistance.
本发明的双氧化层可用本领域用于形成氧化层的任何已知技术予以形成。根据本发明的实施例,栅极氧化层可被应用于区域硅氧化法(LOCOS)的过程。The double oxide layer of the present invention can be formed by any technique known in the art for forming oxide layers. According to an embodiment of the present invention, the gate oxide layer may be applied to a process of area oxidation of silicon (LOCOS).
在实施例中,本发明可被应用于以浅沟道隔离(STI)方法制造的半导体装置。在某些实施例中,本发明被应用于以深沟道隔离(DTI)方法制造的半导体装置。在本发明其他实施例中,双栅极氧化物结构与本发明的多横向降低表面电场(multi RESURF)结构可被应用于具有绝缘层上覆硅(SOI)结构的半导体装置。依然在本发明的其他实施例中,双栅极氧化物结构与本发明的降低表面电场结构可被应用于以N型外延方法、P型外延方法、非外延方法中之一或其组合制造的半导体。In an embodiment, the present invention may be applied to a semiconductor device fabricated in a shallow trench isolation (STI) method. In some embodiments, the present invention is applied to semiconductor devices fabricated by deep trench isolation (DTI) methods. In other embodiments of the present invention, the double gate oxide structure and the multi RESURF structure of the present invention can be applied to a semiconductor device with a silicon-on-insulator (SOI) structure. Still in other embodiments of the present invention, the double gate oxide structure and the RESURF structure of the present invention can be applied to N-type epitaxial methods, P-type epitaxial methods, non-epitaxial methods or a combination thereof. semiconductor.
在本发明的某些实施例中,双栅极氧化物结构与本发明的降低表面电场功率半导体可被应用在N通道延伸漏极金属氧化物半导体。在本发明的其他实施例中,双栅极氧化物结构与本发明的降低表面电场功率半导体可被应用在P通道延伸漏极金属氧化物半导体。依然在本发明的其他实施例中,双栅极氧化物结构与本发明的降低表面电场功率半导体可被应用在N通道侧向扩散金属氧化物半导体场效晶体管。依然在本发明的其他实施例中,双栅极氧化物结构与本发明的降低表面电场功率半导体可被应用在P通道侧向扩散金属氧化物半导体场效晶体管。In some embodiments of the present invention, the dual gate oxide structure and the RESURF power semiconductor of the present invention can be applied in N-channel extended-drain MOS. In other embodiments of the present invention, the double gate oxide structure and the RESURF power semiconductor of the present invention can be applied in the P-channel extended drain MOS. Still in other embodiments of the present invention, the dual gate oxide structure and the RESURF power semiconductor of the present invention can be applied to N-channel laterally diffused MOSFETs. Still in other embodiments of the present invention, the dual gate oxide structure and the RESURF power semiconductor of the present invention can be applied to a P-channel laterally diffused MOSFET.
图3A是依据本发明另一实施例的延伸漏极金属氧化物半导体晶体管剖面图。图3A的延伸漏极金属氧化物半导体300包括基底310,其上被配置深N型阱320。N-阱470被配置在位于源极区450的P型阱330与位于漏极区460的N型阱340之间。P掺杂源极区350与N掺杂源极区360被配置在P型阱330中并定义出源极区450的接触区,而配置在N型阱340中的N掺杂漏极区370定义出漏极区460的接触区。3A is a cross-sectional view of an extended-drain MOSFET according to another embodiment of the present invention. The extended drain MOS 300 of FIG. 3A includes a substrate 310 on which a deep N-type well 320 is disposed. The N-well 470 is disposed between the P-type well 330 located in the source region 450 and the N-type well 340 located in the drain region 460 . The P-doped source region 350 and the N-doped source region 360 are arranged in the P-type well 330 and define the contact region of the source region 450 , while the N-doped drain region 370 arranged in the N-type well 340 A contact region of the drain region 460 is defined.
介电层380定义P掺杂源极区350对于源极区450的接触区域的外边界以及位于漏极区460的N型阱340的外边界。定义栅极区440的两层导电层结构将源极区450从漏极区460分离。两层导电层结构包括本发明具有薄氧化层390与薄氧化/厚氧化层400的双氧化物栅极氧化层。两层导电层结构包括可为第一导电层的第一多晶硅层410以及可为第二导电层的第二多晶硅层430,其中第一导电层与第二导电层被像是高温氧化层420的介电层隔开。The dielectric layer 380 defines the outer boundary of the contact area of the P-doped source region 350 to the source region 450 and the outer boundary of the N-type well 340 located in the drain region 460 . The two-layer conductive layer structure defining the gate region 440 separates the source region 450 from the drain region 460 . The two-layer conductive layer structure includes the double oxide gate oxide layer of the present invention having a thin oxide layer 390 and a thin oxide/thick oxide layer 400 . The two-layer conductive layer structure includes a first polysilicon layer 410 which may be a first conductive layer and a second polysilicon layer 430 which may be a second conductive layer, wherein the first conductive layer and the second conductive layer are considered as high temperature The oxide layer 420 is separated by a dielectric layer.
注入区或P场注入480被配置在N-阱470中。在本发明的实施例中,P型离子可为,例如,硼。在本发明的某些实施例中,P场注入480的P型离子被选择的标准为在注入驱入程序后容易向外扩散。在本发明的某些实施例中,P场注入480的掺杂浓度在约5×1012/cm2至约1×1014/cm2的范围内。An implant region or P field implant 480 is configured in the N-well 470 . In an embodiment of the present invention, the P-type ions may be, for example, boron. In some embodiments of the present invention, the P-type ions of the P-field implant 480 are selected for ease of outdiffusion after the implant drive-in procedure. In some embodiments of the invention, the doping concentration of P field implant 480 is in the range of about 5×10 12 /cm 2 to about 1×10 14 /cm 2 .
