Arrière-plan de l'invention
[0001] La présente invention concerne une montre à mouvement mécanique et elle a pour objet la réduction des écarts de marche qui résultent des effets produits par la gravité sur les organes régulateurs de la montre, en raison des inévitables défauts d'équilibrage de ces organes, et de la variation de ces effets dans les différentes positions que le porteur impose à sa montre.
[0002] Le tourbillon inventé il y a deux siècles par Abraham-Louis Breguet est un dispositif qui conduit à une telle réduction.
L'oscillateur et l'échappement étant montés dans une cage qui tourne autour d'un axe parallèle à l'axe de l'ensemble balancier-spiral, la composante de la gravité qui s'exerce dans le plan perpendiculaire à ces axes effectue par rapport à ces organes une rotation continue, de sorte que chaque tour de la cage conduit à une compensation des effets des déséquilibres dans ce plan et améliore donc la régularité de marche de la montre au porter, spécialement quand la montre est en position verticale ou inclinée.
Pour simplifier la terminologie, on entend désigner ici par le terme "tourbillon" à la fois des dispositifs dans lesquels l'axe du balancier coïncide avec l'axe de rotation de la cage (par exemple selon Breguet ou selon le brevet CH 262 017) et les dispositifs appelés souvent "carrousels", où ces axes sont distincts (voir par exemple les brevets CH 30 754, CH 256 590 et EP 846 987).
[0003] Etant donné qu'un tourbillon classique n'effectue qu'une compensation imparfaite des effets de la gravité, les horlogers cherchant à encore améliorer l'isochronisme des montres mécaniques de haute qualité ont imaginé des tourbillons à deux ou trois axes de rotation mutuellement perpendiculaires, décrits notamment dans les publications de brevet GB 2 027 232, CH 693 832, EP 1 465 024 et WO 2004/077 171.
Ces constructions constituent des prouesses techniques remarquables, mais elles occupent un espace sphérique et ne peuvent donc prendre place que dans une montre extrêmement épaisse.
[0004] Selon la publication WO 03/017 009, un but analogue est atteint au moyen d'un tourbillon à deux axes de rotation qui se coupent sous un angle différent de 90 degrés, par exemple 30 degrés. Cette construction est moins encombrante en hauteur que celle à deux axes perpendiculaires, mais elle reste notablement plus épaisse qu'un mouvement à tourbillon classique.
[0005] Le brevet FR 2 784 203 présente encore une autre manière de renforcer la compensation produite par le tourbillon. Celui-ci, le barillet qui l'entraîne et le rouage reliant ces deux éléments sont montés sur une platine tournante faisant un tour par heure, dont l'axe de rotation est parallèle à celui du tourbillon.
Cet agencement forme en quelque sorte un tourbillon sur un carrousel, le tourbillon effectuant des révolutions autour du centre de la platine tournante.
[0006] Une autre idée, consistant à coupler deux organes régulateurs montés sur la platine d'un mouvement d'horlogerie afin de moyenner leur marche au moyen d'un engrenage différentiel, a été formulée dans les années 1930 par M. Vuilleumier et publiée dans le brevet CH 156 801, mais il ne s'agissait que de systèmes réglants usuels stationnaires (balancier-spiral et échappement). Un perfectionnement consistant à monter un tel ensemble sur une platine tournante est décrit dans l'ouvrage de R.
Meis "Le Tourbillon", ISBN 2-85 917-097-9, Editions de l'Amateur, Paris, 1990, p. 75-77, mais est resté à l'état de maquette et n'a pas pu être intégré à une montre.
Résumé de l'invention
[0007] L'idée de base de la présente invention consiste à réduire les écarts de marche d'une montre à tourbillon d'une autre manière que ce qu'on vient de mentionner et en particulier en permettant d'éviter une épaisseur excessive du mouvement et donc de la montre. Un but additionnel est de créer une montre ayant un aspect inédit, mettant en valeur la haute technicité de son mouvement.
[0008] Sous son aspect le plus général, l'invention a pour objet une montre à mouvement mécanique telle que définie dans la revendication 1.
