CH634605A5 - Process for the preparation of coarsely crystalline and monocrystalline metal layers - Google Patents
Process for the preparation of coarsely crystalline and monocrystalline metal layers Download PDFInfo
- Publication number
- CH634605A5 CH634605A5 CH449578A CH449578A CH634605A5 CH 634605 A5 CH634605 A5 CH 634605A5 CH 449578 A CH449578 A CH 449578A CH 449578 A CH449578 A CH 449578A CH 634605 A5 CH634605 A5 CH 634605A5
- Authority
- CH
- Switzerland
- Prior art keywords
- metal
- metal layers
- substrate
- crystalline
- preparation
- Prior art date
Links
- 229910052751 metal Inorganic materials 0.000 title claims description 32
- 239000002184 metal Substances 0.000 title claims description 32
- 238000000034 method Methods 0.000 title claims description 13
- 239000000758 substrate Substances 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 239000007789 gas Substances 0.000 claims description 3
- 229910000838 Al alloy Inorganic materials 0.000 claims description 2
- 239000000956 alloy Substances 0.000 claims description 2
- 238000004544 sputter deposition Methods 0.000 claims description 2
- 238000007740 vapor deposition Methods 0.000 claims description 2
- 238000000151 deposition Methods 0.000 claims 2
- 230000008021 deposition Effects 0.000 claims 2
- 229910000531 Co alloy Inorganic materials 0.000 claims 1
- 229910000881 Cu alloy Inorganic materials 0.000 claims 1
- 229910001362 Ta alloys Inorganic materials 0.000 claims 1
- 229910004688 Ti-V Inorganic materials 0.000 claims 1
- 229910010968 Ti—V Inorganic materials 0.000 claims 1
- 229910001080 W alloy Inorganic materials 0.000 claims 1
- 229910052715 tantalum Inorganic materials 0.000 description 10
- 239000004020 conductor Substances 0.000 description 9
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000000889 atomisation Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000000110 cooling liquid Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000004870 electrical engineering Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B23/00—Single-crystal growth by condensing evaporated or sublimed materials
- C30B23/02—Epitaxial-layer growth
- C30B23/06—Heating of the deposition chamber, the substrate or the materials to be evaporated
- C30B23/063—Heating of the substrate
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/54—Controlling or regulating the coating process
- C23C14/541—Heating or cooling of the substrates
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B23/00—Single-crystal growth by condensing evaporated or sublimed materials
- C30B23/02—Epitaxial-layer growth
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/52—Alloys
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Physical Vapour Deposition (AREA)
- Apparatuses And Processes For Manufacturing Resistors (AREA)
Description
Die Erfindung betrifft ein Verfahren zur Herstellung grobkristalliner oder einkristalliner Metallschichten, wie es im Oberbegriff des Patentanspruches 1 näher angegeben ist. The invention relates to a method for producing coarsely crystalline or single-crystalline metal layers, as specified in the preamble of claim 1.
In der Elektrotechnik und insbesondere in der Halbleitertechnologie werden dünne Metallschichten beispielsweise für Leiterbahnen, elektrische Widerstände oder als Kondensatorelektroden verwendet. Diese Bauteile müssen auch bei wechselnder thermischer Belastung eine sehr lange Lebensdauer und eine gute Stabilität ihrer elektrischen Eigenschaften aufweisen. So müssen derartige Metallschichten beispielsweise kurzzeitige Temperaturbelastungen bis etwa 400°C sowie dauernde Erwärmungen bis etwa 150°C ohne Eigenschaftsveränderungen überstehen. In electrical engineering and in particular in semiconductor technology, thin metal layers are used, for example, for conductor tracks, electrical resistors or as capacitor electrodes. Even with changing thermal loads, these components must have a very long service life and good stability of their electrical properties. For example, metal layers of this type must withstand short-term temperature loads of up to approximately 400 ° C. and continuous heating up to approximately 150 ° C. without changes in properties.
