CH653581A5 - METHOD FOR PRODUCING A PLATE OR GROSSFLAECHIGEN sheet of porous TITAN. - Google Patents
METHOD FOR PRODUCING A PLATE OR GROSSFLAECHIGEN sheet of porous TITAN. Download PDFInfo
- Publication number
- CH653581A5 CH653581A5 CH1343/82A CH134382A CH653581A5 CH 653581 A5 CH653581 A5 CH 653581A5 CH 1343/82 A CH1343/82 A CH 1343/82A CH 134382 A CH134382 A CH 134382A CH 653581 A5 CH653581 A5 CH 653581A5
- Authority
- CH
- Switzerland
- Prior art keywords
- titanium
- layer
- terpineol
- carrier substance
- porous
- Prior art date
Links
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 title claims abstract description 45
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 239000000126 substance Substances 0.000 claims abstract description 22
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 16
- 239000010936 titanium Substances 0.000 claims abstract description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 12
- 239000010439 graphite Substances 0.000 claims abstract description 12
- 239000007788 liquid Substances 0.000 claims abstract description 10
- 239000000853 adhesive Substances 0.000 claims abstract description 4
- 230000001070 adhesive effect Effects 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 23
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 claims description 18
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 claims description 18
- 229940116411 terpineol Drugs 0.000 claims description 18
- 238000010438 heat treatment Methods 0.000 claims description 14
- 239000011248 coating agent Substances 0.000 claims description 11
- 238000000576 coating method Methods 0.000 claims description 11
- 239000011888 foil Substances 0.000 claims description 9
- 230000001427 coherent effect Effects 0.000 claims description 7
- 238000005868 electrolysis reaction Methods 0.000 claims description 7
- 239000002245 particle Substances 0.000 claims description 6
- 238000005245 sintering Methods 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 5
- 239000010408 film Substances 0.000 claims description 4
- 238000007731 hot pressing Methods 0.000 claims description 4
- 230000001788 irregular Effects 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- 239000000843 powder Substances 0.000 claims description 4
- 239000010409 thin film Substances 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 2
- 238000005260 corrosion Methods 0.000 claims description 2
- 230000007797 corrosion Effects 0.000 claims description 2
- 238000010586 diagram Methods 0.000 claims description 2
- 230000005484 gravity Effects 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- 239000001301 oxygen Substances 0.000 claims description 2
- 238000009703 powder rolling Methods 0.000 claims description 2
- 239000007784 solid electrolyte Substances 0.000 claims description 2
- 239000002904 solvent Substances 0.000 claims description 2
- 238000004809 thin layer chromatography Methods 0.000 claims description 2
- 238000009827 uniform distribution Methods 0.000 claims description 2
- 238000001291 vacuum drying Methods 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 2
- 238000005097 cold rolling Methods 0.000 abstract 2
- 239000003054 catalyst Substances 0.000 abstract 1
- 150000003608 titanium Chemical class 0.000 abstract 1
- 238000010276 construction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/11—Making porous workpieces or articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/18—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by using pressure rollers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/22—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F5/006—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of flat products, e.g. sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/002—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Composite Materials (AREA)
- Cell Electrode Carriers And Collectors (AREA)
- Catalysts (AREA)
- Powder Metallurgy (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Inert Electrodes (AREA)
Abstract
The large surface current collector for an electro-chemical cell, in the form of a titanium plate or sheet having a given porosity, is fabricated by arranging on a non-adhesive support (1), for example a plane plate of non porous special graphite having an orientated structure of individual graphite platelets, a uniform layer (3) of dry titanium powder or of viscous homogeneous paste (2) formed by titanium powder suspended in a liquid, by subjecting the dried layer (3) to a presintering, cold rolling and resintering, all these operations being carried out in vacuum conditions, and finally covering the dried layer with an electric catalyst. The cold rolling as well as the resintering may be repeated several times until the desired sheet density is obtained.