De préférence, l'élément médian est formé par un engrenage différentiel, pouvant être centré sur l'axe de rotation du support tournant, mais d'autres modes de couplage des deux tourbillons peuvent être envisagés.
[0009] Ainsi, au lieu de viser d'abord à compenser des déséquilibres dans d'autres plans que le plan général de la montre, la présente invention réduit les écarts de marche en utilisant une base de temps dont la fréquence est la moyenne de celles des tourbillons montés sur un support commun. Le fait que le support commun portant les deux tourbillons est une platine tournante ajoute les effets compensatoires prévus dans le brevet FR 2 784 203 afin d'améliorer encore la régularité de marche de la montre.
Les axes des deux tourbillons peuvent être parallèles et les deux balanciers peuvent se trouver dans un même plan, si bien que l'épaisseur du mouvement peut être comparable à celle d'un mouvement à tourbillon classique. Cependant on peut aussi envisager d'appliquer le principe de l'invention pour réaliser un mouvement comportant deux tourbillons dont les balanciers sont inclinés chacun d'un petit angle par rapport au plan général de la montre, mais dans des directions opposées afin de former entre eux un angle total suffisant pour mieux compenser les déséquilibres dans différents plans, sans augmenter notablement la hauteur totale du mouvement.
Description sommaire des dessins
[0010] D'autres caractéristiques et avantages de la présente invention ressortiront de la description suivante,
qui présente un mode de réalisation préféré à titre d'exemple non limitatif en se référant aux dessins annexés, dans lesquels:
<tb> la fig. 1<sep>est un schéma fonctionnel d'un mouvement classique de montre à tourbillon,
<tb>la fig. 2<sep>est un schéma fonctionnel d'un mouvement de montre à deux tourbillons,
<tb> la fig. 3<sep>est une vue en plan schématique du mouvement et du cadran d'une montre selon le schéma de la fig. 2, comportant deux tourbillons sur un support tournant,
<tb>la fig. 4<sep>est une vue en coupe partielle du mouvement de la montre de la fig. 3, et
<tb>la fig. 5<sep>est une vue en plan des rouages situés au-dessus de la platine tournante de la montre de la fig. 3, ainsi que d'un rouage de mise à l'heure disposé sous la platine fixe.
Description détaillée d'un mode de réalisation préféré
[0011] Pour mieux faire comprendre le fonctionnement des exemples décrit ci-dessous, les schémas fonctionnels des fig. 1 et 2 représentent respectivement un mouvement classique de montre à tourbillon et le mode de réalisation préféré d'une montre à deux tourbillons selon l'invention.
On se référera à la légende suivante:
A : Affichage
B, B1, B2 : Barillet
D : Engrenage différentiel
F : Rouage de finissage
MH : Mise à l'heure
T, T1, T2 : Tourbillon
R : Remontage
[0012] Dans ces schémas, les flèches simples caractérisent des rouages sans transmission d'énergie aux oscillateurs, tandis que les flèches à double trait caractérisent des rouages avec transmission d'énergie aux oscillateurs.
On notera aussi que dans le schéma de la fig. 1, qui est bien connu des horlogers, le symbole T peut représenter aussi bien un tourbillon qu'un oscillateur mécanique ordinaire, et aussi que dans une variante bien connue, l'affichage A peut être dérivé directement du barillet B plutôt que du rouage de finissage F.
[0013] Avec le schéma de la fig. 2, l'énergie nécessaire au système réglant comprenant les deux tourbillons est fournie par deux barillets B1 et B2 fonctionnant en parallèle, mais on pourrait aussi envisager d'utiliser des barillets couplés en série ou un seul barillet de grande taille. L'énergie passe à travers un rouage d'affichage A et un engrenage différentiel D qui la répartit entre deux tourbillons T1 et T2.
En retour, si les deux tourbillons n'ont pas exactement la même fréquence à un moment donné, leurs vitesses de rotation respectives sont moyennées par le différentiel D, de sorte que l'affichage A tourne à une vitesse stabilisée par compensation des écarts de marche d'un tourbillon par rapport à l'autre.