图3B是展示通道490的图3A的延伸漏极金属氧化物半导体晶体管300一部分的详细剖面图。图3B展示通道490的有效长度经由包括配置在N-阱470中的P场注入480被减少,其中通道490靠近P型阱330与N型阱340。依据本发明的实施例,通道的有效长度减少幅度495可在约0.2μm至约1μm的范围之间。3B is a detailed cross-sectional view of a portion of the extended-drain MOS transistor 300 of FIG. 3A showing channel 490 . 3B shows that the effective length of channel 490 is reduced by including P-field implant 480 disposed in N - well 470 , where channel 490 is adjacent to P-well 330 and N-well 340 . According to an embodiment of the present invention, the effective length reduction 495 of the channel may be in the range of about 0.2 μm to about 1 μm.
图4A是依据本发明另一实施例的延伸漏极金属氧化物半导体晶体管剖面图。图4A的延伸漏极金属氧化物半导体500包括基底510,其上被配置深N型阱520。N型掺杂漏极区540形成P型阱530的一部分。P掺杂源极区550与N掺杂源极区560被配置在P型阱530之中,并定义源极区650的接触区域,而N掺杂漏极区570被配置在N型掺杂漏极区540之中以定义漏极区660的接触区域。4A is a cross-sectional view of an extended-drain MOSFET according to another embodiment of the present invention. The extended drain MOS 500 of FIG. 4A includes a substrate 510 on which a deep N-type well 520 is disposed. The N-type doped drain region 540 forms a part of the P-type well 530 . The P-doped source region 550 and the N-doped source region 560 are configured in the P-type well 530 and define the contact area of the source region 650, while the N-doped drain region 570 is configured in the N-type doped A contact area of the drain region 660 is defined in the drain region 540 .
介电层580定义P掺杂源极区550对于源极区650的接触区域的外边界以及位于漏极区560的N型掺杂漏极区540的外边界。定义栅极区640的两层导电层结构将源极区650从漏极区660分离。两层导电层结构包括本发明具有薄氧化层590与薄氧化/厚氧化层600的双氧化物栅极氧化层。两层导电层结构包括可为第一导电层的第一多晶硅层610以及可为第二导电层的第二多晶硅层630,其中第一导电层与第二导电层被像是高温氧化层620的介电层隔开。The dielectric layer 580 defines the outer boundary of the contact area of the P-doped source region 550 to the source region 650 and the outer boundary of the N-type doped drain region 540 located in the drain region 560 . The two-layer conductive layer structure defining the gate region 640 separates the source region 650 from the drain region 660 . The two-layer conductive layer structure includes the inventive double oxide gate oxide layer with thin oxide layer 590 and thin oxide/thick oxide layer 600 . The two-layer conductive layer structure includes a first polysilicon layer 610 which may be a first conductive layer and a second polysilicon layer 630 which may be a second conductive layer, wherein the first conductive layer and the second conductive layer are considered as high temperature The oxide layer 620 is separated by a dielectric layer.
依据图4A的说明实施例,N型掺杂漏极区540可被注入以从漏极区660延伸入,至少局部,P型阱530的一部分,于栅极区640的两层导电层结构下方处终止。图4B是展示通道690的图4A的延伸漏极金属氧化物半导体晶体管500一部分的详细剖面图。图4B展示通道690的有效长度经由延长配置在P型阱530中的N型掺杂漏极区540至栅极区640的两层导电层结构下方而减少。依据本发明的实施例,N型掺杂漏极区540可于第一多晶硅层610下方处终止。依据本发明的某些实施例,N型掺杂漏极区540在第一多晶硅层610的阶梯部份615层迭与变厚前,于第一多晶硅层610下方处终止。依据本发明的实施例,通道的有效长度减少幅度695可在约0.2μm至约1μm的范围之间。According to the illustrated embodiment of FIG. 4A , N-type doped drain region 540 may be implanted to extend from drain region 660 into, at least partially, a portion of P-type well 530 below the two-layer conductive layer structure of gate region 640 terminated. 4B is a detailed cross-sectional view of a portion of the extended-drain MOS transistor 500 of FIG. 4A showing channel 690 . 4B shows that the effective length of the channel 690 is reduced by extending the N-type doped drain region 540 disposed in the P-type well 530 to under the two-layer conductive layer structure of the gate region 640 . According to an embodiment of the present invention, the N-type doped drain region 540 may terminate below the first polysilicon layer 610 . According to some embodiments of the present invention, the N-type doped drain region 540 terminates below the first polysilicon layer 610 before the stepped portion 615 of the first polysilicon layer 610 is laminated and thickened. According to an embodiment of the present invention, the effective length reduction 695 of the channel may be in the range of about 0.2 μm to about 1 μm.
图5A是图4A的延伸漏极金属氧化物半导体500的电子特性的TCAD仿真。图5B是图5A的TCAD仿真的通道690的详细概观。第一PN结525被展示在深N型阱520与P型阱530之间。第二PN结535被展示在P型阱530与N型掺杂漏极区540之间。第二PN结535的左侧展示有效长度680以及有P型阱530的N型掺杂漏极区540的接口减少有效长度680的效果。FIG. 5A is a TCAD simulation of the electrical characteristics of the extended-drain MOS 500 of FIG. 4A . Figure 5B is a detailed overview of the channel 690 of the TCAD simulation of Figure 5A. A first PN junction 525 is shown between deep N-type well 520 and P-type well 530 . A second PN junction 535 is shown between the P-type well 530 and the N-type doped drain region 540 . The left side of the second PN junction 535 shows the effective length 680 and the effect of reducing the effective length 680 by the interface of the N-type doped drain region 540 with the P-type well 530 .