Description
**WARNUNG** Anfang DESC Feld konnte Ende CLMS uberlappen **.
PATENTANSPRÜCHE
1. Verfahren zur Herstellung einer grossflächigen Platte oder Folie aus porösem Titan, ausgehend von Titanpulver, dadurch gekennzeichnet, dass das Titanpulver in einer Flüssigkeit aufgeschlämmt wird und die auf diese Weise hergestellte viskose, homogene Paste (2) auf eine Trägersubstanz (1) in Form einer zusammenhängenden gleichmässigen Schicht (3) aufgebracht, die Flüssigkeit in Luft verdampft und die Schicht (3) anschliessend im Vakuum getrocknet und weiter in mehreren Stufen unter Vakuum wärmebehandelt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Wärmebehandlung der Schicht auf der gleichen ursprünglichen Trägersubstanz (1) durchgeführt wird und in den nachfolgenden unter Vakuum von 1,33 10- Pa bis 1,33 10-4 Pa durchgeführten Schritten besteht: - Erwärmung im Verlaufe von 90 min bis auf 500 C, - Halten der Temperatur während 30 min auf 500 C, - Erwärmen im Verlaufe von 30 min von 500 "C auf 900 C, - Sintern der Schicht durch Halten der Temperatur wäh rend 3 h auf 900 C.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die zum Aufschlämmen benützte Flüssigkeit Terpineol Cl oHs 8 ist, und dass die Trägersubstanz (1) aus speziellem porenfreien, nichtklebenden Graphit mit ausgerichteter Struktur der einzelnen Graphitplättchen besteht.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass das Terpineol bei 200 "C verdampft wird und die Schicht (3) bei 200 "C im Vakuum getrocknet wird.
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die viskose Paste (2) aus Titanpulver der Partikelgrösse 15 ,um bis 120 Fm mit sehr unregelmässigen, Verzweigungen und Protuberanzen aufweisenden Formen, welches aus Titanschwamm erzeugt wurde, und aus Terpineol im Mischungsverhältnis 9 g Titan zu 6 ml Terpineol hergestellt wird.
6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die viskose Paste (2) mit einem beweglichen Beschichtungsgerät (4) für Dünnschicht-Platten auf die Trägersubstanz (1) aufgebracht wird.
Die Erfindung geht aus von einem Verfahren zur Herstellung einer grossflächigen Platte oder Folie aus porösem Titan nach der Gattung des Anspruchs 1.
Beim Bau von Elektrolysevorrichtungen, insbesondere für die Wasserelektrolyse unter Verwendung von Feststoffelektrolyten stellt sich die Aufgabe, korrosionsbeständige, poröse Stromkollektoren zur Verfügung zu stellen. Vorzugsweise werden für solche Zwecke auf der chemisch aggressiven Sauerstoffseite Folien und Platten aus porösem Titan verwendet. Derartige Bauelemente werden fast ausschliesslich nach pulvermetallurgischen Methoden hergestellt. Dabei gelangen unter anderem Verfahrensschritte wie Heisspressen, Warmpressen, Schwerkraftsintern, Pulverwalzen etc.
zur Anwendung (US-PS 2997 777; Poroshkovaya Metallurgya 7, Seiten 13 bis 16, Juli 1976; Poroshkovaya Metallurgya 6, Seiten 96 bis 99, Juni 1977).
Nach den obgenannten Verfahren sind vor allem poröse Titanfolien beschränkter Abmessungen für Versuchszwecke hergestellt worden. Will man zu grossen Flächen (bis 1 m2) übergehen, wie sie für industrielle Elektrolyseanlagen erforderlich sind, stösst man auf Schwierigkeiten. Das Problem besteht hauptsächlich darin, dass es beinahe aussichtslos erscheint, für beliebig grosse Flächen eine gleichmässige Verteilung des Titanpulvers zu erreichen, was sich dann in unterschiedlicher Dicke, ungleichmässiger Porosität und anderen Inhomogenitäten niederschlägt.
Der Erfindung liegt die Aufgabe zugrunde, ein wirtschaftliches Verfahren zur Herstellung einer Platte oder Folie aus porösem Titan anzugeben, deren Fläche nicht begrenzt ist und deren Dicke und Porosität über die ganze Fläche gleichmässig ist.
Diese Aufgabe wird erfindungsgemäss durch die Merkmale des Anspruchs 1 gelöst.
Die Erfindung wird anhand des nachfolgenden durch zwei Figuren erläuterten Ausführungsbeispiels beschrieben.
Dabei zeigt:
Fig. 1 den Temperaturverlauf über der Zeit für die Wärmebehandlung;
Fig. 2 die Verwendung eines Beschichtungsgerätes für Dünnschicht-Platten.
In Fig. list der Temperaturverlauf in Funktion der Zeit für die Wärmebehandlung des verdichteten Titanpulvers dargestellt. Das Diagramm erklärt sich von selbst.