[0014] Les fig. 3 à 5 représentent un mode de réalisation préféré de l'invention, fonctionnant selon le schéma de la fig. 2 et dans lequel le différentiel D et les tourbillons T1 et T2 sont montés sur un support tournant. Le mouvement de la montre comporte une platine fixe 10 destinée à être montée dans une boîte non représentée. Par convention, on désignera ici le haut comme le côté de la montre où se fait l'affichage de l'heure.
C'est de ce côté que se trouvent aussi les deux tourbillons 11 et 12, qui sont identiques dans cet exemple.
[0015] Deux barillets à ressort 13, dont un seul est visible dans la fig. 4, sont montés sous la platine 10 à l'aide d'un pont de barillet 15 et entraînent tous deux un même pignon de minuterie 16, chacun via une roue de renvoi 17. Le pignon 16 est en prise avec une roue des heures 18 et, comme d'habitude, il porte une roue 19 s'engrenant avec un pignon de minutes 20 pour faire tourner celui-ci douze fois plus vite que la roue des heures 18.
Le remontage des barillets n'est pas représenté ici, mais un homme du métier comprendra qu'il peut utiliser un rouage qui s'engrène avec les deux rochets montés sur les arbres des barillets, étant donné que les deux barillets agissant en parallèle ont toujours le même armage.
[0016] Les deux tourbillons 11 et 12 sont montés sur un support rotatif 21 comprenant une platine tournante 22, un pont central 23 et une barrette supérieure 24 dont une extrémité pointue 25 constitue l'aiguille des heures de la montre, se déplaçant en regard d'un tour d'heures situé sur un cadran annulaire 26. L'autre extrémité de la barrette 24 est pourvue d'une partie annulaire portant une graduation des secondes 28. La cage de chaque tourbillon 11, 12 comporte un pivot supérieur qui est monté dans un palier 29, 30 de la barrette 24.
Le pivot du second tourbillon 12 porte en outre une aiguille des secondes 31 qui tourne en regard de la graduation 28, chaque tourbillon faisant ici comme d'habitude un tour complet par minute sur le support tournant 21. Ce dernier fait un tour en douze heures, ce qui permet de lui fixer l'aiguille des heures 25.
[0017] Le pivot inférieur de chaque tourbillon 11, 12 est monté dans la platine tournante 22 par un palier respectif non référencié et comporte un pignon d'entraînement 33, 34 solidaire de la cage. Ce pignon joue le rôle du pignon des secondes d'un mouvement classique. Chaque pignon 33, 34 est en prise avec un rouage de finissage comprenant un mobile de moyenne 34, 36 et un mobile de grande moyenne 37, 38 dont le pignon 39, 40 reçoit le couple destiné à entraîner l'oscillateur respectif.
Pour ce faire, chaque pignon 39, 40, en se déplaçant avec la rotation de la platine tournante 22, roule sur une roue dentée centrale de l'engrenage différentiel D centré sur l'axe de rotation 44 de la platine 22.
[0018] La platine tournante 22 est supportée sur la platine fixe 10 par un unique palier formé par un grand roulement à billes 46, dont la bague intérieure est serrée entre la platine 22 et la roue des heures 18 par des vis 47. Le couple total des deux barillets 13 et 14 agissant sur les éléments 16 et 18 fait tourner la platine 22 portant les deux tourbillons 11 et 12 et leurs roues de secondes respectives 49 et 50, lesquelles sont fixes sur la platine 22.
C'est la révolution des axes de rotation 51 et 52 des deux tourbillons autour de l'axe central 44 qui fait tourner les mobiles 35 à 38 des deux rouages de finissage en les faisant rouler sur l'élément médian formé par l'engrenage différentiel, entraînant ainsi la rotation de chaque tourbillon autour de son propre axe.
[0019] L'engrenage différentiel D est ici du type épicycloïdal, avec par exemple trois satellites doubles 54 montés sur un porte-satellites 55 dont la denture extérieure s'engrène avec le pignon 40 du train de finissage du second tourbillon 12. Une première denture 56 du satellite s'engrène avec une denture extérieure 57 d'un canon stationnaire 58 qui constitue l'élément d'appui, normalement fixe, de l'engrenage différentiel.