图6A是已知延伸漏极金属氧化物半导体中漏极-源极电压Vds相对于漏极-源极电流Ids的图式。图6A展示已知延伸漏极金属氧化物半导体晶体管的类饱和效应。类饱和效应(quasi-saturation effect)于区域692中说明,且定义在漏极与有横跨漏极与源极区的增加电压Vds的高电压MOS装置的源极之间的电流Ids反应。如图6A所示,没有标示饱和电压区,Ids于饱和时靠近清楚定义的电流。在类饱和效应区,漂移区中的电场峰顶与通道电流没有饱和,且漂移区中的非线性抵抗作用被实现。6A is a graph of drain-source voltage V ds versus drain-source current I ds in a known extended-drain MOS. FIG. 6A shows the saturation-like effect of a known extended-drain MOS transistor. A quasi-saturation effect is illustrated in region 692 and defines the current I ds reaction between the drain and the source of a high voltage MOS device with an increased voltage Vds across the drain and source regions. As shown in Figure 6A, where the saturation voltage region is not indicated, I ds approaches a well-defined current at saturation. In the saturation-like effect region, the electric field peak in the drift region and the channel current are not saturated, and the nonlinear resistance in the drift region is realized.
图6B是依据本发明实施例的延伸漏极金属氧化物半导体中漏极-源极电压相对于漏极-源极电流的图式。图6B展示有NDD注入区的本发明的EDMOS如何克服已知EDMOS的类饱和效应。图6B的图展示本发明实施例的EDMOS中的Ids导致饱和状态的清楚定义的电流694。在本发明的实施例中,一旦达到饱和状态,当Ids的反应靠近达到固定Ids的饱和时,关系于Vds的改变的Ids的反应为线性,即,Ids保持固定或达到饱和后,关系于Vds的改变只有些微改变。转移区被建立于转至饱和区的曲线与直线之间。可从曲线计算,在本发明的某些实施例中,漏极-源极电流相对于漏极-源极电压的斜率在建立的转移区与对于饱和区的直线斜率之间为至少约6×10-5安培/微米-伏特。6B is a graph of drain-source voltage versus drain-source current in an extended-drain MOS in accordance with an embodiment of the present invention. FIG. 6B shows how the EDMOS of the present invention with NDD implanted regions overcomes the saturation-like effect of known EDMOS. The graph of FIG. 6B shows that I ds in the EDMOS of an embodiment of the present invention results in a well-defined current 694 for the saturation state. In an embodiment of the invention, once saturation is reached, the response of I ds is linear with respect to changes in V ds as the response of I ds approaches saturation at a fixed Ids, i.e., I ds remains fixed or after saturation is reached , with only a slight change in relation to changes in V ds . A transition zone is established between the curve and the straight line going to the saturation zone. It can be calculated from the curve that, in certain embodiments of the invention, the slope of the drain-source current versus the drain-source voltage is at least about 6× between the established transition region and the slope of the line for the saturation region 10 -5 amps/micron-volts.
图7是依据本发明另一实施例的延伸漏极金属氧化物半导体晶体管剖面图。图7的延伸漏极金属氧化物半导体102包括基底110,其上被配置深N型阱120。延伸漏极金属氧化物半导体晶体管102更包括位于源极区250的P型阱130以及位于漏极区260的N型阱140。P掺杂源极区150与N掺杂源极区160被配置在P型阱130中并定义出源极区250的接触区,而配置在N型阱140中的N掺杂漏极区170定义出漏极区260的接触区。FIG. 7 is a cross-sectional view of an extended-drain MOSFET according to another embodiment of the present invention. The extended drain MOS 102 of FIG. 7 includes a substrate 110 on which a deep N-type well 120 is disposed. The extended-drain MOSFET 102 further includes a P-type well 130 located in the source region 250 and an N-type well 140 located in the drain region 260 . The P-doped source region 150 and the N-doped source region 160 are arranged in the P-type well 130 and define the contact region of the source region 250 , while the N-doped drain region 170 arranged in the N-type well 140 A contact region of the drain region 260 is defined.
介电层180定义P掺杂源极区150对于源极区250的接触区域的外边界以及位于漏极区260的N型阱140的外边界。介电层从源极区250的接触区开始到N掺杂源极区160结束,并约略从漏极区260的N型阱140的内边界延续。根据图6A及图6B的说明实施例,介电层包括薄氧化层190与厚氧化层200。在本发明的实施例中,薄氧化层190与厚氧化层200可为栅极氧化层。The dielectric layer 180 defines the outer boundary of the contact region of the P-doped source region 150 to the source region 250 and the outer boundary of the N-type well 140 located in the drain region 260 . The dielectric layer starts from the contact region of the source region 250 and ends at the N-doped source region 160 and continues approximately from the inner boundary of the N-type well 140 of the drain region 260 . According to the illustrated embodiment of FIGS. 6A and 6B , the dielectric layer includes a thin oxide layer 190 and a thick oxide layer 200 . In an embodiment of the invention, the thin oxide layer 190 and the thick oxide layer 200 may be gate oxide layers.
定义栅极区240的两层导电层结构被配置在包括本发明的双栅极氧化层的介电层上。两层导电层结构可依据以图2为例所定义的两层导电层结构的描述被配置。The two-layer conductive layer structure defining the gate region 240 is disposed on a dielectric layer including the double gate oxide layer of the present invention. The two-layer conductive layer structure can be configured according to the description of the two-layer conductive layer structure defined by taking FIG. 2 as an example.