Fig. 2 zeigt schematisch die Verwendung einer Vorrichtung zum Aufbringen der Paste. list die Trägersubstanz in Form einer ebenen Platte (porenfreier, nichtklebender Graphit). 2 stellt die aus Titanpulver und Terpineol (CloHl8O) bestehende viskose, homogene Paste dar. 3 ist die zusammenhängende, gleichmässige Schicht dieser Paste. Ein in Pfeilrichtung zu verschiebendes, bewegliches Beschichtungsgerät 4 in Form eines nach unten spitz zulaufenden Behälters kann als Mittel zum Aufbringen der Paste Verwendung finden.
Ausführungsbeispiel:
Siehe Figuren 1 und 2.
Zur Herstellung einer porösen Titanfolie von 0,5 mm Dicke wurde zunächst eine viskose, homogene Paste 2 aus Titanpulver der Partikelgrösse 15 pm bis 120 ,um und wasserfreiem Terpineol CloHl8O gemischt. Das Titanpulver stammte von Titanschwamm mit grosser innerer Oberfläche.
Die Pulverpartikel weisen sehr unregelmässige Formen mit Verzweigungen und Protuberanzen auf. Das Mischungsverhältnis wurde derart eingestellt, dass auf 6 ml Terpineol 9 g Titanpulver kamen. Die viskose, homogene Paste 2 wurde in ein bewegliches Beschichtungsgerät 4 für Dünnschicht-Chromatographie-Platten in Form eines nach unten spitz zulaufenden Behälters abgefüllt und als zusammenhängende, gleichmässige Schicht 3 auf eine Trägersubstanz 1 in Form einer ebenen Platte aufgetragen. Dabei zeigt der Pfeil der Figur 2 die Bewegungsrichtung des Beschichtungsgerätes 4 an.
Als Trägersubstanz 1 wurde eine spezielle porenfreie und nichtklebende Graphitsorte gewählt, welche eine ausgerichtete Struktur der einzelnen Graphitplättchen besass (Sigraflex von Sigri). In einem weiteren Verfahrensschritt wurde die Flüssigkeit (im vorliegenden Fall Terpineol) durch Erwärmen auf ca. 200 C in Luft verdampft. Die Schicht 3 wurde daraufhin samt Trägersubstanz 1 in einem Vakuumtrokkenschrank bei ca. 200 C getrocknet. Dabei trat bereits eine Verdichtung des Titanpulvers ein. Des weiteren wurde das Material einer mehrstufigen Wärmebehandlung unterworfen. Zu diesem Zweck wurde die Schicht 3 auf der Trägersubstanz 1 in einen Vakuumofen eingeführt, dessen Vakuum bei einem'Wert von 10- 5 bis 10-6 Torr (= 1,33 10-3 bis 1,33 10-4 Pa) lag.
Zunächst wurde das Material im Verlaufe von ca. 90 min auf eine Temperatur von 500 "C aufgeheizt und während 30 min auf dieser Temperatur gehalten. Das gegebenenfalls noch verbliebene Lösungsmittel (Terpineol) wird bei diesem Prozess restlos ausgetrieben. Dann wurde das Material im Verlauf von ca. 30 min weiter auf eine Temperatur von ca. 900 -C erhitzt und während ca. 3 h bei dieser
Temperatur gehalten. Dabei sintert das Titanpulver zu einer zusammenhängenden porösen Folie zusammen. Es muss darauf geachtet werden, dass diese Sintertemperatur nicht zu hoch eingestellt wird, damit die Titanschicht nicht mit der Trägersubstanz 1 verklebt. Nach dem Sintern wurde das Material abgekühlt und die fertige Folie von der Trägersubstanz 1 abgelöst.
Im Prinzip kann die Paste 2 auch mit Hilfe einer anderen geeigneten Flüssigkeit als CloHl8O hergestellt werden. Auch das Aufbringen der Paste ist nicht an das Beschichtungsgerät 4 für Dünnschicht-Platten gebunden, sondern kann mit Hilfejeder anderen geeigneten Vorrichtung erfolgen. Bedingung ist, dass zunächst eine viskose, homogene Paste hergestellt und diese dann möglichst gleichmässig auf ein nichtklebendes Substrat (Trägersubstanz 1) aufgebracht wird.
Durch das erfindungsgemässe Verfahren wird die wirtschaftliche Fertigung poröser Titanfolien und Titanplatten von 0,1 bis ca. 5 mm konstanter Dicke mit gleichmässiger Porosität und praktisch beliebig grosser Fläche ermöglicht, wie sie für den Bau von grossen industriellen Elektrolyseapparaten (Einzelteilen und ganze, nach dem Filterpresse-Prinzip aufgebaute Batterien) benötigt werden.