En réalité, le canon 58 peut pivoter autour de l'axe central 44 pour la mise à l'heure de la montre, comme on le décrira plus loin, et c'est pourquoi il est monté de manière rotative par un palier à billes inférieur 60 dans un pont fixe et par un palier à billes supérieur 61 dans le pont 23, et il est muni d'un pignon de mise à l'heure 62 au-dessous de la platine fixe 10.
[0020] Le troisième élément central de l'engrenage différentiel D est une roue de sortie 63 ayant une denture extérieure qui s'engrène sur le pignon 39 du train de finissage du premier tourbillon 11. Le diamètre extérieur de la roue 63 est le même que celui du porte-satellites 55. La roue 63 est montée d'une manière rotative sur le canon 58 et comporte un pignon 64 qui s'engrène avec la seconde denture 65 de chaque satellite.
Les dentures 56 et 65 des satellites et les dentures correspondantes des éléments 58 et 63 sont telles que les éléments 55 et 63 puissent tourner à des vitesses égales, mais opposées, quand le canon 58 est immobile. Mais comme ces deux vitesses sont régulées chacune par l'un des tourbillons 11 et 12 et peuvent donc différer légèrement à cause des écarts de marche momentanés, l'engrenage différentiel D a pour effet de moyenner ces deux vitesses dans la vitesse de révolution de la platine 22 portant les paliers des rouages de finissage et des tourbillons.
C'est ainsi qu'on obtient une régularité de marche qui est meilleure que celle de chacun des tourbillons.
[0021] La rotation de la platine tournante 22 portant la roue des heures 18 est transmise par le rouage de minuterie 16, 19 au pignon de minutes 20 fixé à un arbre 70 portant l'aiguille des minutes 71 et monté de manière rotative dans le canon 58. Ainsi, les aiguilles des heures 25 et des minutes 71 affichent l'heure de la manière habituelle sur le cadran 26, tandis que l'affichage des secondes par l'aiguille 31 et la graduation 28 effectue une révolution en douze heures autour de l'axe central 44 du mouvement. Par ailleurs, on remarque dans la fig. 3 qu'il est prévu un affichage 72 de la réserve de marche sur la face supérieure de la platine fixe 10.
Ce dispositif peut être couplé à un seul des deux barillets.
[0022] Si l'on désirait que le support tournant 21 tourne à une autre vitesse qu'un tour en douze heures, par exemple plus vite afin que son mouvement soit mieux visible, on pourrait ajouter une aiguille des heures portée de la manière habituelle par un canon entourant l'arbre 70 des minutes et entraîné par un rouage de minuterie.
[0023] Dans la fig. 5 est représenté un rouage de mise à l'heure 74 comportant une roue 75 qui s'engrène sur le pignon de mise à l'heure 62 représenté dans la fig. 4. Ce rouage situé sous la platine fixe 10 peut être actionné de la manière habituelle par une tige de commande 73 (fig. 3) munie d'une couronne à l'extérieur de la montre. Cette tige actionne une roue de renvoi 76 s'engrenant avec la roue 77 d'un mobile 78 dont le pignon 79 fait tourner la roue 75.
Le mobile 78 est immobilisé sur la platine 10 par un dispositif à friction dont le couple limite peut être relativement faible, tout en assurant un fort couple de retenue sur le canon 58 grâce à la multiplication du couple entre le mobile 78 et la roue 62.
[0024] Un homme du métier comprendra aisément que l'un ou chacun des tourbillons T1, T2 apparaissant dans la fig. 2 peut être un tourbillon à plusieurs axes de rotation, en particulier de l'un des types mentionnés dans l'introduction.
Un homme du métier pourra aussi concevoir un mouvement à plus de deux tourbillons en appliquant les principes de la présente invention, puisqu'un engrenage différentiel adéquat permet de coupler plus de deux tourbillons montés sur le support tournant, de façon à moyenner leurs vitesses sur l'affichage de la montre.
[0025] Par ailleurs, même si les deux tourbillons ont la même fréquence nominale dans l'exemple décrit ci-dessus, ce n'est pas indispensable, car un dimensionnement adéquat des rouages et/ou du différentiel D permet de moyenner convenablement deux fréquences nominales différentes.