图7的延伸漏极金属氧化物半导体晶体管更包括被配置在漏极区260的N-注入270。根据图7的说明实施例,N-注入270可横跨延伸N型阱140的上端部分与N掺杂漏极区170。此外,N-注入270可延伸入N型阱140中。根据本发明的实施例,N-注入270可在薄氧化/厚氧化层200下方处终止。在本发明的某些实施例中,N-注入270在被配置于高温氧化层220、薄氧化层190与薄氧化/厚氧化层200之上的第二多晶硅层230的阶层下方部份的下方处终止。在本发明的某些实施例中,N-注入270可在第二多晶硅层230的边缘对准高温氧化层220处的两层导电层结构的下方处终止。在本发明的某些实施例中,N-注入270可在第二多晶硅层230的边缘对准高温氧化层220与薄氧化层190处的两层导电层结构的下方处终止。在本发明的某些实施例中,N-注入270的掺杂浓度在从约5×1012/cm2至约1×1014/cm2的范围中。The extended drain MOS transistor of FIG. 7 further includes an N − implant 270 disposed in the drain region 260 . According to the illustrated embodiment of FIG. 7 , N - implant 270 may span the upper portion of extended N-type well 140 and N-doped drain region 170 . Additionally, N - implant 270 may extend into N-type well 140 . According to an embodiment of the present invention, N - implant 270 may be terminated below thin oxide/thick oxide layer 200 . In some embodiments of the present invention, N - implant 270 is in the lower level portion of second polysilicon layer 230 disposed over high temperature oxide layer 220, thin oxide layer 190, and thin oxide/thick oxide layer 200. terminates below. In some embodiments of the present invention, N - implant 270 may terminate below the two-layer conductive layer structure where the edge of second polysilicon layer 230 is aligned with high temperature oxide layer 220 . In some embodiments of the present invention, N - implant 270 may terminate below the two-layer conductive layer structure where the edge of second polysilicon layer 230 is aligned with high temperature oxide layer 220 and thin oxide layer 190 . In some embodiments of the invention, the doping concentration of N - implant 270 is in the range from about 5×10 12 /cm 2 to about 1×10 14 /cm 2 .
图8是根据本发明的实施例的N型横向掺杂金属氧化物半导体(NLDMOS)晶体管的剖面图。图8的NLDMOS104包括基底110,其上被配置深N型阱120。延伸漏极金属氧化物半导体晶体管102更包括位于源极区250的P体区135以及位于漏极区260的N型阱140。P掺杂源极区155与N掺杂源极区165被配置在P体区135中并定义出源极区250的接触区,而配置在N型阱140中的N掺杂漏极区170定义出漏极区260的接触区。8 is a cross-sectional view of an N-type laterally doped metal oxide semiconductor (NLDMOS) transistor according to an embodiment of the present invention. The NLDMOS 104 of FIG. 8 includes a substrate 110 on which a deep N-type well 120 is disposed. The extended-drain MOSFET 102 further includes a P-body region 135 located in the source region 250 and an N-type well 140 located in the drain region 260 . The P-doped source region 155 and the N-doped source region 165 are arranged in the P body region 135 and define the contact region of the source region 250 , while the N-doped drain region 170 arranged in the N-type well 140 A contact region of the drain region 260 is defined.
介电层180定义P掺杂源极区155对于源极区250的接触区域的外边界以及位于漏极区260的N型阱140的外边界。介电层从源极区250的接触区开始到N掺杂源极区160结束,并约略从漏极区260的N型阱140的内边界延续。根据图8的说明实施例,介电层包括薄氧化层190与厚氧化层200。在本发明的实施例中,薄氧化层190与厚氧化层200可为栅极氧化层,即,分别为薄栅极氧化层与厚栅极氧化层。The dielectric layer 180 defines the outer boundary of the contact area of the P-doped source region 155 to the source region 250 and the outer boundary of the N-type well 140 located in the drain region 260 . The dielectric layer starts from the contact region of the source region 250 and ends at the N-doped source region 160 and continues approximately from the inner boundary of the N-type well 140 of the drain region 260 . According to the illustrated embodiment of FIG. 8 , the dielectric layer includes a thin oxide layer 190 and a thick oxide layer 200 . In an embodiment of the present invention, the thin oxide layer 190 and the thick oxide layer 200 may be gate oxide layers, ie, a thin gate oxide layer and a thick gate oxide layer, respectively.
定义栅极区240的两层导电层结构被配置在包括本发明的双栅极氧化层的介电层上。尽管两层导电层结构可具有依据本发明的某些实施例的已知结构,两层导电层结构可依据以图2为例所定义的两层导电层结构的描述被配置。The two-layer conductive layer structure defining the gate region 240 is disposed on a dielectric layer including the double gate oxide layer of the present invention. Although the two-layer conductive layer structure may have known structures according to some embodiments of the present invention, the two-layer conductive layer structure may be configured according to the description of the two-layer conductive layer structure defined by taking FIG. 2 as an example.
图9是根据本发明实施例的RESURF装置的三维图。图9展示具有多横向降低表面电场的延伸漏极金属氧化物半导体700。延伸漏极金属氧化物半导体700包括基底710,其上被配置深N型阱720。延伸漏极金属氧化物半导体晶体管700也包括P型阱730以及N型阱740。P掺杂源极区750与N掺杂源极区760被配置在P型阱730中,而N掺杂漏极区770被配置在N型阱740中。延伸漏极金属氧化物半导体700包括两层导电结构,其具有根据这说明实施例的第一导电层或第一多晶硅层810以及根据这说明实施例的第二导电层或第二多晶硅层830。图9的延伸漏极金属氧化物半导体700包括多个配置在N型阱740中的P漂移注入880。Figure 9 is a three-dimensional view of a RESURF device according to an embodiment of the present invention. FIG. 9 shows an extended-drain MOS 700 with multiple lateral resurf. The extended drain MOS 700 includes a substrate 710 on which a deep N-type well 720 is disposed. The extended drain MOS transistor 700 also includes a P-type well 730 and an N-type well 740 . The P-doped source region 750 and the N-doped source region 760 are configured in the P-type well 730 , and the N-doped drain region 770 is configured in the N-type well 740 . Extended drain metal oxide semiconductor 700 includes a two-layer conductive structure having a first conductive layer or first polysilicon layer 810 according to this illustrative embodiment and a second conductive layer or second polysilicon layer 810 according to this illustrative embodiment. Silicon layer 830 . The extended-drain MOS 700 of FIG. 9 includes a plurality of P-drift implants 880 disposed in the N-type well 740 .