** WARNING ** beginning of DESC field could overlap end of CLMS **.
PATENT CLAIMS
1. A process for producing a large-area plate or foil made of porous titanium, starting from titanium powder, characterized in that the titanium powder is suspended in a liquid and the viscous, homogeneous paste (2) produced in this way onto a carrier substance (1) in the form a coherent, uniform layer (3) is applied, the liquid is evaporated in air and the layer (3) is then dried in a vacuum and further heat-treated under vacuum in several stages.
2. The method according to claim 1, characterized in that the heat treatment of the layer is carried out on the same original carrier substance (1) and consists in the subsequent steps carried out under vacuum from 1.33 10 Pa to 1.33 10 -4 Pa: - Heating in the course of 90 min to 500 C, - Maintaining the temperature for 30 min to 500 C, - Heating in the course of 30 min from 500 "C to 900 C, - Sintering the layer by maintaining the temperature for 3 h to 900 C.
3. The method according to claim 1, characterized in that the liquid used for slurrying is Terpineol Cl oHs 8, and that the carrier substance (1) consists of special non-porous, non-sticky graphite with an aligned structure of the individual graphite platelets.
4. The method according to claim 3, characterized in that the terpineol is evaporated at 200 "C and the layer (3) is dried at 200" C in a vacuum.
5. The method according to claim 1, characterized in that the viscous paste (2) made of titanium powder of particle size 15 to 120 Fm with very irregular, branching and protuberance shapes, which was produced from titanium sponge, and from terpineol in a mixing ratio of 9 g Titanium to 6 ml terpineol is produced.
6. The method according to claim 1, characterized in that the viscous paste (2) with a movable coating device (4) for thin-layer plates is applied to the carrier substance (1).
The invention is based on a method for producing a large-area plate or film made of porous titanium according to the preamble of claim 1.
When building electrolysis devices, in particular for water electrolysis using solid electrolytes, the task is to provide corrosion-resistant, porous current collectors. Foils and plates made of porous titanium are preferably used for such purposes on the chemically aggressive oxygen side. Components of this type are produced almost exclusively by powder metallurgical methods. Process steps such as hot pressing, hot pressing, gravity sintering, powder rolling etc.
for use (US-PS 2997 777; Poroshkovaya Metallurgya 7, pages 13 to 16, July 1976; Poroshkovaya Metallurgya 6, pages 96 to 99, June 1977).
In particular, porous titanium foils of limited dimensions for experimental purposes have been produced by the above-mentioned processes. If you want to move to large areas (up to 1 m2), as required for industrial electrolysis plants, you will encounter difficulties. The main problem is that it seems almost hopeless to achieve a uniform distribution of the titanium powder for surfaces of any size, which is then reflected in different thicknesses, uneven porosity and other inhomogeneities.
The invention has for its object to provide an economical method for producing a plate or foil from porous titanium, the area is not limited and the thickness and porosity is uniform over the entire area.
According to the invention, this object is achieved by the features of claim 1.
The invention is described on the basis of the exemplary embodiment explained below by means of two figures.
It shows:
1 shows the temperature curve over time for the heat treatment;
Fig. 2 shows the use of a coating device for thin-film plates.
FIG. 1 shows the temperature curve as a function of the time for the heat treatment of the compressed titanium powder. The diagram is self-explanatory.
Fig. 2 shows schematically the use of a device for applying the paste. list the carrier substance in the form of a flat plate (non-porous, non-sticky graphite). 2 represents the viscous, homogeneous paste consisting of titanium powder and terpineol (CloHl8O). 3 is the coherent, uniform layer of this paste. A movable coating device 4 to be displaced in the direction of the arrow in the form of a container tapering downwards can be used as a means for applying the paste.
Design example:
See Figures 1 and 2.
To produce a porous titanium foil 0.5 mm thick, a viscous, homogeneous paste 2 consisting of titanium powder with a particle size of 15 pm to 120 μm and anhydrous terpineol CloHl8O was first mixed. The titanium powder came from titanium sponge with a large inner surface.
The powder particles have very irregular shapes with branches and protuberances. The mixing ratio was adjusted such that 9 g of titanium powder were added to 6 ml of terpineol. The viscous, homogeneous paste 2 was filled into a movable coating device 4 for thin-layer chromatography plates in the form of a container tapering downwards and applied as a coherent, uniform layer 3 to a carrier substance 1 in the form of a flat plate. The arrow in FIG. 2 shows the direction of movement of the coating device 4.