Background of the invention
The present invention relates to a mechanical movement watch and its object is to reduce gait deviations resulting from the effects produced by gravity on the regulating organs of the watch, due to the inevitable balancing defects of these organs. , and the variation of these effects in the different positions that the wearer imposes on his watch.
The swirl invented two centuries ago by Abraham-Louis Breguet is a device that leads to such a reduction.
As the oscillator and the escapement are mounted in a cage which rotates about an axis parallel to the axis of the balance-spring assembly, the component of the gravity which is exerted in the plane perpendicular to these axes effects by relative to these bodies a continuous rotation, so that each tower of the cage leads to a compensation of the effects of the imbalances in this plane and thus improves the regularity of operation of the watch to wear, especially when the watch is in a vertical or inclined position .
To simplify the terminology, here is meant by the term "vortex" both devices in which the axis of the balance coincides with the axis of rotation of the cage (for example according to Breguet or according to patent CH 262 017) and devices often called "carousels", where these axes are distinct (see, for example, CH 30 754, CH 256 590 and EP 846 987).
[0003] Given that a classical tourbillon only imperfectly compensates for the effects of gravity, watchmakers seeking to further improve the isochronism of high-quality mechanical watches have devised swirls with two or three axes of rotation. mutually perpendicular, described in particular in patent publications GB 2 027 232, CH 693 832, EP 1 465 024 and WO 2004/077 171.
These constructions constitute remarkable technical feats, but they occupy a spherical space and can therefore take place only in an extremely thick watch.
According to the publication WO 03/017 009, a similar object is achieved by means of a tourbillon with two axes of rotation which intersect at an angle other than 90 degrees, for example 30 degrees. This construction is less bulky in height than that with two perpendicular axes, but it remains noticeably thicker than a classic tourbillon movement.
[0005] Patent FR 2 784 203 presents yet another way of reinforcing the compensation produced by the vortex. The latter, the barrel that drives it and the gear train connecting these two elements are mounted on a turntable making one turn per hour, whose axis of rotation is parallel to that of the tourbillon.
This arrangement forms a kind of swirl on a carousel, the vortex revolving around the center of the turntable.
Another idea, consisting in coupling two regulating members mounted on the plate of a clockwork movement to average their operation by means of a differential gear, was formulated in the 1930s by M. Vuilleumier and published in patent CH 156 801, but it was only routine stationary control systems (sprung balance and exhaust). An improvement consisting in mounting such an assembly on a turntable is described in the book by R.
Meis "The Tourbillon", ISBN 2-85 917-097-9, Editions of the Amateur, Paris, 1990, p. 75-77, but remained in the mock-up state and could not be integrated into a watch.
Summary of the invention
The basic idea of the present invention is to reduce the deviations of a tourbillon watch in a different way than what has just been mentioned and in particular to avoid excessive thickness of the movement and so the watch. An additional goal is to create a watch with a new look, highlighting the high technicality of its movement.
In its most general aspect, the invention relates to a mechanical movement watch as defined in claim 1.
Preferably, the median element is formed by a differential gear, which can be centered on the axis of rotation of the rotating support, but other coupling modes of the two vortices can be envisaged.
Thus, instead of aiming at first to compensate for imbalances in other planes than the general plane of the watch, the present invention reduces the differences in running using a time base whose frequency is the average of those vortices mounted on a common support. The fact that the common carrier carrying the two vortices is a turntable adds the compensatory effects provided in the patent FR 2 784 203 to further improve the regularity of the watch.
The axes of the two vortices can be parallel and the two pendulums can be in the same plane, so that the thickness of the movement can be comparable to that of a classic tourbillon movement. However, it is also conceivable to apply the principle of the invention to achieve a movement comprising two vortices whose rockers are each inclined at a small angle to the general plane of the watch, but in opposite directions to form between they have a total angle sufficient to better compensate for the imbalances in different planes, without appreciably increasing the total height of the movement.