图10是图9的延伸漏极金属氧化物半导体700的俯视图。依据这说明实施例,图10展示多个分离地配置且为矩形的P漂移注入880。图11A是沿着图10的RESURF装置的AA’线的剖面图,其展示多个P漂移注入880没有被驱入N型阱740的区域。图11B是沿着图10的RESURF装置的BB’线的剖面图,其展示定义N型阱740中的P漂移区的多个分离地配置的P漂移注入880的渗透。FIG. 10 is a top view of the extended drain MOS 700 of FIG. 9 . Figure 10 shows a plurality of separately configured and rectangular P-drift implants 880 in accordance with this illustrative embodiment. 11A is a cross-sectional view along line AA' of the RESURF device of FIG. 11B is a cross-sectional view along line BB' of the RESURF device of FIG.
图9的半导体装置的目的在于高电压装置中本发明的多横向降低表面电场,双氧化栅极结构与本发明的多横向降低表面电场结构可被应用到包含高电压装置的半导体装置。The purpose of the semiconductor device in FIG. 9 is the multiple lateral resurf structure of the present invention in high voltage devices. The double oxide gate structure and the multiple lateral resurf structure of the present invention can be applied to semiconductor devices including high voltage devices.
在本发明的实施例中,深N型阱可被置换成N型阱以形成低侧N通道金属氧化物半导体(NMOS)装置。图11A及图11B为根据本发明另一实施例的EDMOS晶体管剖面图。图12的EDMOS106包括基底110,例如,P型基底或甚至是对准N型阱145的外延基底与P型阱135。这示范装置的其它元件,包含本发明的双氧化结构,在上文已说明。In embodiments of the present invention, the deep N-well may be replaced with an N-well to form a low-side N-channel metal-oxide-semiconductor (NMOS) device. 11A and 11B are cross-sectional views of an EDMOS transistor according to another embodiment of the present invention. EDMOS 106 of FIG. 12 includes substrate 110 , eg, a P-type substrate or even an epitaxial substrate aligned with N-type well 145 and P-type well 135 . Other elements of this exemplary device, including the double oxide structure of the present invention, are described above.
根据本发明某些实施例的第一导电层或第一多晶硅层与根据本发明某些实施例的第二导电层或第二多晶硅层可被配置成具有不同的偏压电压。在本发明的某些实施例中,第一导电层与第二导电层的偏压电压可在从约0伏特至约28伏特的范围内。The first conductive layer or first polysilicon layer according to some embodiments of the present invention and the second conductive layer or second polysilicon layer according to some embodiments of the present invention may be configured to have different bias voltages. In some embodiments of the present invention, the bias voltage of the first conductive layer and the second conductive layer may range from about 0 volts to about 28 volts.
例如,在本发明的实施例中,多晶硅-绝缘体-多晶硅(PIP)电容结构可被用于提供第一多晶硅层与第二多晶硅层不同的偏压电压。图13是根据本发明的实施例具有PIP电容280的EDMOS108晶体管的剖面图。根据本发明的某些实施例,PIP电容280的高温氧化层220可被用于达到欲想的单位电容。For example, in embodiments of the present invention, a polysilicon-insulator-polysilicon (PIP) capacitor structure may be used to provide different bias voltages for the first polysilicon layer than the second polysilicon layer. FIG. 13 is a cross-sectional view of an EDMOS 108 transistor with a PIP capacitor 280 according to an embodiment of the present invention. According to some embodiments of the present invention, the high temperature oxide layer 220 of the PIP capacitor 280 may be used to achieve a desired specific capacitance.
在本发明的实施例中,薄氧化/厚氧化层200与高温氧化层220的总厚度可提供较高的漏极击穿电压,但根据本发明的某些实施例,薄氧化/厚氧化层200与高温氧化层220的总厚度被配置成比场氧化层或浅沟道隔离结构的氧化物薄。In embodiments of the present invention, the total thickness of the thin oxide/thick oxide layer 200 and the high temperature oxide layer 220 can provide a higher drain breakdown voltage, but according to some embodiments of the present invention, the thin oxide/thick oxide layer The total thickness of the high temperature oxide layer 200 and the high temperature oxide layer 220 is configured to be thinner than the field oxide layer or the oxide of the shallow trench isolation structure.
本发明的半导体装置可从多种不同型式的层制造,包括但不限于N型外延层、P型外延层、N型非外延层、P型非外延层、N型绝缘层上覆硅层及/或P型绝缘层上覆硅层。本发明的结构可并入多种型式的半导体装置,包括但不限于,例如,N通道EDMOS、P通道EDMOS、N通道LDMOS以及P通道LDMOS。The semiconductor device of the present invention can be manufactured from many different types of layers, including but not limited to N-type epitaxial layer, P-type epitaxial layer, N-type non-epitaxial layer, P-type non-epitaxial layer, N-type silicon-on-insulator layer and /or the P-type insulating layer is covered with a silicon layer. The structure of the present invention can be incorporated into various types of semiconductor devices including, but not limited to, for example, N-channel EDMOS, P-channel EDMOS, N-channel LDMOS, and P-channel LDMOS.
本发明的半导体装置可具有任何型式的几何形状。本发明的几何形状的某些示范实施例被包括于,例如,图14A至图14E。通常结构由具有N掺杂源极区(910、1010、1110、1210、1310)及P掺杂源极区(920、1020、1120、1220、1320)的源极区(950、1050、1150、1250、1350)与具有N掺杂漏极区(960、1060、1160、1260、1360)的漏极区(970、1070、1170、1270、1370)所定义。这示范实施例的两层导电层结构包括第一多晶硅层(930、1040、1140、1240、1340)与第二多晶硅层(940、1040、1140、1240、1340)。The semiconductor devices of the present invention may have any type of geometry. Certain exemplary embodiments of the geometry of the present invention are included, for example, in FIGS. 14A-14E . A typical structure consists of a source region (950, 1050, 1150, 1150, 1250, 1350) and drain regions (970, 1070, 1170, 1270, 1370) having N-doped drain regions (960, 1060, 1160, 1260, 1360). The two-layer conductive layer structure of this exemplary embodiment includes a first polysilicon layer (930, 1040, 1140, 1240, 1340) and a second polysilicon layer (940, 1040, 1140, 1240, 1340).