A special pore-free and non-adhesive graphite grade was selected as carrier substance 1, which had an aligned structure of the individual graphite flakes (Sigraflex from Sigri). In a further process step, the liquid (in the present case terpineol) was evaporated in air by heating to about 200 ° C. Layer 3 was then dried together with carrier substance 1 in a vacuum drying cabinet at approx. 200 ° C. The titanium powder was already compacted. The material was also subjected to a multi-stage heat treatment. For this purpose, the layer 3 on the carrier substance 1 was introduced into a vacuum oven, the vacuum of which was at a value of 10-5 to 10-6 Torr (= 1.33 10-3 to 1.33 10-4 Pa).
First, the material was heated to a temperature of 500 ° C. over a period of about 90 minutes and held at this temperature for 30 minutes. Any remaining solvent (terpineol) is driven off completely in this process heated to a temperature of about 900 ° C. for about 30 minutes and at this temperature for about 3 hours
Temperature maintained. The titanium powder sinters together to form a coherent porous film. Care must be taken that this sintering temperature is not set too high so that the titanium layer does not stick to the carrier substance 1. After sintering, the material was cooled and the finished film was removed from the carrier substance 1.
In principle, paste 2 can also be produced with the help of a suitable liquid other than CloHl8O. The application of the paste is also not bound to the coating device 4 for thin-film panels, but can be carried out using any other suitable device. The condition is that a viscous, homogeneous paste is first produced and then applied as evenly as possible to a non-adhesive substrate (carrier substance 1).
The process according to the invention enables the economical production of porous titanium foils and titanium plates of 0.1 to approx. 5 mm constant thickness with uniform porosity and practically any surface area, such as that required for the construction of large industrial electrolysis apparatus (individual parts and whole ones, after the filter press Principle of built-up batteries) are required.
Claims (6)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH1343/82A CH653581A5 (en) | 1982-03-05 | 1982-03-05 | METHOD FOR PRODUCING A PLATE OR GROSSFLAECHIGEN sheet of porous TITAN. |
PCT/CH1983/000021 WO1983003105A1 (en) | 1982-03-05 | 1983-02-28 | Method for manufacturing a large surface current collector for an electrochemical cell in the form of a porous titanium plate or sheet |
EP83900695A EP0102966A1 (en) | 1982-03-05 | 1983-02-28 | Method for manufacturing a large surface current collector for an electrochemical cell in the form of a porous titanium plate or sheet |
IT19907/83A IT1160493B (en) | 1982-03-05 | 1983-03-04 | PROCEDURE, FOR THE MANUFACTURE OF A LARGE SURFACE CURRENT COLLECTOR FOR AN ELECTROCHEMICAL CELL, IN THE FORM OF A POROUS PLATE OR A TITANIUM SHEET |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH1343/82A CH653581A5 (en) | 1982-03-05 | 1982-03-05 | METHOD FOR PRODUCING A PLATE OR GROSSFLAECHIGEN sheet of porous TITAN. |
Publications (1)
Publication Number | Publication Date |
---|---|
CH653581A5 true CH653581A5 (en) | 1986-01-15 |
Family
ID=4208261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CH1343/82A CH653581A5 (en) | 1982-03-05 | 1982-03-05 | METHOD FOR PRODUCING A PLATE OR GROSSFLAECHIGEN sheet of porous TITAN. |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0102966A1 (en) |
CH (1) | CH653581A5 (en) |
IT (1) | IT1160493B (en) |
WO (1) | WO1983003105A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0262939A2 (en) * | 1986-09-30 | 1988-04-06 | Canon Kabushiki Kaisha | A static pressure gas bearing assembly |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62120403A (en) * | 1985-11-20 | 1987-06-01 | Permelec Electrode Ltd | Titanium composite body having porous surface and its manufacture |
DE3813744A1 (en) * | 1988-04-23 | 1989-11-02 | Metallgesellschaft Ag | METHOD FOR THE PRODUCTION OF MATERIAL COMPOSITES AS TABLET PANELS, TEMPERATURE AND FILMS WITH SURFACE SKELETON STRUCTURE AND USE OF THE MATERIAL COMPOSITION |