Brief description of the drawings
Other features and advantages of the present invention will become apparent from the following description,
which has a preferred embodiment by way of non-limiting example with reference to the accompanying drawings, in which:
<tb> fig. 1 <sep> is a block diagram of a classic tourbillon watch movement,
<tb> fig. 2 <sep> is a block diagram of a two-swirl watch movement,
<tb> fig. 3 <sep> is a schematic plan view of the movement and the dial of a watch according to the diagram of FIG. 2, comprising two swirls on a rotating support,
<tb> fig. 4 <sep> is a partial sectional view of the movement of the watch of FIG. 3, and
<tb> fig. 5 <sep> is a plan view of the workings located above the turntable of the watch of FIG. 3, as well as a time setting wheel arranged under the fixed plate.
Detailed description of a preferred embodiment
To better understand the operation of the examples described below, the block diagrams of Figs. 1 and 2 respectively represent a classic tourbillon watch movement and the preferred embodiment of a two tourbillon watch according to the invention.
We will refer to the following legend:
A: Display
B, B1, B2: Barrel
D: Differential gear
F: Finishing gear
MH: Time setting
T, T1, T2: Tourbillon
R: Reassembly
In these diagrams, the simple arrows characterize gear trains without energy transmission to the oscillators, while the double-line arrows characterize gear trains with energy transmission to the oscillators.
It will also be noted that in the diagram of FIG. 1, which is well known to watchmakers, the symbol T can represent both a vortex and an ordinary mechanical oscillator, and also that in a well-known variant, the display A can be derived directly from the barrel B rather than the wheel of Finishing F.
With the diagram of FIG. 2, the energy required for the regulating system comprising the two vortices is provided by two barrels B1 and B2 operating in parallel, but one could also consider using barrels coupled in series or a single large barrel. The energy passes through a display train A and a differential gear D which distributes it between two vortices T1 and T2.
In return, if the two vortices do not have exactly the same frequency at a given time, their respective rotational speeds are averaged by the differential D, so that the display A rotates at a steady speed by compensating for the deviations one vortex relative to the other.
Figs. 3 to 5 show a preferred embodiment of the invention, operating according to the scheme of FIG. 2 and in which the differential D and the vortices T1 and T2 are mounted on a rotating support. The movement of the watch comprises a fixed plate 10 to be mounted in a not shown box. By convention, we will designate here the top as the side of the watch where the time is displayed.
It is on this side that are also the two vortices 11 and 12, which are identical in this example.
Two spring barrels 13, only one of which is visible in FIG. 4, are mounted under the plate 10 by means of a barrel bridge 15 and both drive the same clock gear 16, each via a return wheel 17. The pinion 16 is engaged with a wheel of hours 18 and, as usual, it carries a wheel 19 meshing with a pinion of minutes 20 to rotate it twelve times faster than the hour wheel 18.
The winding of the barrels is not shown here, but a person skilled in the art will understand that he can use a gear that meshes with the two ratchets mounted on the shafts of the barrels, since the two barrels acting in parallel have always the same arming.
The two vortices 11 and 12 are mounted on a rotary support 21 comprising a turntable 22, a central bridge 23 and an upper bar 24, a pointed end 25 constitutes the hour hand of the watch, moving with respect to a turn of hours located on an annular dial 26. The other end of the bar 24 is provided with an annular portion bearing a graduation of seconds 28. The cage of each vortex 11, 12 has an upper pivot which is mounted in a bearing 29, 30 of the bar 24.
The pivot of the second vortex 12 further carries a seconds hand 31 which rotates next to the graduation 28, each vortex making here as usual a complete revolution per minute on the rotating support 21. The latter makes a turn in twelve hours , which allows him to fix the hour hand 25.
The lower pivot of each vortex 11, 12 is mounted in the turntable 22 by a respective non-referenced bearing and comprises a drive gear 33, 34 integral with the cage. This pinion plays the role of the pinion seconds of a classic movement. Each pinion 33, 34 is engaged with a finishing train comprising a moving average 34, 36 and a mobile of medium 37, 38 whose pinion 39, 40 receives the torque for driving the respective oscillator.
To do this, each pinion 39, 40, moving with the rotation of the turntable 22, rolls on a central gear of the differential gear D centered on the axis of rotation 44 of the plate 22.