图14A是根据本发明的实施例有矩形结构的延伸漏极N通道金属氧化物半导体的俯视图。图14B是根据本发明另一实施例的延伸漏极N通道金属氧化物半导体的俯视图。图14C是根据本发明另一实施例的延伸漏极N通道金属氧化物半导体的俯视图。14A is a top view of an extended-drain N-channel MOS with a rectangular structure according to an embodiment of the present invention. 14B is a top view of an extended-drain N-channel MOS according to another embodiment of the present invention. 14C is a top view of an extended-drain N-channel MOS according to another embodiment of the present invention.
图14D是根据本发明另一实施例的延伸漏极N通道金属氧化物半导体的俯视图,其中第二多晶硅层1240具有齿状结构。图14E是根据本发明另一实施例的延伸漏极N通道金属氧化物半导体的俯视图,其中第二多晶硅层1240具有圆型齿状结构。14D is a top view of an extended-drain N-channel MOS according to another embodiment of the present invention, wherein the second polysilicon layer 1240 has a tooth structure. 14E is a top view of an extended-drain N-channel MOS according to another embodiment of the present invention, wherein the second polysilicon layer 1240 has a circular tooth structure.
本发明的一面向提供制造像是延伸漏极金属氧化物半导体晶体管这种半导体装置的方法。根据本发明的实施例,如图16所示,制造EDMOS晶体管1700的方法包括提供具有衬底的半导体装置、深N型阱以及氧化层,或,尤其是牺牲氧化层1710。根据本发明的实施例为例,图15A说明半导体装置1500具有衬底1510,深N型阱1520被注入于衬底1510中,牺牲氧化层1525被形成于深N型阱1520上方An aspect of the present invention is to provide a method of fabricating a semiconductor device such as an extended-drain metal-oxide-semiconductor transistor. According to an embodiment of the present invention, as shown in FIG. 16 , a method of fabricating an EDMOS transistor 1700 includes providing a semiconductor device having a substrate, a deep N-type well, and an oxide layer, or, in particular, a sacrificial oxide layer 1710 . According to an embodiment of the present invention as an example, FIG. 15A illustrates that a semiconductor device 1500 has a substrate 1510, a deep N-type well 1520 is implanted in the substrate 1510, and a sacrificial oxide layer 1525 is formed above the deep N-type well 1520.
制造EDMOS晶体管的方法更可包括注入P型阱1730与注入N型阱1720的步骤,反之亦然。注入N型阱1720与注入P型阱1730的步骤可包含不同本领具有已知技艺者知道的子步骤。在本发明的某些实施例中,这些注入步骤可用光刻方法,在移除任何光刻胶掩模层后可能包含涂敷一或多层光刻胶的步骤,其对P型阱与N型阱的注入有帮助。注入N型阱1720与注入P型阱1730的步骤可更包括驱入注入物1740的步骤。不为了限制的目的,驱入方法对注入的离子穿透到更深的层有帮助。图15B展示完成具有P型阱1530与N型阱1540的步骤的半导体装置1500的示范实施例。The method of manufacturing the EDMOS transistor may further include the steps of implanting the P-type well 1730 and implanting the N-type well 1720, and vice versa. The steps of implanting N-type well 1720 and implanting P-type well 1730 may include various sub-steps known to those skilled in the art. In some embodiments of the present invention, these implantation steps may be performed photolithographically, possibly including the step of applying one or more layers of photoresist after removal of any photoresist masking layer, which is necessary for the P-type well and the N-well. Type well implantation helps. The steps of implanting the N-type well 1720 and implanting the P-type well 1730 may further include the step of driving the implant 1740 . Not intended to be limiting, the drive-in method facilitates penetration of implanted ions into deeper layers. FIG. 15B shows an exemplary embodiment of a semiconductor device 1500 completing the steps with a P-type well 1530 and an N-type well 1540 .
制造EDMOS晶体管的方法可更包括沉积氮化硅层1750。根据本发明的某些实施例,沉积氮化硅层1750的步骤也可包含施用扩散、光刻胶图案化、刻蚀以及横跨半导体装置沉积一次或多次。制造EDMOS晶体管的方法可更包括形成场氧化层1760。形成场氧化层1760可包括许多子步骤包括,例如,但不为了限制的目的,刻蚀、涂敷垫层、沉积一或多光刻胶层、形成间隙壁层,再刻蚀等。图15C展示完成具有氮化硅层1585与场氧化层1580的步骤的半导体装置1500的示范实施例。The method of fabricating an EDMOS transistor may further include depositing a silicon nitride layer 1750 . According to some embodiments of the present invention, the step of depositing the silicon nitride layer 1750 may also include applying diffusion, photoresist patterning, etching, and deposition across the semiconductor device one or more times. The method of fabricating an EDMOS transistor may further include forming a field oxide layer 1760 . Forming the field oxide layer 1760 may include a number of sub-steps including, for example, but not intended to be limiting, etching, applying a pad layer, depositing one or more photoresist layers, forming a spacer layer, etching, and the like. FIG. 15C shows an exemplary embodiment of a semiconductor device 1500 completing the steps with a silicon nitride layer 1585 and a field oxide layer 1580 .
制造EDMOS晶体管的方法可更包括移除氮化硅层1770、移除牺牲氧化层1780以及形成厚栅极氧化物1790。在本发明的实施例中,形成厚栅极氧化物1790的步骤可包括氧化厚栅极氧化物的步骤、涂敷厚栅极氧化光刻胶层、刻蚀厚栅极氧化层以及移除厚栅极光刻胶层,以致厚栅极氧化物的形成。图15D展示完成移除牺牲氧化层1525与氮化硅层1575以及形成厚栅极氧化物1600的步骤的半导体装置1500的示范实施例。The method of fabricating an EDMOS transistor may further include removing the silicon nitride layer 1770 , removing the sacrificial oxide layer 1780 and forming a thick gate oxide 1790 . In an embodiment of the present invention, the step of forming the thick gate oxide 1790 may include the step of oxidizing the thick gate oxide, applying a thick gate oxide photoresist layer, etching the thick gate oxide layer, and removing the thick gate oxide layer. gate photoresist layer, resulting in the formation of a thick gate oxide. 15D shows an exemplary embodiment of semiconductor device 1500 after the steps of removing sacrificial oxide layer 1525 and silicon nitride layer 1575 and forming thick gate oxide 1600 are completed.