Derartige Metallschichten werden meist durch Aufdampfen oder Aufsputtern auf Substrate wie Glas, Silizium oder Keramikmaterial hergestellt. Diese Metallschichten sind im allgemeinen feinkristallin. So weist beispielsweise Tantal, das bei einer Substrattemperatur von 150°C aufgedampft oder aufgesputtert wird, eine Korngrösse von etwa 10 nm auf. Die Eigenschaft der Schichten, feinkristallin zu sein, kann je nach ihrer Verwendung verschiedene Nachteile zur Folge haben. Werden mit solchen Metallschichten versehene Bauelemente beispielsweise bei höheren Temperaturen betrieben, so kann in diesen feinkristallinen Metallschichten ein Kornwachstum eintreten, das die Eigenschaften dieser Schichten, beispielsweise den elektrischen Widerstand sowie den Temperaturkoeffizienten des elektrischen Widerstandes, stark verändert. Werden solche feinkristallinen Metallschichten als Leiterbahnen verwendet, so kann es bei den in hochintegrierten Schaltungen erforderten Stromdichten in solchen Leiterbahnen zu einer starken Elektromigration kommen (vgl. «Proc. ofthe IEEE», Bd. 59, Nr. 10 (Okt. 1971), Seiten 1409-1418). Die Elektromigration hat als wesentliche Ursache Strukturinhomogenitäten im Material der Leiterbahn, wie beispielsweise Korngrenzen. Um stabile Eigenschaften solcher Metallschichten in einem grösseren Temperaturbereich zu erzielen, wurden bisher die Metallschichten einer langdauernden Wärmebehandlung unterzogen, die in der Regel zu einer Kornvergrösserung innerhalb der Schichten führt. Ein solcher Temperaturvorgang ist jedoch insbesondere bei Halbleiterschaltungen problematisch, da durch die zur Wärmebehandlung erforderlichen hohen Temperaturen andere, bereits ausgebildete Bauelemente zerstört werden können. Weiterhin kann durch einen solchen Tem-perprozess insbesondere bei schmalen Leiterbahnen ein Wachstum der Korngrenzflächen quer durch die ganze Leiterbahn verursacht werden. Dies wiederum führt bei einer Strombelastung der Leiterbahn zu einer verstärkten Elektromigration an diesen Stellen, die wiederum zum Ausfall der Leiterbahn und damit des Bauteiles führt. Wünschenswert ist, für die Leiterbahnen ein Material zu finden, das eine solche Elektromigration nicht aufweist. Dies liesse sich durch sehr grobkristalline bzw. einkristalline Metallschichten erreichen. Metal layers of this type are usually produced by vapor deposition or sputtering onto substrates such as glass, silicon or ceramic material. These metal layers are generally fine crystalline. For example, tantalum, which is evaporated or sputtered at a substrate temperature of 150 ° C., has a grain size of approximately 10 nm. The property of the layers to be finely crystalline can have various disadvantages depending on their use. If components provided with such metal layers are operated, for example, at higher temperatures, grain growth can occur in these fine-crystalline metal layers, which greatly changes the properties of these layers, for example the electrical resistance and the temperature coefficient of the electrical resistance. If such fine-crystalline metal layers are used as conductor tracks, the current densities required in highly integrated circuits in such conductor tracks can lead to strong electromigration (cf. “Proc. Ofthe IEEE”, Vol. 59, No. 10 (Oct. 1971), pages 1409-1418). The main cause of electromigration is structural inhomogeneities in the material of the conductor track, such as grain boundaries. In order to achieve stable properties of such metal layers over a wide temperature range, the metal layers have hitherto been subjected to a long-term heat treatment, which generally leads to an increase in grain size within the layers. However, such a temperature process is problematic in particular in the case of semiconductor circuits, since other, already formed components can be destroyed by the high temperatures required for the heat treatment. Furthermore, such a tempering process, particularly in the case of narrow conductor tracks, can cause grain boundary surfaces to grow across the entire conductor track. This in turn leads to an increased electromigration at these points when the conductor track is under current, which in turn leads to failure of the conductor track and thus of the component. It is desirable to find a material for the conductor tracks that does not have such electromigration. This could be achieved through very coarse-crystalline or single-crystalline metal layers.
Aufgabe der Erfindung ist es, für ein wie im Oberbegriff des Patentanspruches 1 angegebenes Verfahren zur Herstellung grobkristalliner oder einkristalliner Metallschichten Massnahmen anzugeben, durch die gewährleistet wird, dass auch bei niedrigen Temperaturen diese Metallschichten in grobkristalliner oder einkristalliner Form ausgebildet werden können, und mit dem die einzelnen Kristallkörper dieser Metallschichten im Durchmesser grösser als etwa 50 um sind. The object of the invention is to provide measures for a method for producing coarsely crystalline or single-crystalline metal layers as specified in the preamble of claim 1, by which it is ensured that these metal layers can be formed in coarse-crystalline or single-crystalline form even at low temperatures, and with which individual crystal bodies of these metal layers are larger than about 50 μm in diameter.
Diese Aufgabe wird für ein wie im Oberbegriff des Patentanspruches 1 angegebenes Verfahren erfindungsgemäss nach der im kennzeichnenden Teil des Patentanspruches 1 angegebenen Weise gelöst. This object is achieved according to the invention for a method as specified in the preamble of patent claim 1 in the manner specified in the characterizing part of patent claim 1.
Bevorzugte Ausgestaltungen der Erfindung ergeben sich aus den Ansprüchen 2 und 3. Preferred embodiments of the invention result from claims 2 and 3.
Die nach dem erfindungsgemässen Verfahren hergestellten Metallschichten weisen gegenüber den bisher hergestellten Metallschichten wesentliche Vorteile auf. So weisen diese Schichten auch bei höheren Temperaturen keine Variation ihrer Schichteigenschaften, beispielsweise ihres elektrischen Widerstandes, auf. Aus diesem Grunde brauchen diese Schichten keinen Temperaturprozessen mehr unterworfen werden, wodurch weiter die schädlichen Einflüsse der Temperprozesse auf bereits vorhandene Bauelemente einer integrierten Schaltung vermieden werden. Weiterhin haben die nach dem erfindungsgemässen Verfahren hergestellten Metallschichten einen Korndurchmesser, der so gross ist, The metal layers produced by the process according to the invention have significant advantages over the metal layers produced hitherto. Thus, even at higher temperatures, these layers have no variation in their layer properties, for example their electrical resistance. For this reason, these layers no longer need to be subjected to temperature processes, which further avoids the harmful effects of the tempering processes on existing components of an integrated circuit. Furthermore, the metal layers produced by the method according to the invention have a grain diameter which is so large
dass bei einer integrierten Schaltung einzelne Bauelemente durch einen Einkristall miteinander verbunden sind. Die grosse Homogenität eines Einkristalles lässt höhere Stromdichten zu, ohne dass durch Elektromigration Ausfälle zu erwarten sind. that in an integrated circuit, individual components are connected to one another by a single crystal. The great homogeneity of a single crystal allows higher current densities without failures to be expected due to electromigration.
Werden die nach dem erfindungsgemässen Verfahren hergestellten Metallschichten für Dünnschicht-Kondensatoren eingesetzt, so besitzen solche Dünnschicht-Kondensatoren aufgrund des sehr homogenen Materials eine sehr hohe Durchschlagsspannungsfestigkeit und damit auch eine sehr hohe Lebensdauer. If the metal layers produced by the process according to the invention are used for thin-film capacitors, such thin-film capacitors have a very high dielectric strength due to the very homogeneous material and thus also a very long service life.
Im folgenden wird die Erfindung anhand eines Ausführungsbeispieles beschrieben und anhand der Figur näher erläutert. The invention is described below using an exemplary embodiment and explained in more detail using the figure.
In der Figur ist schematisch die zur Durchführung des erfindungsgemässen Verfahrens verwendete Apparatur dargestellt. The figure schematically shows the apparatus used to carry out the method according to the invention.
In einem Rezipienten 1, der auf Ultrahochvakuum evakuiert werden kann, befindet sich ein Verdampfungstiegel 2, der das niederzuschlagende Metall 3 enthält. Im Verdampfungstiegel gegenüberliegend ist ein Substrathalter 8 angebracht, durch den eine Kühlflüssigkeit 12 gepumpt werden kann. Auf dem Substrathalter 8 ist das Substrat 9 befestigt, auf dem die herzustellende Metallschicht 10 niedergeschlagen wird. Zum Verdampfen des in dem Tiegel befindlichen Metalles 3 kann der Tiegel beispielsweise durch eine Stromquelle 4 elektrisch beheizt werden. Soll das Material der Schicht 10 nicht durch Verdampfen, sondern durch Zerstäubung niedergeschlagen werden, so wird über ein Ventil 7 Argon in den Rezipienten 1 eingelassen. Der Argon-Partialdruck beträgt beispielsweise 1 Pa (MO"2 Torr). Die zur Zerstäubung notwendigen Ionen In a recipient 1, which can be evacuated to ultra high vacuum, there is an evaporation crucible 2, which contains the metal 3 to be deposited. A substrate holder 8 is mounted opposite in the evaporation crucible, through which a cooling liquid 12 can be pumped. The substrate 9, on which the metal layer 10 to be produced is deposited, is fastened on the substrate holder 8. To evaporate the metal 3 located in the crucible, the crucible can be electrically heated, for example, by a current source 4. If the material of the layer 10 is to be deposited not by evaporation but by atomization, argon is admitted into the recipient 1 via a valve 7. The argon partial pressure is, for example, 1 Pa (MO "2 torr). The ions required for atomization
5 5
10 10th
15 15
20 20th
25 25th
30 30th
35 35
40 40
45 45
50 50
55 55
60 60
65 65
werden beispielsweise mit Hilfe einer Hochfrequenzspule 5, die mit einer Hochfrequenzspannungsquelle erregt wird, erzeugt. Als Ausführungsbeispiel diene die Herstellung einer grobkristallinen Tantalschicht. Dazu wird aus dem Verdampfungstiegel 2 Tantal verdampft. Das Substrat 9 wird mit Hilfe der Kühlflüssigkeit 12, beispielsweise mit Hilfe von flüssigem Stickstoff oder flüssigem Helium, auf eine Temperatur unterhalb von -90°C abgekühlt. Auf das so gekühlte Substrat wird Tantal als Schicht 10 niedergeschlagen, bis eine Schichtdicke von beispielsweise 1 jim erreicht ist. Die Kühlung des Substrates 9 bewirkt, dass die niedergeschlagene Tantalschicht 10 in amorpher Phase vorliegt. Wird nun die Kühlung des Substrates abgebrochen und das Substrat beispielsweise auf Zimmertemperatur oder höher, bis maximal etwa 300°C, are generated, for example, with the aid of a high-frequency coil 5, which is excited with a high-frequency voltage source. The production of a coarsely crystalline tantalum layer serves as an exemplary embodiment. For this purpose, 2 tantalum is evaporated from the evaporation crucible. The substrate 9 is cooled to a temperature below -90 ° C. using the cooling liquid 12, for example using liquid nitrogen or liquid helium. Tantalum is deposited as layer 10 on the substrate cooled in this way until a layer thickness of, for example, 1 μm is reached. The cooling of the substrate 9 causes the deposited tantalum layer 10 to be in the amorphous phase. If the cooling of the substrate is now stopped and the substrate is, for example, at room temperature or higher, up to a maximum of about 300 ° C.
erwärmt, so geht die amorphe Tantalschicht 10 durch Kristallisation in a-Tantal über. Diese Kristallisation führt zu Kri- heated, the amorphous tantalum layer 10 changes into a-tantalum by crystallization. This crystallization leads to
3 634605 3 634605
stallen, deren Durchmesser oberhalb von 70 |j.m liegt. Die Kristallisation des Tantals erfolgt damit bei so hergestellten Tantalschichten bei wesentlich niedrigeren Temperaturen als bei den bisher bekannten Verfahren, bei denen die zur Rekri-5 stallisation notwendige Temperatur Tr etwa die Hälfte der Schmelztiegeltemperatur Ts beträgt. Nach den im Zusammenhang mit der Erfindung vorgenommenen Untersuchungen sind ausser Tantal auch die Metalle Wolfram, Kupfer, stables whose diameter is above 70 | j.m. The crystallization of the tantalum thus takes place in the tantalum layers produced in this way at substantially lower temperatures than in the previously known processes, in which the temperature Tr necessary for recrystallization is approximately half the melting crucible temperature Ts. According to the investigations carried out in connection with the invention, in addition to tantalum, the metals tungsten, copper,
Kobalt, Aluminium und Aluminium-Legierungen sowie die io Legierung Titan/Vanadium mit einem Vanadiumanteil von mehr als 70 Atom% zur Herstellung von derartigen grobkristallinen Metallschichten geeignet. Das Aufdampfen des Materials auf das Substrat 9 erfolgt bevorzugt im Ultrahochvakuum oder in einer inerten Atmosphäre, z.B. einer Edelgas-15 atmosphäre, da in diesem Falle keine Störungen durch die Restgasatmosphäre möglich sind. Cobalt, aluminum and aluminum alloys as well as the io alloy titanium / vanadium with a vanadium content of more than 70 atomic% are suitable for the production of such coarsely crystalline metal layers. The material is preferably evaporated onto the substrate 9 in an ultra-high vacuum or in an inert atmosphere, e.g. an inert gas atmosphere, since in this case no interference from the residual gas atmosphere is possible.
B B
1 Blatt Zeichnungen 1 sheet of drawings
Claims (3)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2727659A DE2727659B2 (en) | 1977-06-20 | 1977-06-20 | Process for the production of coarsely crystalline or monocrystalline metal layers |
Publications (1)
Publication Number | Publication Date |
---|---|
CH634605A5 true CH634605A5 (en) | 1983-02-15 |
Family
ID=6011893
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CH449578A CH634605A5 (en) | 1977-06-20 | 1978-04-26 | Process for the preparation of coarsely crystalline and monocrystalline metal layers |
Country Status (5)
Country | Link |
---|---|
JP (1) | JPS548129A (en) |
CH (1) | CH634605A5 (en) |
DE (1) | DE2727659B2 (en) |
FR (1) | FR2395326A1 (en) |
GB (1) | GB1576707A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0241155A1 (en) * | 1986-03-31 | 1987-10-14 | Unisys Corporation | Depositing vanadium underlayer for magnetic films |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2924920A1 (en) * | 1979-06-20 | 1981-01-22 | Siemens Ag | METHOD FOR PRODUCING COARSE CRYSTAL OR SINGLE CRYSTAL METAL OR ALLOY LAYERS |
DE3003136A1 (en) * | 1980-01-29 | 1981-07-30 | Siemens AG, 1000 Berlin und 8000 München | METHOD FOR PRODUCING THERMALLY STABLE, METAL LAYERS |
DE3003285A1 (en) * | 1980-01-30 | 1981-08-06 | Siemens AG, 1000 Berlin und 8000 München | METHOD FOR PRODUCING LOW-RESISTANT, SINGLE-CRYSTAL METAL OR ALLOY LAYERS ON SUBSTRATES |
CH667605A5 (en) * | 1983-08-25 | 1988-10-31 | Vni Instrument Inst | MILLING TOOL AND METHOD FOR THE PRODUCTION THEREOF. |
JPS63166966A (en) * | 1986-12-27 | 1988-07-11 | Tokuda Seisakusho Ltd | Sputtering device |
JP2000068230A (en) | 1998-08-25 | 2000-03-03 | Mitsubishi Electric Corp | Semiconductor device, and apparatus for manufacture of the device and manufacture of the device |
DE19851167B4 (en) * | 1998-11-06 | 2005-10-20 | Herbert Kliem | Electric capacitor |