The turntable 22 is supported on the fixed plate 10 by a single bearing formed by a large ball bearing 46, the inner ring is clamped between the plate 22 and the hour wheel 18 by screws 47. The couple total of the two barrels 13 and 14 acting on the elements 16 and 18 rotates the plate 22 carrying the two vortices 11 and 12 and their respective second wheels 49 and 50, which are fixed on the plate 22.
It is the revolution of the axes of rotation 51 and 52 of the two vortices around the central axis 44 which rotates the mobiles 35 to 38 of the two finishing wheels by rolling them on the middle element formed by the differential gearing. , thus causing the rotation of each vortex around its own axis.
The differential gear D is here of the epicyclic type, with for example three double satellites 54 mounted on a planet carrier 55 whose outer toothing meshes with the pinion 40 of the finishing train of the second vortex 12. A first The toothing 56 of the satellite meshes with an external toothing 57 of a stationary gun 58 which constitutes the support element, normally fixed, of the differential gear.
In fact, the barrel 58 can pivot about the central axis 44 for setting the time of the watch, as will be described later, and that is why it is rotatably mounted by a lower ball bearing 60 in a fixed bridge and an upper ball bearing 61 in the bridge 23, and it is provided with a setting pinion 62 below the fixed plate 10.
The third central element of the differential gearing D is an output wheel 63 having an external toothing which meshes with the pinion 39 of the finishing gear of the first vortex 11. The outside diameter of the wheel 63 is the same. That of the planet carrier 55. The wheel 63 is rotatably mounted on the barrel 58 and has a pinion 64 which meshes with the second toothing 65 of each satellite.
The teeth 56 and 65 of the satellites and the corresponding teeth of the elements 58 and 63 are such that the elements 55 and 63 can rotate at equal speeds, but opposite, when the barrel 58 is stationary. But since these two speeds are each regulated by one of the vortices 11 and 12 and can therefore differ slightly because of the momentary momentum, the differential gearing D has the effect of averaging these two speeds in the speed of revolution of the platinum 22 bearing the bearings of the workings gears and vortices.
This is how we get a smoothness that is better than that of each vortex.
The rotation of the turntable 22 carrying the hour wheel 18 is transmitted by the timer train 16, 19 to the minute pinion 20 fixed to a shaft 70 carrying the minute hand 71 and rotatably mounted in the Thus, the hour 25 and minute hands 71 display the time in the usual manner on the dial 26, while the seconds display by the needle 31 and the graduation 28 performs a revolution in twelve hours around of the central axis 44 of the movement. Moreover, we note in fig. 3 that there is provided a display 72 of the power reserve on the upper face of the fixed plate 10.
This device can be coupled to only one of the two barrels.
If it was desired that the rotating support 21 rotates at a different speed than a turn in twelve hours, for example faster so that its movement is better visible, we could add an hour hand worn in the usual way by a cannon surrounding the 70 minutes shaft and driven by a timer train.
In FIG. 5 is shown a time-setting train 74 comprising a wheel 75 which meshes with the setting pinion 62 shown in FIG. 4. This wheel located under the fixed plate 10 can be actuated in the usual manner by a control rod 73 (FIG 3) provided with a ring on the outside of the watch. This rod actuates a return wheel 76 meshing with the wheel 77 of a mobile 78 whose pinion 79 rotates the wheel 75.
The mobile 78 is immobilized on the plate 10 by a friction device whose torque limit can be relatively low, while ensuring a high retaining torque on the barrel 58 through the multiplication of torque between the mobile 78 and the wheel 62.
A person skilled in the art will readily understand that one or each of the vortices T1, T2 appearing in FIG. 2 may be a tourbillon with several axes of rotation, in particular of one of the types mentioned in the introduction.
A person skilled in the art can also design a movement with more than two vortices by applying the principles of the present invention, since a suitable differential gearing makes it possible to couple more than two vortices mounted on the rotating support, so as to average their speeds over the display of the watch.
Furthermore, even if the two vortices have the same nominal frequency in the example described above, it is not essential, because adequate dimensioning of the gear and / or the differential D allows to properly average two frequencies different nominal.