制造EDMOS晶体管的方法可更包括形成薄栅极氧化物1800。图15E展示完成形成薄栅极氧化物1800以致形成薄栅极氧化物1590的步骤的半导体装置1500的示范实施例。此外,薄栅极氧化层,举例,作用为绝缘层,与厚栅极氧化物1600组合形成厚栅极与薄栅极层1605。The method of fabricating an EDMOS transistor may further include forming a thin gate oxide 1800 . FIG. 15E shows an exemplary embodiment of semiconductor device 1500 completed with the steps of forming thin gate oxide 1800 such that thin gate oxide 1590 is formed. In addition, a thin gate oxide layer, for example, acts as an insulating layer, combined with thick gate oxide 1600 to form a thick gate and thin gate layer 1605 .
制造EDMOS晶体管的方法可更包括形成第一导电层1810。在本发明的某些实施例中,第一导电层可包括第一多晶硅层。根据本发明的实施例,形成第一导电层的步骤可包括沉积第一导电层、涂敷第一导电光刻胶层、刻蚀第一导电层以及移除第一导电光刻胶层的步骤。图15F展示完成形成第一导电层1800以致形成第一导电层1610的步骤的半导体装置1500的示范实施例。The method of manufacturing an EDMOS transistor may further include forming a first conductive layer 1810 . In some embodiments of the present invention, the first conductive layer may include a first polysilicon layer. According to an embodiment of the present invention, the step of forming the first conductive layer may include the steps of depositing the first conductive layer, coating the first conductive photoresist layer, etching the first conductive layer, and removing the first conductive photoresist layer . FIG. 15F shows an exemplary embodiment of the semiconductor device 1500 after completing the steps of forming the first conductive layer 1800 such that the first conductive layer 1610 is formed.
制造EDMOS晶体管的方法可更包括沉积高温氧化层1820以及形成第二导电层1830。在本发明的某些实施例中,第二导电层可包括多晶硅层。根据本发明的实施例,形成第二导电层的步骤可包括沉积第二导电层、涂敷第二导电光刻胶层、刻蚀第二导电层以及移除第二导电光刻胶层的步骤。图15G展示完成上述步骤以提供高温氧化层1620与第二导电层1630的半导体装置1500的示范实施例。The method of manufacturing an EDMOS transistor may further include depositing a high temperature oxide layer 1820 and forming a second conductive layer 1830 . In some embodiments of the present invention, the second conductive layer may include a polysilicon layer. According to an embodiment of the present invention, the step of forming the second conductive layer may include the steps of depositing the second conductive layer, coating the second conductive photoresist layer, etching the second conductive layer, and removing the second conductive photoresist layer . FIG. 15G shows an exemplary embodiment of a semiconductor device 1500 in which the above steps are performed to provide a high temperature oxide layer 1620 and a second conductive layer 1630 .
制造EDMOS晶体管的方法可包括,可选择地注入N-掺杂区1840、选择性地、注入P-掺杂区1850、沉积介电层,如正硅酸乙酯(TESO)层1860;根据本发明的某些实施例,刻蚀介电层或TESO层以形成间隙层1870。在本发明的某些实施例中,介电层或TESO层可被刻蚀以形成间隙层1870,其至少部份延着第一导电层的边缘被配置。制造EDMOS晶体管的方法更可包括注入N+掺杂漏极区/源极区1880、注入P+掺杂漏极区1900。根据本发明的实施例,上述步骤的顺序不重要。根据本发明的某些实施例,离子注入步骤包含涂敷光刻胶层以遮蔽离子会被注入的欲想区域、注入各别离子以及移除光刻胶层。这些步骤可以重复施行直到每一区都被注入。图15H展示完成上述步骤以提供N-掺杂区1545、P+掺杂源极区1550、N+掺杂源极区1560、N+掺杂漏极区1570以及间隙(SPR)层1595的半导体装置1500的示范实施例。SPR层1595宽度约从至 A method of fabricating an EDMOS transistor may include, optionally implanting N-doped regions 1840, optionally, implanting P-doped regions 1850, depositing a dielectric layer, such as a layer of tetraethyl silicate (TESO) 1860; according to the present invention In some embodiments of the invention, the dielectric layer or TESO layer is etched to form the gap layer 1870 . In some embodiments of the invention, the dielectric layer or TESO layer may be etched to form a spacer layer 1870 disposed at least partially along the edge of the first conductive layer. The method of manufacturing an EDMOS transistor may further include implanting an N + doped drain/source region 1880 and implanting a P + doped drain region 1900 . According to an embodiment of the present invention, the order of the above steps is not important. According to some embodiments of the present invention, the ion implantation step includes applying a photoresist layer to mask desired areas where ions are to be implanted, implanting individual ions, and removing the photoresist layer. These steps can be repeated until every region has been implanted. FIG. 15H shows a semiconductor having the above steps completed to provide N - doped regions 1545, P + -doped source regions 1550, N + -doped source regions 1560, N + -doped drain regions 1570, and a spacer (SPR) layer 1595. An exemplary embodiment of apparatus 1500 . SPR layer 1595 width from approx. to
本发明的一个面向提供制造本发明的半导体装置的方法。对本发明具有利益的本领域具有通常技艺者所知道的任何制造方法可用于制造本发明的半导体装置。在某些实施例中,MOS装置可以使用本发明所描述的任何方法形成。在进一步的实施例中,LDMOS装置可以使用本发明所描述的任何方法形成。One aspect of the present invention provides a method of manufacturing the semiconductor device of the present invention. Any fabrication method known to those of ordinary skill in the art having benefit of the present invention may be used to fabricate the semiconductor device of the present invention. In some embodiments, MOS devices can be formed using any of the methods described herein. In further embodiments, LDMOS devices may be formed using any of the methods described herein.