CN116770242A (en) * | 2023-05-19 | 2023-09-19 | 暨南大学 | Amorphous copper-tungsten alloy for producing hydrogen by water electrolysis and preparation method thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1285827B (en) * | 1963-03-26 | 1968-12-19 | Ibm | Process for the production of thin layers with high purity and uniformity, by vacuum vapor deposition |
FR1459038A (en) * | 1964-09-11 | 1966-04-29 | Ibm | Amorphous alloys |
-
1977
- 1977-06-20 DE DE2727659A patent/DE2727659B2/en not_active Ceased
-
1978
- 1978-04-26 CH CH449578A patent/CH634605A5/en not_active IP Right Cessation
- 1978-05-31 GB GB25267/78A patent/GB1576707A/en not_active Expired
- 1978-06-19 FR FR7818309A patent/FR2395326A1/en active Granted
- 1978-06-20 JP JP7480378A patent/JPS548129A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0241155A1 (en) * | 1986-03-31 | 1987-10-14 | Unisys Corporation | Depositing vanadium underlayer for magnetic films |
Also Published As
Publication number | Publication date |
---|---|
JPS548129A (en) | 1979-01-22 |
FR2395326A1 (en) | 1979-01-19 |
FR2395326B1 (en) | 1984-05-25 |
GB1576707A (en) | 1980-10-15 |
DE2727659A1 (en) | 1979-01-04 |
DE2727659B2 (en) | 1980-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0021087B1 (en) | Method of preparing macrocrystalline or monocrystalline films of metals or alloys and application of the method to the manufacture of semiconductor circuits and contact electrodes | |
EP0033506B1 (en) | Method of manufacturing low impedance monocrystal metal or alloy layers on insulating chips | |
DE2601656C2 (en) | Process for producing a high-ohmic cermet sheet resistor and a cermet sheet resistor | |
DE1931412A1 (en) | Thin-film resistors and processes for their manufacture | |
EP0002703B1 (en) | Method of production of thin conducting metal strips on semiconductor substrates and strips produced by this method | |
CH626468A5 (en) | ||
DE3933713C2 (en) | ||
DE2719988C2 (en) | Amorphous metal layer containing tantalum, temperature-stable at least up to 300 degrees C, and process for its production | |
DE2300813A1 (en) | PROCESS FOR DEPOSITING NITROGEN-DOPED BETA-TANTALUM AND AN ARTICLE HAVING A BETA-TANTALUM THIN-LAYER | |
DE1950126A1 (en) | Process for applying insulating films and electronic components | |
CH634605A5 (en) | Process for the preparation of coarsely crystalline and monocrystalline metal layers | |
EP0033155B1 (en) | Method of producing thermally and electrically stable metallic layers | |
DE3018510C2 (en) | Josephson transition element | |
DE4120258A1 (en) | Epitaxial prodn. of high temp. superconducting layer on substrate - by sputtering intermediate metal oxide layer on substrate, and then depositing superconducting layer | |
DE1615030A1 (en) | Tantalum film on a firm base | |
DE2262022C2 (en) | Process for the production of sputtered resistance layers from tantalum-aluminum alloys | |
DE4143405C2 (en) | Ceramic electronic components | |
EP0423178A1 (en) | Josephson element with oxide ceramic superconducting material and process for manufacturing the element | |
DE3822905A1 (en) | JOSEPHSON TUNNEL ELEMENT WITH METAL-OXIDIC SUPER LADDER MATERIAL AND METHOD FOR PRODUCING THE ELEMENT | |
DE3720298A1 (en) | Metal layer arrangement for thin-film hybrid circuits | |
DE2015457A1 (en) | Method for the production of a multilayer, electrically conductive thin-film structure | |
DE4139908A1 (en) | SEMICONDUCTOR ARRANGEMENT WITH METAL LAYER SYSTEM AND METHOD FOR PRODUCTION | |
DE2015457C (en) | Process for the production of a multilayer, electrically conductive thin-film structure by vacuum vapor deposition | |
DD296583A5 (en) | METHOD FOR MANUFACTURING ALUMINUM CONDUCTORS FOR SEMICONDUCTOR ELEMENTS | |
DE1521263A1 (en) | Process for the production of metallic superconducting layers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PL | Patent ceased | ||
PL | Patent ceased |