CN115821332B (en) * | 2022-11-28 | 2024-10-22 | 西北有色金属研究院 | Titanium current collector for proton exchange membrane water electrolysis hydrogen production device and preparation method thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB863989A (en) * | 1958-01-15 | 1961-03-29 | Ici Ltd | Improvements in the rolling of strip from powder |
GB922599A (en) * | 1960-03-11 | 1963-04-03 | Ici Ltd | Methods of manufacturing electrodes |
DE1483690A1 (en) * | 1965-05-05 | 1970-01-22 | Deutsche Edelstahlwerke Ag | Process for increasing the flow rate of porous sintered metal filters |
US3489555A (en) * | 1967-05-18 | 1970-01-13 | Clevite Corp | Method of slip casting titanium structures |
US3877962A (en) * | 1972-12-18 | 1975-04-15 | Owens Illinois Inc | Substrate coating composition and process |
-
1982
- 1982-03-05 CH CH1343/82A patent/CH653581A5/en not_active IP Right Cessation
-
1983
- 1983-02-28 EP EP83900695A patent/EP0102966A1/en not_active Withdrawn
- 1983-02-28 WO PCT/CH1983/000021 patent/WO1983003105A1/en unknown
- 1983-03-04 IT IT19907/83A patent/IT1160493B/en active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4838710A (en) * | 1986-09-14 | 1989-06-13 | Canon Kabushiki Kaisha | Static pressure gas bearing assembly |
EP0262939A2 (en) * | 1986-09-30 | 1988-04-06 | Canon Kabushiki Kaisha | A static pressure gas bearing assembly |
EP0262939A3 (en) * | 1986-09-30 | 1989-02-08 | Canon Kabushiki Kaisha | A static pressure gas bearing assembly |
Also Published As
Publication number | Publication date |
---|---|
WO1983003105A1 (en) | 1983-09-15 |
EP0102966A1 (en) | 1984-03-21 |
IT8319907A0 (en) | 1983-03-04 |
IT8319907A1 (en) | 1984-09-04 |
IT1160493B (en) | 1987-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE19509748C2 (en) | Process for producing a composite of electrode material, catalyst material and a solid electrolyte membrane | |
EP0105046B1 (en) | Process for finishing skiver, device for carrying out this process and skiver obtained according to this process | |
DE69435041T2 (en) | Method for producing an abrasive material | |
DE60225995T2 (en) | Stripping film, process for producing a stripping film and apparatus for producing a stripping film | |
DE69019552T2 (en) | Process for inserting a rigid element for membrane separation, filtration or catalytic conversion in a module. | |
DE2724131C2 (en) | Plate-shaped carbon body and method for its manufacture | |
WO2004076101A2 (en) | Method and device for producing miniature bodies or microstructured bodies | |
EP0154772A1 (en) | Bipolar plate for an apparatus made of a stack of electrochemical cells with solid electrolyte, and its manufacturing process | |
EP0444494A1 (en) | Method of coating a ceramic honeycomb material with finely divided solids | |
DE2152619A1 (en) | Process for the production of porous metal plates | |
DE2710908A1 (en) | METHOD FOR MANUFACTURING A METAL / PLASTIC COMPOSITE ELECTRODE | |
CH653581A5 (en) | METHOD FOR PRODUCING A PLATE OR GROSSFLAECHIGEN sheet of porous TITAN. | |
DE1287663B (en) | ||
WO1997046345A1 (en) | Method of producing laminar material composites | |
WO1989003736A1 (en) | Heteroporous form tool for manufacturing casting moulds from moulding sand and process for its manufacture | |
EP0339728B1 (en) | Process for manufacturing diaphragms | |
DE3537614C1 (en) | Method and device for pretreatment for the single or multiple coating of inner surfaces of an open hollow body made of plastic by electrical corona discharge | |
DE2206852C3 (en) | Process for the production of steel plates coated with sintered fuel with internal or external gear rims | |
DE4136075C2 (en) | ||
DE2501111B2 (en) | Method and device for coating a porous substrate with lead, zinc, tin, cadmium, aluminum and their alloys | |
CH356810A (en) | Plastic body with a metal foil on the surface | |
DE2115618A1 (en) | Foils for self-breathing gas diffusion electrodes in electrochemical cells and processes for the production of such foils | |
CH635560A5 (en) | Method for shear-resistant joining of ceramic mouldings | |
DE3728675C2 (en) | ||
DE19709571C1 (en) | Electrode-electrolyte unit useful for fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PL | Patent ceased | ||
PL | Patent ceased |