在此所提出的多个有关本发明的变型与其它实施例,将会促使本发明所属领域技艺者,想到有关于前述描述及其相关图式所呈现的益处,因此,本发明并不受限于所揭露的特定实施例与变型,其它实施例亦拟被包括在所附权利要求项的保护范围内,再者,虽然前述描述及其相关图式在元件及/或功能的某些示范性组合的上下文中描述了实施例,但是元件及/或功能的不同组合可在不违背所附权利要求项的范围的替代实施例的状况下而提供,就此而言,除前述明白地描述以外的元件及/或功能的不同组合,也被预期可以在某些所附权利要求项中提出;在本发明中所使用的某些特定用语,它们只使用在上位与描述性概念且不为了限制的目的。The multiple variations and other embodiments of the present invention proposed here will prompt those skilled in the art to think of the benefits presented by the foregoing description and its associated drawings. Therefore, the present invention is not limited Among the specific embodiments and modifications disclosed, other embodiments are also intended to be included within the protection scope of the appended claims. Furthermore, although the foregoing description and related drawings have certain exemplary elements and/or functions Embodiments are described in the context of combinations, but different combinations of elements and/or functions may be provided in alternative embodiments without departing from the scope of the appended claims, and in this regard, other than the foregoing expressly described Different combinations of elements and/or functions are also contemplated as possible in some of the appended claims; certain specific terms used in the present invention are used in general and descriptive terms only and not for the purpose of limitation Purpose.
Claims (21)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361776835P | 2013-03-12 | 2013-03-12 | |
US61/776,835 | 2013-03-12 | ||
US13/903,539 US9653561B2 (en) | 2013-03-12 | 2013-05-28 | Low on resistance semiconductor device |
US13/903,539 | 2013-05-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104051499A CN104051499A (en) | 2014-09-17 |
CN104051499B true CN104051499B (en) | 2017-09-15 |
Family
ID=51504130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310311562.3A Active CN104051499B (en) | 2013-03-12 | 2013-07-23 | Semiconductor device with low on-resistance and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104051499B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109037305B (en) * | 2017-06-09 | 2021-10-29 | 立锜科技股份有限公司 | High voltage metal oxide semiconductor device and method of manufacturing the same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101320752A (en) * | 2007-06-06 | 2008-12-10 | 旺宏电子股份有限公司 | LDMOS device with low on-resistance and method of manufacturing the same |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE60131094D1 (en) * | 2001-12-20 | 2007-12-06 | St Microelectronics Srl | Method for integrating metal oxide semiconductor field effect transistors |
US6946705B2 (en) * | 2003-09-18 | 2005-09-20 | Shindengen Electric Manufacturing Co., Ltd. | Lateral short-channel DMOS, method of manufacturing the same, and semiconductor device |
KR101418398B1 (en) * | 2008-07-04 | 2014-07-11 | 페어차일드코리아반도체 주식회사 | High voltage semiconductor device having field shaping layer and method of fabricating the same |
US9330979B2 (en) * | 2008-10-29 | 2016-05-03 | Tower Semiconductor Ltd. | LDMOS transistor having elevated field oxide bumps and method of making same |
US8525261B2 (en) * | 2010-11-23 | 2013-09-03 | Macronix International Co., Ltd. | Semiconductor device having a split gate and a super-junction structure |
-
2013
- 2013-07-23 CN CN201310311562.3A patent/CN104051499B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101320752A (en) * | 2007-06-06 | 2008-12-10 | 旺宏电子股份有限公司 | LDMOS device with low on-resistance and method of manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
CN104051499A (en) | 2014-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI546967B (en) | Low on resistance semiconductor device | |
US8120105B2 (en) | Lateral DMOS field effect transistor with reduced threshold voltage and self-aligned drift region | |
KR102177431B1 (en) | Semiconductor device | |
CN105226058B (en) | JFET and ldmos transistor are prepared in monolithic power integrated circuit using deep diffusion region | |
US8378420B2 (en) | Vertical trench LDMOS transistor | |
CN104576734B (en) | Semiconductor device and method for manufacturing the same | |
US9136323B2 (en) | Drain-end drift diminution in semiconductor devices | |
US8581338B2 (en) | Lateral-diffused metal oxide semiconductor device (LDMOS) and fabrication method thereof | |
US20120094457A1 (en) | Sti-aligned ldmos drift implant to enhance manufacturability while optimizing rdson and safe operating area | |
JP2011512677A (en) | Semiconductor device structure and related processes | |
CN108807541B (en) | Shallow slot isolation structure lateral semiconductor device with staggered interdigital arrangement | |
US20030027396A1 (en) | Method for manufacturing a high voltage MOSFET semiconductor device with enhanced charge controllability | |
US9184278B2 (en) | Planar vertical DMOS transistor with a conductive spacer structure as gate | |
CN210110783U (en) | Integrated high-performance LDMOS structure | |
US9178054B2 (en) | Planar vertical DMOS transistor with reduced gate charge | |
US6492679B1 (en) | Method for manufacturing a high voltage MOSFET device with reduced on-resistance | |
US9735244B2 (en) | Quasi-vertical structure having a sidewall implantation for high voltage MOS device and method of forming the same | |
KR20110078621A (en) | Semiconductor device and manufacturing method thereof | |
CN104051499B (en) | Semiconductor device with low on-resistance and manufacturing method thereof | |
CN102694020B (en) | Semiconductor device | |
CN104051531B (en) | Semiconductor device with reduced leakage current upon breakdown and manufacturing method thereof | |
CN104143570B (en) | Metal oxide semiconductor device with low on-resistance and manufacturing method thereof | |
EP2058862A1 (en) | Field-effect transistor and method for producing a field-effect transistor. | |
CN101286528A (en) | Lateral diffusion metal oxide semiconductor element and manufacturing method thereof | |
CN103035710A (en) | Metal oxide semiconductor element and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |